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Abstract. We introduce the notion of quasi-trace functions on Lie algebras. As ap-
plications we study realizations of 3-dimensional and 4-dimensional 3-Lie algebras. Some
comparison results on cohomologies of 3-Lie algebras and Leibniz algebras arising from
quasi-trace functions are obtained.
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1. Introduction

An n-ary groupoid G is a nonempty set with an n-ary operation f : Gn → G,

see [12]. One may define various (n − 1)-ary operations on G via f . For example,

if G is an n-Lie algebra, then some (n − 1)-Lie algebras can be defined on G by

the method given in [15]. However, in general there seems no apparent construction

of n-ary groupoids with some specific properties from (n − 1)-ary groupoids. For

example, there are 3-groups which cannot be derived from any groups, see [12].

This paper is motivated by the construction of 3-Lie algebras from Lie algebras.

A vector space L with a 3-ary multilinear skew-symmetric operation [·, ·, ·] : ⊗3L → L

is a 3-Lie algebra if

(1.1) [x1, x2, [x3, x4, x5]]− [x3, x4, [x1, x2, x5]]

= [[x1, x2, x3], x4, x5] + [x3, [x1, x2, x4], x5]

holds for all x1, x2, x3, x4, x5 ∈ L, see [15]. The identity (1.1) is called the fundamental

identity (FI for short). Subalgebras and homomorphisms between 3-Lie algebras are
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defined in the obvious way, while an ideal I of a 3-Lie algebra L is a subspace

of L satisfying [I, L, L] ⊆ I, and the center Z(L) is defined to be the subspace

Z(L) = {x ∈ L : [x, y, z] = 0 for all y, z ∈ L}. 3-Lie algebras have a close relation

with Nambu mechanics, see [23]. For an extensive review of 3-Lie algebras, see [10].

In [5] a 3-ary operation on the general linear Lie algebra gln(C) is introduced to

make gln(C) be a 3-Lie algebra by defining

[A,B,C] = tr(A)[B,C] + tr(B)[C,A] + tr(C)[A,B],

where tr denotes the trace of square matrices. Note that tr is a linear function

on gln(C) satisfying tr([A,B]) = 0 for any A,B ∈ gln(C). This construction was

generalized in [4], [6] as follows. Let g be a Lie algebra with the bracket [·, ·] and
τ ∈ g∗ a linear function on g. Define a 3-ary bracket [·, ·, ·]τ on g by

(1.2) [x, y, z]τ , 	
x,y,z

τ(x)[y, z] ∀ x, y, z ∈ g.

Hereafter 	
x,y,z

denotes the summation over the cyclic permutations of x, y, z:

	
x,y,z

τ(x)[y, z] = τ(x)[y, z] + τ(y)[z, x] + τ(z)[x, y].

Denote the 3-ary groupoid g with [·, ·, ·]τ by gτ . If τ is a trace function on g, that is,
τ([g, g]) = 0, then gτ is a 3-Lie algebra (see [6], Theorem 3.1 and [4], Theorem 3.3).

We denote by Ftr(g) the set of all trace functions on g.

The notion of trace functions is closely related to the notion of “subordinate” on

Lie subalgebras. Recall that, for a τ ∈ g∗ and a Lie subalgebra h of g, h is subordinate

to τ if τ([h, h]) = 0 (see [11], Section 1.12.7). So, τ ∈ Ftr(g) if and only if g itself is

subordinate to τ .

Trace functions are not enough to induce 3-Lie algebras. For example, as Corol-

lary 3.1 below shows, the unique nonabelian 3-dimensional 3-Lie algebra cannot be

induced, using only trace functions, from all except one isoclass of 3-dimensional

nonabelian Lie algebras. For other examples see Corollary 4.2.

For any τ ∈ g∗, a sufficient and necessary condition for gτ to be a 3-Lie algebra is

given in Theorem 2.1. Denote the set of those linear functions by F3-Lie(g). We show

that if g is solvable then gτ (τ ∈ F3-Lie(g)) is also solvable (see Proposition 2.4), and

if dim g 6 3 then F3-Lie(g) = g∗, see Lemma 2.1.

Note that τ ∈ g∗ is a trace function if and only if ker τ is an ideal of g. We

consider the weaker condition that ker τ is just a subalgebra of g. It is shown that

ker τ is a subalgebra of g if and only if 	
x,y,z

τ(x)τ([y, z]) = 0 for any x, y, z ∈ g, which

implies that such a τ also makes gτ be a 3-Lie algebra. We call τ ∈ g∗ a quasi-trace
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function on g if ker τ is a subalgebra of g. If τ is a quasi-trace function, then ker τ

is a quasi-ideal in the sense of Amayo, see [1], [2]. Denote the set of all quasi-trace

functions on g by Fqtr(g). So we have the inclusions

Ftr(g) ⊆ Fqtr(g) ⊆ F3-Lie(g) ⊆ g∗.

Quasi-trace functions are related with Leibniz algebras, which we explain briefly

as follows. For any τ ∈ g∗ there is a map τ ♯ : ∧2g → g given by

τ ♯(x ∧ y) = τ(x)y − τ(y)x ∀ x, y ∈ g.

