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On non-normality points, Tychonoff

products and Suslin number

Sergei Logunov

Abstract. Let a space X be Tychonoff product
∏

α<τ
Xα of τ -many Tychonoff

nonsingle point spaces Xα. Let Suslin number of X be strictly less than the
cofinality of τ . Then we show that every point of remainder is a non-normality
point of its Čech–Stone compactification βX. In particular, this is true if X is
either Rτ or ωτ and a cardinal τ is infinite and not countably cofinal.

Keywords: non-normality point; Čech–Stone compactification; Tychonoff prod-
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Classification: 54D15, 54D35, 54D40, 54D80, 54E35, 54G20

1. Introduction

Let X∗ = βX \ X be a remainder of Čech–Stone compactification βX of

Tychonoff space X . In 1960 L. Gillman [3] posed the following question for

countable discrete space ω = {0, 1, 2, . . .}, despite great efforts so far having

only very particular or conditional solutions, see, for example, [1], [2] or [7]:

Is ω∗ \ {p} not normal for any point p of ω∗?

But one turned to be more solvable for crowded spaces. Thus in 2007 the

following result was obtained independently by J. Terasawa [6] and the author [4]:

Theorem A. Let X be a non-compact metrizable crowded space. Then any

point p of X∗ is a butterfly-point in βX . Hence βX \ {p} is not normal.

In 2014 the following generalizations for Tychonoff products were obtained by

the author [5]:

Theorem B. Let τ be an arbitrary cardinal number and for every k < τ let Fk be

a family of metrizable spaces with the following properties: Fk contains a crowded

space and Fk contains at most one non-compact space. Let a space S be a free

union
⋃

k<τ Sk of Tychonoff products Sk =
∏

{X : X ∈ Fk}. Then every point p

of S∗ is a butterfly-point in βS. Hence βS \ {p} is not normal.
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Corollary A. Let a space S be a free union of arbitrary powers of closed segment
⋃

k<τ I
τk . Then every point p of S∗ is a butterfly-point in βS. Hence βS \ {p} is

not normal.

Corollary B. Let S = ω × IC . Then every point p of S∗ is a butterfly-point

in βS. Hence βS \ {p} is not normal.

Now we obtain the next facts on Tychonoff products. By C(X) we denote

Suslin number of a space X , i.e. the maximal size of cellular families of nonempty

open sets. By d(X) we denote density of X , i.e. the minimal size of everywhere

dense subset of X and by cf(τ) – cofinality of a cardinal τ , i.e. the minimal size of

unbounded subset of τ . By the Hewitt–Marczewski–Pondiczery theorem on the

density of products and its corollary on the Suslin number we have C(X) < cf(τ)

under the conditions of Corollaries 1–3.

Theorem 1. Let a space X =
∏

α<τ Xα be Tychonoff product of τ -many non-

single point Tychonoff spaces Xα. Let a point p ∈ X∗ be in the closure of some

subset G ⊂ X with C(G) < cf(τ). Then βX \ {p} is not normal.

Corollary 1. The space β(Rτ ) \ {p} is not normal if τ is not countably cofinal

and p ∈ (Rτ )∗.

Corollary 2. The space β(ωτ ) \ {p} is not normal, if infinite τ is not countably

cofinal and p ∈ (ωτ )∗.

Corollary 3. The space β(Xτ )\{p} is not normal if d(X) < cf(τ) and p ∈ (Xτ )∗.

2. Proofs

In our article all spaces are Tychonoff and R is a straight line. In what follows,

we are in the conditions of Theorem 1. So by X =
∏

α<τ Xα we denote Tychonoff

product of τ -many nonsingle point Tychonoff spacesXα and by [ ] closure operator

in its Čech–Stone compactification βX . We assume all the ordinals to be less than

the number of factors τ . Our goal is to construct subsets F and G of βX \ {p}

so that {p} = [F ] ∩ [G]. This obviously implies the validity of Theorem 1.

Considering pairwise products, if necessary, we can assume that every factorXα

consists of at least three points. Therefore, there are points a = (aα)α<τ , b =

(bα)α<τ and c = (cα)α<τ in X , all coordinates of which aα, bα and cα are

pairwise different. For an arbitrary bases Bα of Xα we define B to be a base

of X , consisting of all products of the form U =
∏

α<τ Uα, where Uα ∈ Bα for

some finite K ⊂ τ and every α ∈ K and Uα = Xα otherwise. For any U ∈ B we
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put λ(U) = max{α < τ : Uα 6= Xα} and

U(α, a) =
∏

γ≤α

Uγ ×
∏

γ>α

{aγ}

for each α < τ . In other words, (xγ)γ<τ ∈ U(α, a) if and only if xγ ∈ Uγ for every

γ ≤ α and xγ = aγ otherwise. Let O be all open neighbourhoods of p in βX .

