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Abstract. We study sums and products in a field. Let F be a field with ch(F ) 6= 2,
where ch(F ) is the characteristic of F . For any integer k > 4, we show that any x ∈ F

can be written as a1 + . . . + ak with a1, . . . , ak ∈ F and a1 . . . ak = 1, and that for any
α ∈ F \{0} we can write every x ∈ F as a1 . . . ak with a1, . . . , ak ∈ F and a1+ . . .+ak = α.
We also prove that for any x ∈ F and k ∈ {2, 3, . . .} there are a1, . . . , a2k ∈ F such that
a1 + . . .+ a2k = x = a1 . . . a2k.
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1. Introduction

Let Q be the field of rational numbers. In 1749 Euler showed that any q ∈ Q

can be written as abc(a + b + c) with a, b, c ∈ Q; equivalently, we can always write

x = −q ∈ Q as abcd with a, b, c, d ∈ Q and a+ b + c+ d = 0. Actually, Euler noted

that the equation abc(a+ b+ c) = q has the rational parameter solutions

a =
6qst3(qt4 − 2s4)2

(4qt4 + s4)(2q2t8 + 10qs4t4 − s8)
,

b =
3s5(4qt4 + s4)2

2t(qt4 − 2s4)(2q2t8 + 10qs4t4 − s8)
,

c =
2(2q2t8 + 10qs4t4 − s8)

3s3t(4qt4 + s4)
.

The reader may consult Elkies’s talk (see [1]) for a nice exposition of this curious

discovery of Euler and its connection to modern topics like K3 surfaces. Elkies in [1]
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found that abcd = x with a+ b+ c+ d = 0, where

a =
(s4 + 4x)2

2s3(s4 − 12x)
, b =

2x(3s4 − 4x)2

s3(s4 + 4x)(s4 − 12x)
,

c =
s(s4 − 12x)

2(3s4 − 4x)
, d = −

2s5(s4 − 12x)

(s4 + 4x)(3s4 − 4x)
.

Let F be a field. If x = a1 . . . ak with a1, . . . , ak ∈ F and a1 + . . .+ ak = 0, then

a1 . . . ak is called a balanced decomposition of x by Klyachko and Vassilyev, see [3].

Unaware of Euler’s above work in 1749, Klyachko and Vassilyev in [3] showed that

if ch(F ) (the characteristic of F ) is not two then for each k = 5, 6, . . ., every x ∈ F has

a balanced decomposition a1 . . . ak with a1, . . . , ak ∈ F and a1+. . .+ak = 0. When F

is a finite field and k > 1 is an integer, they are determined completely when any

x ∈ F can be written as a1 . . . ak with a1, . . . , ak ∈ F and a1 + . . .+ ak = 0. In 2016,

Klyachko, Mazhuga and Ponfilenko in [2] proved that if ch(F ) 6= 2, 3 and |F | 6= 5

then any x ∈ F has a balanced decomposition a1a2a3a4 with a1, a2, a3, a4 ∈ F and

a1+a2+a3+a4 = 0; in fact, for x ∈ F \{ 1
4 ,−

1
8} they found that a(x)b(x)c(x)d(x) = x

and a(x) + b(x) + c(x) + d(x) = 0, where

a(x) =
2(1− 4x)2

3(1 + 8x)
, b(x) = −

1 + 8x

6
,

c(x) =−
1 + 8x

2(1− 4x)
, d(x) =

18x

(1 − 4x)(1 + 8x)
.

This is much simpler than Euler’s and Elkies’ rational parameter solutions to the

equation abcd = x with the restriction a+ b+ c+ d = 0.

2. Main results and proof

Motivated by the above work, we obtain the following new results.

Theorem 2.1. Let F be any field with ch(F ) 6= 2, and let α ∈ F \ {0} and

k ∈ {4, 5, . . .}. Then every x ∈ F can be written as a1 . . . ak with a1, . . . , ak ∈ F and

a1 + . . .+ ak = α.

Remark 2.1. This theorem with α = 1 implies that for any x∈Q and

k ∈ {4, 5, . . .} there are a1, . . . , ak ∈ Q such that a1 . . . ak(a1 + . . . + ak) = x,

this extension of Euler’s work was asked by van der Zypen, see [4].
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P r o o f of Theorem 2.1. We distinguish three cases.

Case 1 : k = 4. If every q ∈ F can be written as abcd with a, b, c, d ∈ F and

a + b + c + d = 1, then for any x ∈ F we can write x/α4 = abcd with a, b, c, d ∈ F

and a+ b+ c+ d = 1, and hence x = (aα)(bα)(cα)(dα) with aα+ bα+ cα+ dα = α.

So, it suffices to work with α = 1.

