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Received April 25, 2021. Published online March 23, 2022.

Abstract. Let a = (a1, a2, . . . , an) be a nonincreasing sequence of positive real numbers.
Denote by S = {1, 2, . . . , n} the index set and by Jk = {I = {r1, r2, . . . , rk}, 1 6 r1 <
r2 < . . . < rk 6 n} the set of all subsets of S of cardinality k, 1 6 k 6 n− 1. In addition,
denote by aI = ar1 + ar2 + . . . + ark , 1 6 k 6 n − 1, 1 6 r1 < r2 < . . . < rk 6 n,
the sum of k arbitrary elements of sequence a, where aI1 = a1 + a2 + . . . + ak and aIn =
an−k+1 + an−k+2 + . . . + an. We consider bounds of the quantities RSk(a) = aI1/aIn ,

LSk(a) = aI1 − aIn and Sk,α(a) =
∑

I∈Jk

aαI in terms of A =
n∑

i=1
ai and B =

n∑

i=1
a2i . Then

we use the obtained results to generalize some results regarding Laplacian and normalized
Laplacian eigenvalues of graphs.

Keywords: inequality; real number sequence; Laplacian eigenvalue of graph; normalized
Laplacian eigenvalue

MSC 2020 : 15A18, 05C30

1. Introduction

Let a = (a1, a2, . . . , an), a1 > a2 > . . . > an > 0, be a positive real number

sequence. Designate by A and B the following sums:

(1.1) A =

n
∑

i=1

ai and B =

n
∑

i=1

a2i .
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The notation for A and B will be used through the entire paper. Further, denote by

S = {1, 2, . . . , n} an index set and by

Jk = {I = {r1, r2, . . . , rk} : 1 6 r1 < r2 < . . . < rk 6 n}

the set of all subsets of S of cardinality k, 1 6 k 6 n−1. In addition, denote by aI =

ar1+ar2+. . .+ark , 1 6 k 6 n−1, 1 6 r1 < r2 < . . . < rk 6 n, the sum of k arbitrary

numbers of a, where aI1 = a1 + a2 + . . .+ ak and aIn = an−k+1 + an−k+2 + . . .+ an.

It is easy to verify that aIn 6 aI 6 aI1 for any I, I ∈ Jk.

Let us define the quantities RSk(a), LSk(a) and Sk,α in the following way:

RSk(a) =
aI1
aIn

, LSk(a) = aI1 − aIn , Sk,α(a) =
∑

I∈Jk

aαI ,

where α is an arbitrary real number. In this paper we determine bounds of these

quantities depending on A and B. As direct consequences of the obtained results we

obtain a number of old/new inequalities for the Laplacian and normalized Laplacian

eigenvalues of graphs.

2. Preliminaries

In this section we recall some discrete inequalities for real number sequences that

will be used later in the paper.

Let x = (xi), y = (yi), i = 1, 2, . . . , n, be two positive real number sequences with

properties 0 < r1 6 xi 6 R1 and 0 < r2 6 yi 6 R2. In [25] the following inequality

was proven:

(2.1)
n
∑

i=1

y2i

n
∑

i=1

x2
i −

( n
∑

i=1

xiyi

)2

6
n2

4
(R1R2 − r2r1)

2.

Let p = (pi), i = 1, 2, . . . , n be a sequence of nonnegative real numbers and

x = (xi), i = 1, 2, . . . , n, a sequence of positive real numbers. In [15] (see also [22])

it was proven that for any real r, r 6 0 or r > 1,

(2.2)

( n
∑

i=1

pi

)r−1 n
∑

i=1

pix
r
i >

( n
∑

i=1

pixi

)r

.

For 0 6 r 6 1, the opposite inequality is valid. Equality holds if and only if either

r = 0, or r = 1, or p1 = p2 = . . . = pt = 0 and xt+1 = . . . = xn for some t,

1 6 t 6 n− 1, or x1 = x2 = . . . = xn.
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3. Inequalities for positive real number sequences

In the next theorem we establish a lower bound for RSk(a) in terms of A, B and

parameters n and k, 1 6 k 6 n− 1.

Theorem 3.1. For any k, 1 6 k 6 n− 1, we have that

(3.1) RSk(a) =
aI1
aIn

>

(
√

n((n− k)B + (k − 1)A2) +
√

(n− k)(nB −A2)
)2

k(n− 1)A2
.