Following [9], for any vector space L with a 3-ary bracket [·, ·, ·] we have the following
notation: for X = x1 ∧ x2, Y = y1 ∧ y2 ∈ ∧2L, x3 ∈ L, set

(1.3) [X, x3] := [x1, x2, x3] ∈ L, [X,Y]F = [X, y1] ∧ y2 + y1 ∧ [X, y2] ∈ ∧2L.

Due to Daletskii and Takhtajan (see [9]), if L is a 3-Lie algebra then ∧2L is a Leibniz

algebra with the bracket [·, ·]F .
It is shown that τ is a quasi-trace function if and only if τ ♯ preserves Leibniz

brackets, that is, τ ♯([X,Y]F ) = [τ ♯(X), τ ♯(Y)] for any X, Y ∈ ∧2g (see Lemma 6.2).

In this case, τ ♯ is a homomorphism of Leibniz algebras from ∧2gτ to g, where g is

regarded as a Leibniz algebra.

Based on this observation we consider further the connection between quasi-trace

functions and universal enveloping algebras of Lie algebras. In [16], for any 3-Lie

algebra L an associative algebra U(L) is introduced as an analogue of universal

enveloping algebras of Lie algebras. For any τ ∈ F3-Lie(g) we show that τ
♯ induces

a homomorphism of associative algebras from U(gτ ) to U(g) if and only if τ is

a quasi-trace function on g, where U(g) is the universal enveloping algebra of g,

see Theorem 6.1. This result motivates us to consider some representation theoretic

connections between 3-Lie algebras and Lie algebras via quasi-trace functions.

It turns out that, for any quasi-trace function τ on g, one can construct a rep-

resentation (V, ̺τ ) of the 3-Lie algebra gτ from a representation (V, ̺) of g, see

Corollary 6.2. Then we consider connections between the Cartan-Eilenberg coho-

mology H̺(g, V ) and the cohomology H∗
̺τ
(gτ , V ). As partial results we construct

1-cocycles and 2-cocycles for gτ in V from those of g in V . For details, see Propo-

sitions 7.1 and 7.2. For a trace function τ , a similar construction of 1-cocycles and

2-cocycles for gτ from g is considered in [3] for the trivial representation and the

adjoint representation of gτ . Note that the adjoint representation of gτ cannot be

induced in general from the adjoint representation of g, since, for example, the al-

gebra homomorphism τ ♯ : U(gτ ) → U(g) has the image U(ker τ) (see Corollary 6.1),

and hence τ ♯ cannot be surjective.
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Note that the cohomology H∗
θ(L, V ) of a 3-Lie algebra L is deduced from the

cohomology HL∗
l,r(∧2L,Hom(L, V )) of its associated Leibniz algebra ∧2L given

by [21], where (V, θ) is a representation of L and (Hom(L, V ), l, r) is the represen-

tation of ∧2L induced from θ. For a brief review see Section 5, where we also give

a construction of morphisms from H∗
θ(L, V ) to HL∗

θ,−θ(∧2L, V ), see Proposition 5.1.

H∗
θ(L, V ) has been applied to study extensions and deformation of L, see, for exam-

ple, [14], [19], [22], [24], [25]. Due to [16] there is another cohomology H∗(L, V ) of

L defined via the invariant submodule functor. The relation between H∗
θ(L, V ) and

H∗(L, V ) remains open.

For the 3-Lie algebra gτ (τ being a quasi-trace function on g) and a representation

(V, ̺) of g, H∗(gτ , V ) is related to H∗
̺ (g, V ) via the algebra homomorphism τ ♯ :

U(gτ ) → U(g). As an example, if U(g) is a projective module of U(gτ ) via τ
♯, then

H∗(gτ , V ) ∼= H∗
̺ (g, V ), see Corollary 6.3. We don’t know whether there is a natural

morphism from H∗
̺ (g, V ) to H∗

̺τ
(gτ , V ), but we show that τ induces a morphism

from H∗
̺ (g, V ) to HL∗

̺τ ,−̺τ
(∧2gτ , V ), see Proposition 7.3.

We consider only low-dimensional 3-Lie algebras which can be induced from Lie

algebras via linear functions. As mentioned earlier, 3-dimensional and 4-dimensional

3-Lie algebras have been studied via some specified Lie algebras and trace functions

in [3], [6]. Let L3,1 be the unique nonabelian 3-dimensional 3-Lie algebra. We show

that for each nonabelian 3-dimensional Lie algebra g there is a τ ∈ g∗ such that

L3,1
∼= gτ . We list all quasi-trace functions on each isoclass of 3-dimensional Lie al-

gebras which induce L3,1. For details see Theorem 3.1, Corollaries 3.1 and 3.2 below.

Let g be any complex 4-dimensional Lie algebra. We classify all 3-Lie algebras

of the form gτ with τ being a quasi-trace function on g, see Theorem 4.1. To do

this we make a little refinement (see Corollary 4.1) on the classification of complex

4-dimensional 3-Lie algebras given by Filippov, see [15]. We obtain a complete list

of all quasi-trace functions for each isoclass of complex 4-dimensional Lie algebras

and their induced 3-Lie algebras, see Corollary 4.3. Note that the simple complex

4-dimensional 3-Lie algebra, which is unique up to isomorphism, cannot be realized

as gτ for any Lie algebra g and any quasi-trace function τ , since such 3-Lie algebras

are always solvable, see Proposition 2.3.