Let x ∈ F with x 6= ±1. Put

a(x) = −
(1− x)2

2(1 + x)
, b(x) =

1 + x

2
, c(x) =

1 + x

1− x
, d(x) =

4x

x2 − 1
.

It is easy to verify that

a(x)b(x)c(x)d(x) = x and a(x) + b(x) + c(x) + d(x) = 1.

For x = −1, we note that

−1 =
1

2
×

1

2
× 2× (−2) with

1

2
+

1

2
+ 2− 2 = 1.

For x = 1, if ch(F ) = 3 then

1 = 1× 1× 1× 1 with 1 + 1 + 1 + 1 = 1

if ch(F ) 6= 3 then

1 =
3

2
×
(

−
3

2

)

×
(

−
1

3

)

×
4

3
with

3

2
−

3

2
−

1

3
+

4

3
= 1.

This proves Theorem 2.1 for k = 4.

Case 2 : k = 5. As ch(F ) 6= 2, we have α − ε 6= 0 for some ε ∈ {±1}. Let

x ∈ F . By Theorem 2.1 for k = 4, we can write εx as abcd with a, b, c, d ∈ F and

a+ b+ c+ d = α− ε. Hence, x = abcdε with a+ b+ c+ d+ ε = α. So Theorem 2.1

also holds for k = 5.

Case 3 : k > 6. Let x ∈ F . If k is even, then by Theorem 2.1 for k = 4 there are

a, b, c, d ∈ F with a+ b+ c+ d = α such that abcd = (−1)(k−4)/2x, hence

x = abcd× 1(k−4)/2 × (−1)(k−4)/2 with a+ b+ c+ d+
k − 4

2
(1 − 1) = α.

When k is odd, by Theorem 2.1 for k = 5 there are a, b, c, d, e ∈ F with a+ b + c+

d+ e = α such that abcde = (−1)(k−5)/2x, hence

x = abcde× 1(k−5)/2 × (−1)(k−5)/2 with a+ b+ c+ d+ e+
k − 5

2
(1− 1) = α.

Combining the above, we have completed the proof of Theorem 2.1. �
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Theorem 2.2. Let F be a field with ch(F ) 6= 2 and let k > 4 be an integer.

(i) If ch(F ) 6= 3, then any x ∈ F can be written as a1+ . . .+ak with a1, . . . , ak ∈ F

and a1 . . . ak = −1.

(ii) Any x ∈ F can be written as a1+ . . .+ak with a1, . . . , ak ∈ F and a1 . . . ak = 1.

Remark 2.2. It seems that there are no a, b, c ∈ Q with a+ b+ c = 1 = abc.

Let F be any field and k be a positive integer. Clearly, any x ∈ F can be written

as a1 + . . . + a2k+1 with a1, . . . , a2k+1 ∈ F and a1 . . . a2k+1 = (−1)kx; in fact,

x + k(1 − 1) = x and x × 1k × (−1)k = (−1)kx. If a2 = −1 for some a ∈ F ,

then any x ∈ F can be written as a1 + . . . + a2k+1 with a1, . . . , a2k+1 ∈ F and

a1 . . . a2k+1 = (−1)k−1x; in fact, x+ (a− a) + (k − 1)(1− 1) = x and

x× a× (−a)× 1k−1 × (−1)k−1 = (−1)k−1x.

P r o o f of Theorem 2.2. For any m ∈ Z, if every x ∈ F can be written as

a+ b+ c+ d with a, b, c, d ∈ F and abcd = m, then for any x ∈ F and k ∈ {4, 5, . . .}

there are a1, a2, a3, a4 ∈ F such that a1+a2+a3+a4 = x−(k−4) and a1a2a3a4 = m,

hence a1 + . . . + ak = x and a1 . . . ak = m, where aj = 1 for 4 < j 6 k. Thus, it

suffices to show parts (i) and (ii) in the case k = 4.

(i) For x ∈ F \ {−1,−3}, we put

a(x) =
(x+ 1)2

2(x+ 3)
, b(x) =

x+ 3

2
, c(x) = −

x+ 3

x+ 1
, d(x) =

4

(x+ 1)(x+ 3)
,

and it is easy to verify that

a(x)b(x)c(x)d(x) = −1 and a(x) + b(x) + c(x) + d(x) = x.

Observe that

−1 = 2− 2−
1

2
−

1

2
with 2× (−2)×

(

−
1

2

)

×
(

−
1

2

)

= −1.

If ch(F ) 6= 3, then

−3 =
2

3
−

2

3
−

3

2
−

3

2
with

2

3
×
(

−
2

3

)

×
(

−
3

2

)

×
(

−
3

2

)

= −1.

This concludes the proof of Theorem 2.2 (i).