When 2 6 k 6 n − 1, equality holds if and only if a1 = a2 = . . . = an. For k = 1,

equality holds if and only if a1 = a2 = . . . = an, or a1 = a2 = . . . = ap = a and

ap+1 = . . . = an = p/(n− p), 1 6 p 6 1
2n.

P r o o f. For any k-tuple I, I ∈ Jk, the following is valid:

(aI − aI1)(aI − aIn) 6 0,

that is,

a2I + aI1aIn 6 (aI1 + aIn)aI .

After summation over all I, I ∈ Jk, of the above inequality, we obtain

(3.2)
∑

I∈Jk

a2I + aI1aIn
∑

I∈Jk

1 6 (aI1 + aIn)
∑

I∈Jk

aI .

From the arithmetic-geometric mean inequality for real numbers (see, e.g., [22]),

and (3.2) we obtain

2

√

aI1aIn
∑

I∈Jk

1
∑

I∈Jk

a2I 6 (aI1 + aIn)
∑

I∈Jk

aI ,

that is,
(
√

aI1
aIn

+

√

aIn
aI1

)2

>
4
∑

I∈Jk
1
∑

I∈Jk
a2I

(
∑

I∈Jk
aI
)2 .

On the other hand, since

(
√

aI1
aIn

−
√

aIn
aI1

)2

=

(
√

aI1
aIn

+

√

aIn
aI1

)2

− 4,

we have that

(
√

aI1
aIn

−
√

aIn
aI1

)2

>
4
(
∑

I∈Jk
1
∑

I∈Jk
a2I −

(
∑

I∈Jk
aI
)2)

(
∑

I∈Jk
aI
)2 ,
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and therefore it holds that

(3.3)

√

aI1
aIn

+

√

aIn
aI1

>

2
√

∑

I∈Jk
1
∑

I∈Jk
a2I

∑

I∈Jk
aI

and

(3.4)

√

aI1
aIn

−
√

aIn
aI1

>
2
√

∑

I∈Jk
1
∑

I∈Jk
a2I −

(
∑

I∈Jk
aI
)2

∑

I∈Jk
aI

.

From (3.3) and (3.4) we obtain

(3.5)

√

aI1
aIn

>

√

∑

I∈Jk
1
∑

I∈Jk
a2I +

√

∑

I∈Jk
1
∑

I∈Jk
a2I −

(
∑

I∈Jk
aI
)2

∑

I∈Jk
aI

.

On the other hand, the following is valid:

∑

I∈Jk

1 =

(

n

k

)

,(3.6)

∑

I∈Jk

aI =

(

n− 1

k − 1

) n
∑

i=1

ai =

(

n− 1

k − 1

)

A,(3.7)

∑

I∈Jk

a2I =

(

n− 2

k − 1

) n
∑

i=1

a2i +

(

n− 2

k − 2

)( n
∑

i=1

ai

)2

=

(

n− 2

k − 1

)

B +

(

n− 2

k − 2

)

A2(3.8)

=

(

n−1
k−1

)

((n− k)B + (k − 1)A2)

n− 1
.

Now from the above identities and inequality (3.5) we obtain (3.1).

Let 2 6 k 6 n − 1. Then equality in (3.2) holds if and only if aI ∈ {aI1 , aIn}
for every I ∈ Jk. Equality in (3.3), and thus in (3.4), holds if and only if aI is

a constant for every I ∈ Jk. This implies that equality in (3.1) holds if and only if

a1 = a2 = . . . = an.

Let k = 1. Suppose that for some p, 1 6 p 6 n, a = a1 = . . . = ap > ap+1 = . . . =

an = b. Assume that in (3.3), equality is reached, that is,

√

a

b
+

√

b

a
=

2
√

n(pa2 + (n− p)b2)

pa+ (n− p)b
.

In that case it holds that

(a− b)(pa− (n− p)b) = 0,

which means that equality in (3.3) holds if and only if a = b or pa − (n − p)b = 0,

which implies that equality in (3.1) holds if and only if a1 = a2 = . . . = an or

a = a1 = . . . = ap and pa/(n− p) = ap+1 = . . . = an for any p, 1 6 p 6 n/2. �

786



In the next theorem we determine a lower bound for LSk(a) in terms of A, B and

parameters n and k, 1 6 k 6 n− 1.

Theorem 3.2. For any k, 1 6 k 6 n− 1, we have that

(3.9) LSk(a) = aI1 − aIn >
2

n

√

k(n− k)(nB −A2)

n− 1
.