The paper is organized as follows. In Section 2 we introduce the notion of quasi-

trace functions on Lie algebras and discuss some basic properties including solvability

of 3-Lie algebras induced by linear functions on Lie algebras. In Section 3 we use

linear functions, especially quasi-trace functions, to realize 3-dimensional 3-Lie al-

gebras via each isoclass of 3-dimensional Lie algebras. In Section 4 we classify all

4-dimensional 3-Lie algebras of the form gτ , where τ is a quasi-trace function on g. In

Section 5 we review representations and cohomologies of 3-Lie algebras and their as-

sociated Leibniz algebras. In Section 6 we show that a linear function on g is a quasi-
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trace function if and only if τ ♯ is a homomorphism of Leibniz algebras from ∧2gτ

to g, if and only if τ ♯ induces a homomorphism of associative algebras from U(gτ )

to U(g), from which we construct a representation of gτ from those of g. In Section 7

we obtain some results on comparison of cohomologies via quasi-trace functions.

Throughout we work on the complex number field C. Notations such as Hom,

End, ⊕, ∧ are defined over C.

2. Linear functions and their induced 3-Lie algebras

Let g be a Lie algebra which may be infinite-dimensional. Let τ ∈ g∗ be a linear

function on g. Then codimker τ = dim g/ker τ 6 1. By [8], Lemma 2.1, τ is a repre-

sentation of g on C if and only if τ([g, g]) = 0, hence if and only if ker τ is an ideal

of g. Such linear functions are called trace functions, see [4]. Let Ftr(g) be the set

of trace functions on g. Then Ftr(g) is a subspace of g
∗.

Example 2.1. If g is a perfect Lie algebra then Ftr(g) = {0}.

Proposition 2.1. Let g be a Lie algebra and τ ∈ g∗. Then ker τ is a subalgebra

of g if and only if τ satisfies

(2.1) 	
x,y,z

τ(x)τ([y, z]) = 0 ∀ x, y, z ∈ g.

P r o o f. Assume that ker τ is a subalgebra of g. If ker τ = g then (2.1) follows.

Suppose that ker τ 6= g. Then codimker τ = 1, and hence there is a u ∈ g \ ker τ

such that x, y, z ∈ g have the form x = x′ + au, y = y′ + bu, z = z′ + cu, where

x′, y′, z′ ∈ ker τ and a, b, c ∈ C. So τ(x) = aτ(u), τ(y) = bτ(u), τ(z) = cτ(u). Since

ker τ is a subalgebra of g, τ([y′, z′]) = 0. Hence

(2.2) τ(x)τ([y, z]) = aτ(u)τ([y′ + bu, z′ + cu]) = acτ(u)τ([y′, u]) + abτ(u)τ([u, z′]).

Similarly, we have

τ(y)τ([z, x]) = bcτ(u)τ([u, x′]) + abτ(u)τ([z′, u]),(2.3)

τ(z)τ([x, y]) = bcτ(u)τ([x′, u]) + acτ(u)τ([u, y′]).(2.4)

Then (2.1) follows by (2.2), (2.3) and (2.4).

Conversely, assume that (2.1) holds. Fix any x, y ∈ ker τ . It suffices to show that

τ([x, y]) = 0. Without loss of generality we assume that ker τ 6= g. Then there exists

an element z ∈ g such that τ(z) 6= 0. By τ(x) = τ(y) = 0, τ(z) 6= 0 and (2.1) it

follows that τ([x, y]) = 0 as required. �
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Motivated by Proposition 2.1 and trace functions, we introduce the following

definition.

Definition 2.1. Let g be a Lie algebra. A linear function τ ∈ g∗ is called a quasi-

trace function on g if τ satisfies (2.1), i.e., τ is a quasi-trace function on g if and only

if ker τ is a subalgebra of g.

Let Fqtr(g) be the set of quasi-trace functions on a Lie algebra g. Note that all

trace functions on g are quasi-trace functions on g, that is, Ftr(g) ⊆ Fqtr(g).

Example 2.2. Consider the Lie algebra sl2 with a basis {e1, e2, e3} such that
[e1, e2] = e3, [e1, e3] = −2e1, [e2, e3] = 2e2. Since sl2 = [sl2, sl2] there is no nonzero

trace function on sl2. Define τ ∈ (sl2)
∗ by τ(e1) = τ(e3) = 0, τ(e2) = 1/2. Then

τ ∈ Fqtr(sl2).

Example 2.3. Let α : g → g̃ be a homomorphism of Lie algebras. For any

τ̃ ∈ Fqtr(g̃) it holds that τ̃α ∈ Fqtr(g). Indeed, for any x, y, z ∈ g, by a direct

computation one obtains

	
x,y,z

(τ̃α)(x)(τ̃ α)([y, z]) = 	
x,y,z

τ̃ (α(x))τ̃ ([α(y), α(z)]) = 0,

which means that τ̃α satisfies (2.1).

By Proposition 2.1 we have the following result, which is crucial for our further

computations.