(ii) If x ∈ F \ {0,±1}, then it is easy to verify that

1− x2

x2
+
x2 − 1

x2
+

x

1− x2
+

x3

x2 − 1
= x and

1− x2

x2
×
x2 − 1

x2
×

x

1− x2
×

x3

x2 − 1
= 1.
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Note that 0 = 1 + 1 − 1 − 1 and 1 × 1 × (−1) × (−1) = 1. If ch(F ) = 3, then

1 + 1 + 1 + 1 = 1 and 1 × 1 × 1 × 1 = 1, and also −1 − 1 − 1 − 1 = −1 and

(−1)(−1)(−1)(−1) = 1. If ch(F ) 6= 3, then

3

2
−

3

2
−

1

3
+

4

3
= 1 and

3

2
×
(

−
3

2

)

×
(

−
1

3

)

×
4

3
= 1,

and also

3

2
−

3

2
+

1

3
−

4

3
= −1 and

3

2
×
(

−
3

2

)

×
1

3
×
(

−
4

3

)

= 1.

So Theorem 2.2 (ii) also holds.

In view of the above, the proof of Theorem 2.2 is now complete. �

Theorem 2.3. Let F be a field with ch(F ) 6= 2 and let k > 2 be an integer. Then

for any x ∈ F there are a1, . . . , a2k ∈ F such that a1 + . . .+ a2k = x = a1 . . . a2k.

Remark 2.3. If F is a field with ch(F ) 6= 2 and k > 2 is an integer, then for any

x ∈ F , by Theorem 2.3 there are a1, . . . , a2k ∈ F with a1+. . .+a2k = −x = a1 . . . a2k,

hence

(−a1) + . . .+ (−a2k) = x and (−a1) . . . (−a2k) = −x.

P r o o f of Theorem 2.3. We first handle the case k = 2. For x ∈ F \ {±1}, we

put

a(x) =
(x+ 1)2

2(x− 1)
, b(x) =

x− 1

2
, c(x) =

1− x

1 + x
, d(x) =

4x

1− x2

and it is easy to verify that

a(x)b(x)c(x)d(x) = x = a(x) + b(x) + c(x) + d(x).

Clearly,

−1 = −
1

2
−

1

2
+ 2− 2 with −

1

2
×
(

−
1

2

)

× 2× (−2) = −1.

If ch(F ) 6= 3, then

1 =
3

2
−

3

2
−

1

3
+

4

3
with

3

2
×
(

−
3

2

)

×
(

−
1

3

)

×
4

3
= 1.

When ch(F ) = 3, we have

1 = 1 + 1 + 1 + 1 with 1× 1× 1× 1 = 1.

This proves Theorem 2.3 for k = 2.
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Now we consider the case k > 3. By Theorem 2.3 for k = 2, there are a, b, c, d ∈ F

such that a+ b + c+ d = (−1)kx = abcd. Thus,

(−1)ka+ (−1)kb+ (−1)kc+ (−1)kd+ (k − 2)(1− 1) = x

and

(−1)ka× (−1)kb × (−1)kc× (−1)kd× 1k−2 × (−1)k−2 = abcd(−1)k = x.

This proves Theorem 2.3 for k > 3.

By the above, we have completed the proof of Theorem 2.3. �

Motivated by Theorem 2.3 and Remark 2.3, we propose the following conjecture

based on our computation.

Conjecture 2.1. Let F be any field with ch(F ) 6= 2, 3. Then, for any x ∈ F

there are a, b, c, d ∈ F such that a+ b+ c+ d− 1 = x = abcd.

For example, in any field F with ch(F ) 6= 2, 3, we have

−2 +
9

2
−

2

3
+

1

6
− 1 = 1 = (−2)×

9

2
×
(

−
2

3

)

×
1

6
.

Motivated by our proof of Theorem 2.2 (ii), we obtain the following result.

Theorem 2.4. Let F be a field with ch(F ) 6= 2 and let m be any nonzero integer.

Then any x ∈ F \{0} can be written as a+b+c+dwith a, b, c, d ∈ F and abcd = xm.

P r o o f. If m is odd and x ∈ F \ {0, 1}, then, for n = 1
2 (3−m) we have

1− x

xn
+

x− 1

xn
+

x

1− x
+

x2

x− 1
= x

and
1− x

xn
×

x− 1

xn
×

x

1− x
×

x2

x− 1
= x3−2n = xm.

If m is even and x ∈ F \ {0,±1}, then, for n = 1
2 (4−m) we have

1− x2

xn
+

x2 − 1

xn
+

x

1− x2
+

x3

x2 − 1
= x

and
1− x2

xn
×

x2 − 1

xn
×

x

1− x2
×

x3

x2 − 1
= x4−2n = xm.

As in the proof of Theorem 2.2 (ii), any x ∈ {±1} can be written as a + b + c + d

with a, b, c, d ∈ F and abcd = 1. So we have the desired result. �
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