For 2 6 k 6 n−1, equality holds if and only if a1 = a2 = . . . = an. For k = 1, equality

holds if and only if a1 = a2 = . . . = an or a1 = a2 = . . . = an/2 > an/2+1 = . . . = an,

for even n.

P r o o f. For n :=
(

n
k

)

, 1 6 k 6 n− 1, xi := aI , yi := 1, R1 = aI1 , r1 = aIn , r2 =

R2 = 1, with summation performed over all k-tuples I, I ∈ Jk, the inequality (2.1)

becomes
∑

I∈Jk

1
∑

I∈Jk

a2I −
(

∑

I∈Jk

aI

)2

6

(

n
k

)2
(aI1 − aIn)

2

4
,

that is,

(3.10) LSk(a) = aI1 − aIn >
2
√

∑

I∈Jk
1
∑

I∈Jk
a2I −

(
∑

I∈Jk
aI
)2

(

n
k

) .

From the above and identities (3.6), (3.7) and (3.8) we obtain

LSk(a) = aI1 − aIn >
2
√

(

n
k

)(

n−1
k−1

)

((n− k)B + (k − 1)A2)− (n− 1)
(

n−1
k−1

)2
A2

√
n− 1

(

n
k

) ,

from which (3.9) is obtained.

For 2 6 k 6 n− 1, equality in (3.10) holds if and only if aI is constant for every

I ∈ Jk, which implies that equality in (3.9) holds if and only if a1 = a2 = . . . = an.

Let k = 1. Suppose that there exists p, 1 6 p 6 n− 1, such that

a = a1 = a2 = . . . = ap > ap+1 = . . . = an = b.

Then, according to (3.10),

a− b =
2
√

p(n− p)(a− b)

n
.

If a 6= b, then it follows that p = 1
2n, where n is even. Thus, for k = 1, equality in (3.9)

holds if and only if a1 = a2 = . . . = an or a1 = a2 = . . . = an/2 > an/2+1 = . . . = an,

for even n. �
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In the following theorems we establish lower bounds for Sk,α(a).

Theorem 3.3. For any real α, α 6 0 or α > 1, we have that

(3.11) Sk,α(a) =
∑

I∈Jk

aαI >
kα−1

(

n−1
k−1

)

Aα

nα−1
.

For 0 6 α 6 1, the opposite inequality is valid. Equality holds if and only if either

α = 0 or α = 1 or a1 = a2 = . . . = an.

P r o o f. For n :=
(

n
k

)

, r = α, α 6 0 or α > 1, pi := 1, xi := aI , with summation

performed over all k-tuples I, I ∈ Jk, inequality (2.2) becomes

(3.12)

(

∑

I∈Jk

1

)α−1
∑

I∈Jk

aαI >

(

∑

I∈Jk

aI

)α

.

From the above and identities (3.6), (3.7) and (3.8) we obtain (3.11).

In a similar way, one can prove that for the case 0 6 α 6 1, the opposite inequality

is valid in (3.11).

Bearing in mind the conditions for the equality cases in (2.2), we conclude that

equality in (3.12) holds if and only if α = 0 or α = 1 or aI is constant for every

I ∈ Jk. This implies that equality in (3.11) holds if and only if either α = 0 or α = 1

or a1 = a2 = . . . = an. �

The proof of the next theorem is fully analogous to that of Theorem 3.3, thus

omitted.

Theorem 3.4. For any real α, α 6 1 or α > 2, we have that

Sk,α(a) =
∑

I∈Jk

aαI >

(

n−1
k−1

)

((n− k)B + (k − 1)A2)α−1

(n− 1)α−1Aα−2
.

For 1 6 α 6 2, the opposite inequality is valid. Equality holds either if α = 1 or

α = 2 or a1 = a2 = . . . = an.

4. Applications

4.1. Inequalities for Laplacian eigenvalues of graphs. Let G = (V,E),

V = {v1, v2, . . . , vn}, |E| = m, be a simple connected graph with a sequence of

vertex degrees d1 > d2 > . . . > dn > 0, di = d(vi). Denote by A = (aij)n×n

and D = (dij)n×n the adjacency and the diagonal degree matrix of G, respectively.