For any O ∈ O define F(O) to be the family
{

F ⊂ B :
⋃

F ⊂ O, O ∩G ⊂
[

⋃

F ∩G
]

and | F |≤ C(G)
}

,

which is, obviously, nonempty. Let F =
⋃

O∈O F(O). For every F ∈ F denote

λ(F ) = sup{λ(U) : U ∈ F} and

F (α, a) = {U(α, a) : U ∈ F}

for each α < τ . Then the condition C(G) < cf(τ) implies λ(F ) < τ .

Lemma 1. If U ∈ B and α ≥ λ(U), then U(α, a) ⊂ U . If F ∈ F and α ≥ λ(F ),

then
⋃

F (α, a) ⊂
⋃

F .

Proof: If U(α, a)γ 6= Uγ , then γ > α. But then Uγ = Xγ implies Lemma 1. �

Lemma 2. The family
{
⋃

F (α, a) : F ∈ F
}

is centred for every α < τ .

Proof: Let F0 ∈ F(O0) , . . . , Fn ∈ F(On) for some n < ω and O0, . . . , On ∈ O.

Let O =
⋂

i≤n Oi. Then every Vi =
⋃

Fi ∩G ∩ O is open and everywhere dense

subset of nonempty O ∩G. There is a point x = (xγ)γ<τ of X with x ∈
⋂

i≤n Vi.

Then x ∈ Ui for some Ui ∈ Fi. Define y = (yγ)γ<τ as follows: yγ = xγ if γ ≤ α

and yγ = aγ otherwise. Then y ∈
⋂

i≤n Ui(α, a). �

For every α < τ define ξα(a) ∈ βX to be an arbitrary point of
⋂

F∈F

[
⋃

F (α, a)
]

.

Similarly, b and c generate the points ξα(b) ∈
⋂

F∈F

[
⋃

F (α, b)
]

and ξα(c) ∈
⋂

F∈F

[
⋃

F (α, c)
]

, respectively. Denote A = {ξα(a) : α < τ}, B = {ξα(b) : α < τ}

and C = {ξα(c) : α < τ}

Lemma 3. The space βX \ {p} is not normal.

Proof: Let O ∈ O, F ∈ F(O) and α ≥ λ(F ). Then

ξα(a) ∈
[

⋃

F (α, a)
]

⊂
[

⋃

F
]

⊂ [O]

by Lemma 1. Therefore {ξα(a) : α ≥ λ(F )} and, quite similarly, {ξα(b) :

α ≥ λ(F )} and {ξα(c) : α ≥ λ(F )} are subsets of [O].

For any λ < τ let a continuous map fλ : Xλ → [0, 2] satisfies fλ(aλ) = 0,

fλ(bλ) = 1 and fλ(cλ) = 2. Denote its composition with the orthogonal projection
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πλ : X → Xλ by f : X → [0, 2], i.e. put f(x) = fλ(xλ) for each x ∈ X . There is

a continuous extension f̃ : βX → [0, 2].

If α < λ and F ∈ F is arbitrary, then

f
(

⋃

F (α, a)
)

=
⋃

U∈F

f(U(α, a)) =
⋃

U∈F

fλ{aλ} = {0}

implies

ξα(a) ∈
[

⋃

F (α, a)
]

⊂ f̃−1(0).

Therefore {ξα(a) : α < λ} ⊂ f̃−1(0) and, quite similarly, {ξα(b) : α < λ} ⊂ f̃−1(1)

and {ξα(c) : α < λ} ⊂ f̃−1(2). Hence the closures of these sets are pairwise

disjoint.

It implies that A, B and C are also pairwise disjoint and at most one of them

contain p. For any O ∈ O, F ∈ F(O) and λ > λ(F ) we can argue as above to

show that A, B and C have pairwise disjoint closures outside [O] and, therefore,

outside {p}. Two of them not containing {p} show that p is a non-normality

point. �
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tion of a discrete space, Abstracta, Eighth Winter School on Abstract Analysis, Czechoslo-
vak Academy of Sciences, Praha, 1980, pages 35–38.

[2] Bešlagić A., van Douwen E.K., Spaces of nonuniform ultrafilters in space of uniform ul-

trafilters, Topology Appl. 35 (1990), no. 2–3, 253–260.
[3] Fine N. J., Gillman L., Extensions of continuous functions in βN , Bull. Amer. Math. Soc.

66 (1960), 376–381.
[4] Logunov S., On non-normality points and metrizable crowded spaces, Comment. Math.

Univ. Carolin. 48 (2007), no. 3, 523–527.
[5] Logunov S., Non-normality points and big products of metrizable spaces, Topology Proc.

46 (2015), 73–85.
[6] Terasawa J., βX − {p} are non-normal for non-discrete spaces X, Topology Proc. 31

(2007), no. 1, 309–317.
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