Corollary 2.1. τ ∈ Fqtr(g) if and only if

(2.5) τ([x1, x2, x3]τ ) = 0 ∀ x1, x2, x3 ∈ g,

where the 3-ary bracket [·, ·, ·]τ is given by (1.2).

We give a sufficient and necessary condition on any τ ∈ g∗ such that the 3-ary

bracket given by (1.2) makes gτ a 3-Lie algebra.

Theorem 2.1. Let g be a Lie algebra and τ ∈ g∗. Then gτ is a 3-Lie algebra if

and only if for all xi ∈ g, the following identity holds:

(2.6) ( 	
x3,x4,x5

τ(x3)τ([x4, x5]))[x1, x2]− ( 	
x1,x2,x5

τ(x1)τ([x2, x5]))[x3, x4]

= ( 	
x1,x2,x3

τ(x1)τ([x2, x3]))[x4, x5] + ( 	
x1,x2,x4

τ(x1)τ([x2, x4]))[x5, x3].

In this case we say gτ is a 3-Lie algebra induced by g and τ .
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P r o o f. Since the Lie bracket is skew symmetric, the bracket [·, ·, ·]τ given by
(1.2) is also skew symmetric. By (1.1) the FI for [·, ·, ·]τ is

(2.7) [x1, x2, [x3, x4, x5]τ ]τ − [x3, x4, [x1, x2, x5]τ ]τ

= [[x1, x2, x3]τ , x4, x5]τ + [x3, [x1, x2, x4]τ , x5]τ .

By a direct check we decuce that (2.7) is equivalent to (2.6) due to (1.2) and the

Jacobi identity of g. �

Since (2.1) implies (2.6), by Theorem 2.1 we get the following result, which gen-

eralizes Theorem 3.1 in [6].

Corollary 2.2. Let (g, [·, ·]) be a Lie algebra. If τ ∈ Fqtr(g), that is, τ ∈ g is

a quasi-trace function on g, then gτ is a 3-Lie algebra.

Remark 2.1. Let α : g → g̃ be a homomorphism of Lie algebras. For τ ∈ Fqtr(g),

τ̃ ∈ Fqtr(g̃), α : gτ → g̃τ̃ need not be a 3-Lie algebra homomorphism.

Example 2.4. Let α : g → g be a Lie algebra endomorphism and τ ∈ Fqtr(g).

Then τα ∈ Fqtr(g) by Example 2.3. One can show that, if (1g − α2)(g) ⊆ ker τ

then α is a 3-Lie algebra homomorphism. In particular, if α is an involution of g,

then α is a 3-Lie algebra homomorphism.

Let F3-Lie(g) be the set of linear functions on g satisfying (2.6), that is, τ ∈ F3-Lie(g)

if and only if gτ is a 3-Lie algebra. Then

(2.8) Ftr(g) ⊆ Fqtr(g) ⊆ F3-Lie(g) ⊆ g∗.

Remark 2.2. Let g be a Lie algebra. In general it is difficult to compute

F3-Lie(g). It might be an interesting question whether a 3-Lie algebra can be in-

duced by g and some τ ∈ F3-Lie(g). Note that different functions in F3-Lie(g) may

induce isomorphic 3-Lie algebras. We shall discuss 3-dimensional and 4-dimensional

3-Lie algebras in Section 3 and Section 4, respectively.

Example 2.5. If g is abelian then Ftr(g) = Fqtr(g) = F3-Lie(g) = g∗.

Before we give more examples in Section 3 and Section 4, we present the following

examples to show that inclusions in (2.8) may be proper. We use the following

notations.

Notation 2.1. For a Lie algebra g with a basis {ei}16i6dimg, we denote the

corresponding coordinate functions by {ti}16i6dimg and denote the coordinate of

x ∈ g by (xi)16i6dim g.
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Notation 2.2. In the definition of a Lie algebra or a 3-Lie algebra via the multi-

plication table of basis elements, omitted brackets are either zero or can be obtained

by skew-symmetry.

Example 2.6. Let g be the Lie algebra with a basis {e1, e2, e3} and the multi-
plication table [e1, e2] = e3, [e1, e3] = −2e1, [e2, e3] = 2e2. Then

Ftr(g) = {0},
Fqtr(g) = {τ ∈ g∗ : τ(x) = t1x1 + t2x2 + t3x3, 4t1t2 + t23 = 0},

F3-Lie(g) = g∗.

Example 2.7. Let g be the 3-dimensional Lie algebra with a basis {e1, e2, e3}
and the multiplication table [e1, e2] = e2. Then

Ftr(g) = {τ ∈ g∗ : τ(x) = t1x1 + t3x3},
Fqtr(g) = {τ ∈ g∗ : τ(x) = t1x1 + t2x2 + t3x3, t2t3 = 0},

F3-Lie(g) = g∗.

Example 2.8. Let g be a 2-dimensional Lie algebra. By Example 2.5 we may

assume that g has a basis {e1, e2} with [e1, e2] = e2. Then

Ftr(g) = {τ ∈ g∗ : τ(x) = t1x1}, Fqtr(g) = g∗ = F3-Lie(g).

It is not accidental that F3-Lie(g) = g∗ holds in Examples 2.6 and 2.7, since we

have the following result which will also be used in Section 3.