Then L = D − A is the Laplacian matrix of G. The eigenvalues of matrix L,

µ1 > µ2 > . . . > µn−1 > µn = 0 form the Laplacian spectrum of G, see [11].
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For n := n − 1, ai = µi, i = 1, 2, . . . , n − 1, the sums A and B defined by (1.1)

become, see [18],

A =

n−1
∑

i=1

µi = 2m and B =

n−1
∑

i=1

µ2
i = M1(G) + 2m,

where M1(G) =
n
∑

i=1

d2i is the first Zagreb index introduced in [12]. Now, we have the

following corollaries of the theorems proved in the previous section.

Corollary 4.1. Let G be a simple connected graph with n > 3 vertices and m

edges. Then for any k, 1 6 k 6 n− 2, we have that

(4.1)
µI1

µIn

>
1

4m2

(

√

(n− 1)((n− k − 1)(M1(G) + 2m) + 4m2(k − 1))

k(n− 2)

+

√

(n− k − 1)((n− 1)(M1(G) + 2m)− 4m2)

k(n− 2)

)2

.

Corollary 4.2. Let G be a simple connected graph with n > 3 vertices and m

edges. Then for any k, 1 6 k 6 n− 2, we have that

(4.2) µI1 − µIn >
2

n− 1

√

k(n− k − 1)((n− 1)(M1(G) + 2m)− 4m2)

n− 2
.

For 2 6 k 6 n− 2, equality holds if and only if G ∼= Kn. When k = 1, then equality

holds if and only if G ∼= Kn or µ1 = µ2 = . . . = µ(n−1)/2 > µ(n+1)/2 = . . . = µn−1,

where n is odd.

In [8] it was proven that

M1(G) >
4m2

n
,

with equality if and only if G is a regular graph. Therefore, the next result is

also valid.

Corollary 4.3. Let G be a simple connected graph with n > 3 vertices and m

edges. Then for any k, 1 6 k 6 n− 2, we have that

(4.3) µI1 − µIn >
2

n− 1

√

2mk(n− k − 1)(n(n− 1)− 2m)

n(n− 2)
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and

µI1

µIn

>
1

2m

(

√

(n− 1)((n− k − 1)(2m+ n) + 2mn(k − 1))

kn(n− 2)

+

√

(n− k − 1)(n(n− 1)− 2m)

kn(n− 2)

)2

.

Equalities hold if and only if G ∼= Kn.

Inequalities (4.1), (4.2) and (4.3) were proven in [20].

Corollary 4.4. Let G be a simple connected graph with n > 3 vertices and m

edges. Then for any real α, α 6 0 or α > 1 we have that

Sk,α(G) =
∑

I∈Jk

µα
I >

(2m)αkα−1
(

n−2
k−1

)

(n− 1)α−1
.

For 0 6 α 6 1, the opposite inequality is valid. Equality holds if and only if G ∼= Kn.

Corollary 4.5. Let G be a simple connected graph with n > 3 vertices and m

edges. Then

(4.4) µ1 − µn−1 >
2

n− 1

√

(n− 1)(M1(G) + 2m)− 4m2

and

(4.5) µ1 − µn−1 >
2

n− 1

√

2m(n(n− 1)− 2m)

n
.

Equality in (4.4) holds if and only if G ∼= Kn or µ1 = . . . = µ(n−1)/2 >

µ(n+1)/2 = . . . = µn−1, where n is odd. Equality in (4.5) holds if and only if

G ∼= Kn.

Inequality (4.4) was proven in [9] and [31], and in [5] the equality case was deter-

mined. Inequality (4.5) was proven in [20].

Corollary 4.6. Let G be a simple connected r-regular graph, 2 6 r 6 n − 1,

with n vertices. Then

(4.6) µ1 − µn−1 >
2

n− 1

√

nr(n− r − 1).

Equality holds if and only if G ∼= Kn or G is a conference graph.

Inequality (4.6) was proven in [31] (see also [10]), and the equality case was

proven in [5].
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Corollary 4.7. Let G be a simple connected graph with n > 3 vertices and m

edges. Then

√

µ1

µn−1
+

√

µn−1

µ1
>

√

(n− 1)(M1(G) + 2m)

m
,(4.7)

√

µ1

µn−1
−
√

µn−1

µ1
>

√

(n− 1)(M1(G) + 2m)− 4m2

m
(4.8)

and

(4.9)
µ1

µn−1
>

(
√

(n− 1)(M1(G) + 2m) +
√

(n− 1)(M1(G) + 2m)− 4m2
)2

4m2
.