Lemma 2.1. Let g be a Lie algebra with dim g 6 3. Then F3-Lie(g) = g∗, that

is, for any τ ∈ g∗, gτ is a 3-Lie algebra.

P r o o f. By Examples 2.5 and 2.8, we may assume that dim g = 3. Let

{e1, e2, e3} be a basis of g. By linearity it suffices to check that (2.6) holds for
any xi ∈ {e1, e2, e3}, 1 6 i 6 5. There are the following two exclusive cases.

Case 1 : There exist at least three elements xi, xj, xk which are equal, 16 i, j, k6 5.

Without loss of generality, suppose that x1 = x2 = x3 = e1. Then

( 	
x1,x2,x5

τ(x1)τ ([x2, x5]))[x3, x4]

= (τ(e1)τ([e1, x5]) + τ(e1)τ([x5, e1]) + τ(x5)τ([e1, e1]))[x3, x4] = 0,

and hence the left hand side of (2.6) becomes

( 	
x3,x4,x5

τ(x3)τ([x4, x5]))[x1, x2]− ( 	
x1,x2,x5

τ(x1)τ([x2, x5]))[x3, x4]

= ( 	
x3,x4,x5

τ(x3)τ([x4, x5]))[e1, e1]− 0 = 0.
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By a similar computation we get ( 	
x1,x2,x4

τ(x1)τ([x2, x4]))[x5, x3] = 0, and hence the

right hand side of (2.6) is

( 	
x1,x2,x3

τ(x1)τ([x2, x3]))[x4, x5] + ( 	
x1,x2,x4

τ(x1)τ([x2, x4]))[x5, x3]

= 3τ(e1)τ([e1, e1])[x4, x5] + 0 = 0.

So (2.6) holds in this case.

Case 2 : There exist at most two elements which are equal. For simplicity, we

consider only the subcase x1 = x4 = e1, x2 = x5 = e2, x3 = e3, other subcases are

similar. Note that

(2.9) ( 	
x1,x2,x5

τ(x1)τ([x2, x5]))[x3, x4] = ( 	
x1,x2,x4

τ(x1)τ([x2, x4]))[x5, x3] = 0.

Thus, the left hand side of (2.6) becomes

(2.10) ( 	
x3,x4,x5

τ(x3)τ([x4, x5]))[x1, x2]− ( 	
x1,x2,x5

τ(x1)τ([x2, x5]))[x3, x4]

= ( 	
x3,x4,x5

τ(x3)τ([x4, x5]))[x1, x2]− 0 (by (2.9))

= ( 	
e1,e2,e3

τ(e1)τ(e2, e3]))[e1, e2],

while the right hand side of (2.6) is

(2.11) ( 	
x1,x2,x3

τ(x1)τ([x2, x3]))[x4, x5] + ( 	
x1,x2,x4

τ(x1)τ([x2, x4]))[x5, x3]

= ( 	
x1,x2,x3

τ(x1)τ([x2, x3]))[x4, x5] + 0 (by (2.9))

= ( 	
e1,e2,e3

τ(e1)τ(e2, e3]))[e1, e2].

So (2.6) holds in this case by (2.10) and (2.11). �

Note that Propositions 3.1 and 3.2 in [3] can be generalized to any 3-Lie algebra

of the form gτ as follows. Recall that an ideal I of a 3-Lie algebra L is a subspace

of L satisfying [I, L, L] ⊆ I. By (1.2) we get the following result.

Proposition 2.2. Let g be a Lie algebra and τ ∈ F3-Lie(g). If h is a subalgebra

of g then hτ is also a subalgebra of gτ . Moreover, if h is an ideal of g then hτ is an

ideal of gτ if and only if h ⊆ ker τ or [g, g] ⊆ h.

To close this section we consider the solvability of 3-Lie algebras of the form gτ .

Nilpotency of gτ may be treated similarly and we omit the details. Let I be an ideal

of a 3-Lie algebra L, see [15]. Put

(2.12) I(0) = I, I(n) = [I(n−1), I(n−1), I(n−1)]; I0 = I, In = [In−1, I, I].

Then I is solvable (or nilpotent) if I(n) = 0 (or In = 0, respectively) for some n > 0.
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The following result generalizes Theorem 3.1 of [3] which states that if τ ∈ Ftr(g)

then gτ is solvable. See also Proposition 3.5 in [6].

Proposition 2.3. Let g be a Lie algebra and τ ∈ Fqtr(g). Then g
(2)
τ = 0. In

particular, gτ is solvable.

P r o o f. By linearity it suffices to compute [x, y, z]τ ∈ g
(2)
τ for x = [x1, x2, x3]τ ,

y = [y1, y2, y3]τ , z = [z1, z2, z3]τ , and xi, yi, zi ∈ g. Since τ ∈ Fqtr(g), by (2.5) it

follows that τ(x) = τ(y) = τ(z) = 0, and hence by (1.2) it follows that [x, y, z]τ =

τ(x)[y, z] + τ(y)[z, x] + τ(z)[x, y] = 0 as required. �

If τ ∈ F3-Lie(g)\Fqtr(g) then (2.5) is not applicable. However, Proposition 2.3 can

be generalized as follows. Denote by [ker τ, ker τ ] the linear span of [x, y], x, y ∈ ker τ .

We have the following result.

Proposition 2.4. Let g be a Lie algebra and 0 6= τ ∈ F3-Lie(g). Then [gτ , gτ , gτ ]τ

= [ker τ, ker τ ]. In particular, if g is solvable then the 3-Lie algebra gτ is solvable.

P r o o f. Since τ 6= 0, codim ker τ = 1. Let {fi}i∈I be a basis of ker τ . Choose

an f ∈ g \ ker τ . Then {fi}i∈I ∪ {f} is a basis of g = gτ . Set t = τ(f). Then t 6= 0.

Since fi ∈ ker τ (i ∈ I) and f /∈ ker τ , by (1.2) it follows that [gτ , gτ , gτ ]τ is spanned

by [fi, fj , f ]τ = t[fi, fj ], i, j ∈ I. Note that [ker τ, ker τ ] is spanned by {[fi, fj]},
i, j ∈ I. Since t 6= 0, it follows that [gτ , gτ , gτ ]τ = [ker τ, ker τ ]. �

Remark 2.3. Up to now we have not found an example where gτ is not solv-

able for τ ∈ F3-Lie(g) and τ 6∈ Fqtr(g). Note that the converse of the last statement

of Proposition 2.4 is not true. For example, let g be the Lie algebra with a ba-

sis {e1, e2, e3} and the multiplication table is given by [e1, e2] = e3, [e2, e3] = e1,

[e3, e1] = e2. Define τ ∈ g∗ by τ(e1) = 1, τ(e2) = τ(e3) = 0. Then τ ∈ F3-Lie(g) and

(gτ )
(1) = Ce1. So gτ is solvable, while g is a simple Lie algebra.

3. Realizations of 3-dimensional 3-Lie algebras

Keep the notation as in last sections, especially Notations 2.1 and 2.2. It is

known that there are only two isoclasses of 3-dimensional 3-Lie algebras: the abelian

one L3,0 and the nonabelian one L3,1 (see [15]), where the multiplication table of

basis elements of L3,1 can be written as [e1, e2, e3] = e1. Since L3,0 is abelian it can be

induced by either any 3-dimensional Lie algebra with the zero function, or an abelian

3-dimensional Lie algebra with any linear function. In this section we show that L3,1

can be realized as gτ , where g can be chosen from each isoclass of 3-dimensional

nonabelian Lie algebras. Moreover, we give explicitly all linear functions τ such

that L3,1
∼= gτ .

568



Throughout this section we always consider 3-dimensional Lie algebras. On the

classification of complex 3-dimensional Lie algebras we get the following proposition.

Proposition 3.1 ([7], [13]). Any complex 3-dimensional Lie algebra is isomorphic

to one and only one Lie algebra in Table 1.

g Lie brackets
g3,0 trivial

g3,1 [e1, e2] = e1

g3,2 [e1, e3] = e1 + e2, [e2, e3] = e2
g3,3 [e1, e3] = e1, [e2, e3] = αe2, α ∈ C, 0 < |α| 6 1

g3,4 [e1, e2] = e3
g3,5 [e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = e1

Table 1. Classification of complex 3-dimensional Lie algebras.

Remark 3.1. In Section 3.2 of [13], Table 1 is given in terms of derived subal-

gebras and centers. Let g be a 3-dimensional complex Lie algebra. Let g(1) and Z(g)

be the derived subalgebra and center of g, respectively.

(1) If dim g(1) = 0 then g ∼= g3,0.

(2) Assume that dim g(1) = 1. Then g ∼= g3,4 if and only if g
(1) ⊆ Z(g). In this case g

is the Heisenberg algebra. g ∼= g3,1 if and only if g
(1) * Z(g). In this case g is

the direct sum of a nonabelian Lie algebra and a 1-dimensional Lie algebra.

(3) Assume that dim g(1) = 2. Then either g ∼= g3,2 or g ∼= g3,3, depending on

whether there is an x ∈ g(1) such that ad x is diagonalizable.

(4) g ∼= g3,5 if and only if dim g(1) = 3. In this case g is the unique 3-dimensional

simple Lie algebra up to isomorphism.

In the proof of Theorem 4.1 of [6] it is shown that L3,1
∼= (g3,1)τ , where τ is given

by τ(e1) = τ(e2) = 0, τ(e3) = 1, which is a trace function of g3,1. In fact we have

the following theorem.

Theorem 3.1. Keep the notation as above. For each g3,i, 1 6 i 6 5, there is

τ ∈ (g3,i)
∗ such that L3,1

∼= (g3,i)τ . More precisely:

(1) L3,1
∼= (g3,1)τ if and only if τ ∈ S1 , {τ ∈ g∗3,1 : τ(x) = t1x1+t2x2+t3x3, t3 6= 0}.