Equalities hold if and only if G ∼= Kn.

Inequality (4.7) was proven in [9] and [30], while (4.8) and (4.9) in [30].

Corollary 4.8. Let G be a simple connected graph with n > 3 vertices and m

edges. Then for any real α, α 6 0 or α > 1 we have that

(4.10) Sα(G) =

n−1
∑

i=1

µα
i >

(2m)α

(n− 1)α−1
.

When 0 6 α 6 1, the opposite inequality is valid.

The graph invariant Sα(G) was introduced in [32]. Inequality (4.10) for 0 6 α 6 1

was proven in [26].

Corollary 4.9. Let G be a simple connected graph with n > 3 vertices and m

edges. Then for any real α, α 6 1 or α > 2 we have that

(4.11) Sα(G) =

n−1
∑

i=1

µα
i >

(M1(G) + 2m)α−1

(2m)α−2
.

When 1 6 α 6 2, the opposite inequality is valid. Equality holds if and only if either

α = 1 or α = 2 or G ∼= Kn.

Inequality (4.11) was proven in [6].

4.2. The Nordhaus-Gaddum type inequality for Laplacian eigenvalues

of graphs. A Nordhaus-Gaddum type inequality, or NG-inequality for simplicity,

gives a relationship between any parameter of a graph and its complement.

Denote by µi(G), i = 1, 2, . . . , n− 1, the Laplacian eigenvalues of graph G. Let G

be a complement of G and µi(G) Laplacian eigenvalues of G. The following identity

is valid, see, e.g., [11], [30],

(4.12) µi(G) = n− µn−i(G), i = 1, 2, . . . , n− 1.
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Lemma 4.1. For any k, 1 6 k 6 n− 2, we have that

(4.13) µI1(G) + µI1(G) = kn+ LSk(G)

and

(4.14) µIn(G) + µIn(G) = kn− LSk(G).

P r o o f. Since

µI1(G) = µ1(G) + µ2(G) + . . .+ µk(G),

from (4.12) it follows that

µI1(G) = kn− µIn(G).

Therefore

µI1(G) + µI1(G) = kn+ µI1(G) − µIn(G),

from which (4.13) is obtained.

Similarly, since

µI1(G) = µ1(G) + µ2(G) + . . .+ µk(G),

from (4.12) it follows that

µI1(G) = kn− µIn(G),

and therefore

µI1(G)− µIn(G) = kn− µIn(G)− µIn(G),

from which (4.14) is obtained. �

For k = 1, inequalities (4.13) and (4.14) become

µ1(G) + µ1(G) = n+ µ1(G)− µn−1(G)

and

µn−1(G) + µn−1(G) = n− µ1(G) + µn−1(G),

which were proven in [31].

From identities (4.13) and (4.14) and inequalities (4.2) and (4.3), the next inequal-

ity of Nordhaus-Gaddum type is obtained, see [24].
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Corollary 4.10. Let G be a simple connected graph with n > 3 vertices and m

edges. Then for any k, 1 6 k 6 n− 2, we have that

µI1(G) + µI1(G) > kn+
2

n− 1

√

k(n− k − 1)((n− 1)(M1(G) + 2m)− 4m2)

n− 2

and

µIn(G) + µIn(G) 6 kn− 2

n− 1

√

k(n− k − 1)((n− 1)(M1(G) + 2m)− 4m2)

n− 2
.

When 2 6 k 6 n− 1, equalities hold if and only if G ∼= Kn. When k = 1, equalities

hold if and only if G ∼= Kn or µ1 = µ2 = . . . = µ(n−1)/2 > µ(n+1)/2 = . . . = µn−1,

for odd n.

Corollary 4.11. Let G be a simple connected graph with n > 3 vertices and m

edges. Then for any k, 1 6 k 6 n− 2, we have that

µI1(G) + µI1(G) > kn+
2

n− 1

√

2mk(n− k − 1)(n(n− 1)− 2m)

n(n− 2)

and

µIn(G) + µIn(G) 6 kn− 2

n− 1

√

2mk(n− k − 1)(n(n− 1)− 2m)

n(n− 2)
.

Equalities hold if and only if G ∼= Kn.