(2) L3,1
∼= (g3,2)τ if and only if τ ∈ S2 , {τ ∈ g∗3,2 : τ(x) = t1x1 + t2x2 +

t3x3, t2 6= 0 or t1 6= t2}.
(3) L3,1

∼= (g3,3)τ if and only if τ ∈ S3 , {τ ∈ g∗3,3 : τ(x) = t1x1 + t2x2 +

t3x3, (t1, t2) 6= (0, 0)}.
(4) L3,1

∼= (g3,4)τ if and only if τ ∈ S4 , {τ ∈ g∗3,4 : τ(x) = t1x1+t2x2+t3x3, t3 6= 0}.
(5) L3,1

∼= (g3,5)τ if and only if τ ∈ S5 , {τ ∈ g∗3,5 : τ(x) = t1x1 + t2x2 +

t3x3, (t1, t2, t3) 6= (0, 0, 0)}.
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P r o o f. Since dim g3,i = 3, by Lemma 2.1, F3-Lie(g3,i) = (g3,i)
∗, which means

(g3,i)τ is a 3-Lie algebra for any τ ∈ (g3,i)
∗. So, due to the classification result on

3-dimensional 3-Lie algebras, it suffices to show that, for each 1 6 i 6 5, there is

a τ ∈ (g3,i)
∗ such that (g3,i)τ is nonabelian, which is equivalent to 0 6= [e1, e2, e3]τ =

τ(e1)[e2, e3] + τ(e2)[e3, e1] + τ(e3)[e1, e2]. Recall Notation 2.1.

We only show that (1) holds, the other cases are similar and we omit the proof.

Suppose that τ ∈ g∗3,1. In view of Table 1, L3,1
∼= (g3,1)τ if and only if

0 6= τ(e1)[e2, e3] + τ(e2)[e3, e1] + τ(e3)[e1, e2] = t3e1,

which is equivalent to t3 6= 0. �

For completeness we determine which functions in Si (1 6 i 6 5) in Theorem 3.1

are trace functions or quasi-trace functions.

Example 3.1. Trace functions on g3,i (1 6 i 6 5) are given by Table 2.

Lie algebras Trace functions
g3,1 τ(x) = t2x2 + t3x3

g3,2 τ(x) = t3x3

g3,3 τ(x) = t3x3

g3,4 τ(x) = t1x1 + t2x2

g3,5 τ = 0

Table 2. Trace functions on 3-dimensional Lie algebras [3].

Example 3.2. Quasi-trace functions on g3,i (1 6 i 6 5).

Lie algebras Quasi-trace functions
g3,1 τ(x) = t1x1 + t2x2 + t3x3, t1t3 = 0

g3,2 τ(x) = t1x1 + t3x3

g3,3 τ(x) = t1x1 + t2x2 + t3x3, (α− 1)t1t2 = 0

g3,4 τ(x) = t1x1 + t2x2

g3,5 τ(x) = t1x1 + t2x2 + t3x3, t
2
1 + t22 + t23 = 0

Table 3. Quasi-trace functions on 3-dimensional Lie algebras.

P r o o f. We compute Fqtr(g3,1). Other Fqtr(g3,i) can be obtained similarly. By

Definition 2.1 and linearity, τ ∈ (g3,1)
∗ is a quasi-trace function if and only if

(3.1) 	
x1,x2,x3

τ(x1)τ([x2, x3]) = 0, xi ∈ {e1, e2, e3}.
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Note that (3.1) holds if there are at least two xi, xj equal to each other. So τ ∈
Fqtr(g3,1) if and only if 	

e1,e2,e3
τ(e1)τ([e2, e3]) = 0. By Table 1 it follows that

τ(e1)τ([e2, e3]) + τ(e2)τ([e3, e1]) + τ(e3)τ([e1, e2]) = t1t3.

So, τ(x) = t1x1 + t2x2 + t3x3 ∈ Fqtr(g3,1) if and only if t1t3 = 0. �

By Theorem 3.1 and Example 3.1 we have the following result.

Corollary 3.1. Let L3,1 be the unique (up to isomorphism) nonabelian 3-dimen-

sional 3-Lie algebra.

(1) There is no trace function τ on g3,i such that L3,1
∼= (g3,i)τ , i = 2, 3, 4, 5.

(2) Assume that L3,1
∼= (g3,1)τ . Then τ is a trace function if and only if τ(x) =

t2x2 + t3x3, t3 6= 0.

So, to obtain L3,1 by using only trace functions one has to choose g3,1 as in the

proof of Theorem 4.1 of [6]. By Theorem 3.1 and Example 3.2 we get the following

corollary.

Corollary 3.2. Let L3,1 be the unique (up to isomorphism) nonabelian 3-dimen-

sional 3-Lie algebra, Si the set of functions given by Theorem 3.1.

(1) There is no quasi-trace function τ on g3,4 such that L3,1
∼= (g3,4)τ .

(2) For 1 6 i 6 5, i 6= 4, there are quasi-trace functions τ on g3,i such that

L3,1
∼= (g3,i)τ .

More precisely, such quasi-trace functions are given as follows.

(i) τ ∈ Fqtr(g3,1) ∩ S1 if and only if τ(x) = t2x2 + t3x3, t3 6= 0.

(ii) τ ∈ Fqtr(g3,2) ∩ S2 if and only if τ(x) = t1x1 + t3x3, t1 6= 0.

(iii) τ ∈ Fqtr(g3,3) ∩ S3 if and only if τ(x) = t1x1 + t2x2 + t3x3 satisfying one of the

following conditions:

(a) α = 1, t1 6= 0;

(b) α = 1, t2 6= 0;

(c) α 6= 1, t1 = 0, t2 6= 0;

(d) α 6= 1, t1 6= 0, t2 = 0.