4.3. Inequalities for the normalized Laplacian eigenvalues of graphs.

Denote by L = D−1/2LD−1/2 the normalized Laplacian matrix of G, and by

̺1 > ̺2 > . . . > ̺n−1 > ̺n = 0 its eigenvalues, see [7]. The following identities are

valid for the normalized Laplacian eigenvalues of G, see [33]:

A =
n−1
∑

i=1

̺i = n and B =
n−1
∑

i=1

̺2i = n+ 2R−1(G),

where

R−1(G) =
∑

i∼j

1

didj

is a graph invariant known as general Randić index, see [4].

Let ai = ̺i, i = 1, 2, . . . , n. From (3.7) and (3.8) we have that

∑

I∈Jk

̺I = n

(

n− 2

k − 1

)

and
∑

I∈Jk

̺2I =

(

n−2
k−1

)

n− 2
((n− k− 1)(n+2R−1(G))+n2(k− 1)).
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In this section we give some corollaries of the results presented in Section 3.

Corollary 4.12. Let G be a simple connected graph with n > 3 vertices. Then

for any k, 1 6 k 6 n− 2, we have that

(4.15)

√

̺I1
̺In

+

√

̺In
̺I1

>
2

n

√

(n− 1)((n− k − 1)(n+ 2R−1(G)) + n2(k − 1))

k(n− 2)
.

Equality holds if and only if G ∼= Kn.

In [28] it was proven that

n

∆
6 2R−1(G) 6

n

δ
,

so we have the following consequence of Corollary 4.12.

Corollary 4.13. Let G be a simple connected graph with n > 3 vertices. Then

for every k, 1 6 k 6 n− 2, we have that

√

̺I1
̺In

+

√

̺In
̺I1

> 2

√

(n− 1)((n− k − 1)(1 + ∆) + n∆(k − 1))

n(n− 2)k∆
.

Equality holds if and only if G ∼= Kn.

For k = 1 we have the next corollary of Corollary 4.12.

Corollary 4.14. Let G be a simple connected graph with n > 3 vertices. Then

(4.16)

√

̺1
̺n−1

+

√

̺n−1

̺1
>

2

n

√

(n− 1)(n+ 2R−1(G)).

Equality holds if and only if G ∼= Kn.

Inequality (4.16) was proven in [3], see also [13].

Corollary 4.15. Let G be a simple connected graph with n > 2 vertices. Then

√

̺1
̺n−1

+

√

̺n−1

̺1
> 2

√

(n− 1)(1 + ∆)

n∆
.

Equality holds if and only if G ∼= Kn.

Corollary 4.16. Let G be a simple connected graph with n > 3 vertices. Then

for every k, 1 6 k 6 n− 2, we have that

√

̺I1
̺In

−
√

̺In
̺I1

>
2

n

√

(n− k − 1)((n− 1)(n+ 2R−1(G))− n2)

(n− 2)k
.

Equality holds if and only if G ∼= Kn.
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Corollary 4.17. Let G be a simple connected graph with n > 3 vertices. Then

for any k, 1 6 k 6 n− 2, we have that

̺I1
̺In

>

(

√

(n− 1)((n− k − 1)(n+ 2R−1(G)) + n2(k − 1))

n
√

(n− 2)k

+

√

(n− k − 1)((n− 1)(n+ 2R−1(G)) − n2)

n
√

(n− 2)k

)2

.

Equality holds if and only if G ∼= Kn.

Corollary 4.18. Let G be a simple connected graph with n > 3 vertices. Then

for any k, 1 6 k 6 n− 2, we have that

̺I1
̺In

>

(

√

(n− 1)((n− k − 1)(1 + ∆) + n(k − 1)∆)
√

n(n− 2)∆k

+

√

(n− k − 1)((n− 1)(1 + ∆)− n∆)
√

n(n− 2)∆k

)2

.

Equality holds if and only if G ∼= Kn.

Corollary 4.19. Let G be a simple connected graph with n > 2 vertices. Then

̺1
̺n−1

>

(

√

(n− 1)(n+ 2R−1(G)) +
√

(n− 1)(n+ 2R−1(G))− n2

n

)2

.

Equality holds if and only if G ∼= Kn.

Corollary 4.20. Let G be a simple connected graph with n > 2 vertices. Then

̺1
̺n−1

>

(

√

(n− 1)(1 + ∆)

∆n
+

√

n− 1−∆

∆n

)2

.

Equality holds if and only if G ∼= Kn.

Remark 4.1. If G is a d-regular graph, 2 6 d 6 n− 1, then

̺1
̺n−1

>
1

nd
(
√

(n− 1)(1 + d) +
√
n− 1− d)2,

with equality if and only if G ∼= Kn. The above inequality was proven in [10].

Corollary 4.21. Let G be a simple connected graph with n > 3 vertices. Then

for any k, 1 6 k 6 n− 2, we have that

̺I1 − ̺In >
2

n− 1

√

k(n− k − 1)(2(n− 1)R−1(G)− n)

n− 2
.

Equality holds if and only if G ∼= Kn.
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Corollary 4.22. Let G be a simple connected graph with n > 3 vertices. Then

for any k, 1 6 k 6 n− 2, we have that

̺I1 − ̺In >
2

n− 1

√

kn(n− k − 1)(n− 1−∆)

(n− 2)∆
.

Equality holds if and only if G ∼= Kn.

Corollary 4.23. Let G be a simple connected graph with n > 2 vertices. Then

(4.17) ̺1 − ̺n−1 >
2

n− 1

√

2(n− 1)R−1(G)− n.

Equality holds if and only if G ∼= Kn.

Inequality (4.17) was proven in [3], see also [1], [13].

Corollary 4.24. Let G be a simple connected graph with n > 3 vertices. Then

̺1 − ̺n−1 >
2

n− 1

√

n(n− 1−∆)

∆
.

Equality holds if and only if G ∼= Kn.

The above inequality was given in [1].

For ai = ̺i, i = 1, 2, . . . , n, based on Theorem 3.4 we obtain the following result.

Corollary 4.25. Let G be a simple connected graph with n > 3 vertices. Then

for any real α such that α 6 1 or α > 2 we have that

Sα,k(G) =
∑

I∈Jk

̺αI >

(

n−2
k−1

)

((n− k − 1)(n+ 2R−1(G)) + n2(k − 1))α−1

nα−2(n− 2)α−1
.

When 1 6 α 6 2, the sense of the inequality reverses. Equality holds if and only if

either α = 1 or α = 2 or G ∼= Kn.

For k = 1, from Corollary 4.25 we obtain the following result.

Corollary 4.26. Let G be a simple connected graph with n vertices. Then for

any real α, α 6 1 or α > 2 we have that

Sα(G) =

n−1
∑

i=1

̺αi >
(n+ 2R−1(G))α−1

nα−2
.

For 1 6 α 6 2, the opposite inequality is valid. Equality holds if and only if either

α = 1 or α = 2 or G ∼= Kn.

The above inequality was proven in [17].
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Corollary 4.27. Let G be a simple connected graph with n vertices. Then

(4.18)
n−1
∑

i=1

√
̺i >

√

n3

n+ 2R−1(G)

and

(4.19)

n−1
∑

i=1

1

̺i
>

n3

(n+ 2R−1(G))2
.

In both cases, equality is valid if and only if G ∼= Kn.

Inequality (4.18) was proven in [29], whereas (4.19) in [17].

Remark 4.2. The invariant

LIE(G) =

n−1
∑

i=1

√
̺i

was conceived in [29] (see also [23]) and named the Laplacian incidence energy,

whereas

K(G) =

n−1
∑

i=1

1

̺i

is Kemeny’s constant, see [16].

For ai = ̺i, i = 1, 2, . . . , n, from Theorem 3.3 we obtain the following result.

Corollary 4.28. Let G be a simple connected graph with n vertices. Then for

any real α, α 6 0 or α > 1 we have that

Sα,k(G) >
nαkα−1

(

n−2
k−1

)

(n− 1)α−1
.

When 0 6 α 6 1, the opposite inequality is valid. Equality holds if and only if either

α = 0 or α = 1 or G ∼= Kn.

Corollary 4.29. Let G be a simple connected graph with n vertices. Then for

any real α, α 6 0 or α > 1 we have that

Sα(G) >
nα

(n− 1)α−1
.

When 0 6 α 6 1, the sense of the inequality reverses. Equality holds if and only if

either α = 0 or α = 1 or G ∼= Kn.
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Corollary 4.30. Let G be a simple connected graph with n vertices. Then

(4.20) LIE(G) =
n−1
∑

i=1

√
̺i 6

√

n(n− 1)

and

(4.21) K(G) =

n−1
∑

i=1

1

̺i
>

(n− 1)2

n
.

In both cases, equality holds if and only if G ∼= Kn.

Inequality (4.20) was proven in [29], whereas (4.21) in [27], see also [2], [14],

[19], [21].
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