(iv) τ ∈ Fqtr(g3,5)∩S5 if and only if τ(x) = t1x1 + t2x2 + t3x3, (t1, t2, t3) 6= (0, 0, 0),

t21 + t22 + t23 = 0.

Remark 3.2. The isoclass of type g3,3 is parametrized by α ∈ C with 0 < |α| 6 1.

Though the set S3 given by Theorem 3.1 is independent of the parameter α,

Fqtr(g3,3) ∩ S3 does depend on α.
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4. Quasi-trace functions on 4-dimensional Lie algebras

and their induced 3-Lie algebras

Recall Notations 2.1 and 2.2. In this section we consider the problem whether

a 4-dimensional 3-Lie algebra can be induced by a 4-dimensional Lie algebra via

linear functions. This problem has been studied by using trace functions in [3], [6].

Let g be a complex 4-dimensional Lie algebra. The main result of this section is that

the isoclasses of the 4-dimensional 3-Lie algebras of the form gτ are determined for

quasi-trace functions on g. Our method depends on the following two facts:

(1) If τ is a nonzero quasi-trace function then ker τ is a 3-dimensional subalgebra

of g, while the classification of 3-dimensional Lie algebras is known and given by

Proposition 3.1.

(2) All 4-dimensional 3-Lie algebras are classified via their derived subalgebras.

We recall Filippov’s classification as follows.

Proposition 4.1 ([15], Section 3). Let L be a complex 4-dimensional 3-Lie alge-

bra. Let L(1) and Z(L) be the derived subalgebra and the center of L, respectively.

(1) If dimL(1) = 0 then L is abelian, denoted by L4,0.

(2) Assume that dimL(1) = 1.

(2.1) If L(1) * Z(L) then L is given by [e1, e3, e4] = e1, denoted by L4,1.

(2.2) If L(1) ⊆ Z(L) then L is given by [e2, e3, e4] = e1, denoted by L4,4.

(3) If dimL(1) = 2 then L is given by either [e1, e2, e4] = e3 + αe4, [e1, e2, e3] = e4

or [e1, e2, e4] = e3, [e1, e2, e3] = βe4, where 0 6= α, β ∈ C.

(4) If dimL(1) = 3 then L is given by [e2, e3, e4] = e1, [e1, e3, e4] = e2, [e1, e2, e4]=e3,

denoted by L4,5.

(5) If dimL(1) = 4 then L is given by [e2, e3, e4] = e1, [e1, e3, e4] = e2, [e1, e2, e4]=e3,

[e1, e2, e3] = e4, denoted by L4,6.

By Lemma 4.1 and Lemma 4.2 below, 3-Lie algebras given by (3) of Proposition 4.1

can be classified further as follows.

Corollary 4.1. Let L be a complex 4-dimensional 3-Lie algebra with dimL(1) = 2.

Then L is isomorphic to one and only one of the following algebras:

(1) L4,2 : [e1, e2, e4] = e3 + e4, [e1, e2, e3] = e4.

(2) L4,3,β : [e1, e2, e4] = e3, [e1, e2, e3] = βe4, 0 < |β| 6 1.

Recall that n × n matrices A,B are C∗-similar if there exist 0 6= k ∈ C and an

invertible matrix P such that B = kPAP−1. The C∗-similar relation is used in

classification of 3-dimensional Lie algebras, see [17], page 12.
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Lemma 4.1. Any complex 2 × 2 invertible matrix is C∗-similar to one and only

one of the matrices
(

1 1

0 1

)
,
(

1 0

0 β

)
, 0 < |β| 6 1.

P r o o f. Since C is algebraically closed, by using Jordan canonical forms it follows

that any complex 2× 2 invertible matrix is C∗-similar to matrices of the forms

(4.1) Mα :=

(
1 α

0 1

)
, Nβ :=

(
1 0

0 β

)
, 0 6= α, β ∈ C.

Since Mα and Nβ are not C∗-similar, it suffices to show the following two claims.

Claim 4.1. For any 0 6= α1, α2 ∈ C,
(

1 α1

0 1

)
and

(
1 α2

0 1

)
are C∗-similar.

Claim 4.2. For any 0 6= β1, β2 ∈ C,
(

1 0

0 β1

)
and

(
1 0

0 β2

)
are C∗-similar if and

only if either β1 = β2 or β1β2 = 1.

Claim 4.1 follows by

(
1 α2

0 1

)
=

(
α2/α1 1

0 1

)(
1 α1

0 1

)(
α2/α1 1

0 1

)−1

.

The “if” part of Claim 4.2 is clear since for any 0 6= β ∈ C,

(
1 0

0 1/β

)
∼

(
1/β 0

0 1

)
= (1/β)

(
1 0

0 β

)
.

Conversely, suppose that
(

1 0

0 β1

)
and

(
1 0

0 β2

)
are C∗-similar. Then there exist a non-

zero number k and an invertible matrix P =
(

a b

c d

)
such that

(4.2)

(
1 0

0 β2

)
= k

(
a b

c d

)(
1 0

0 β1

)(
a b

c d

)−1

,

which implies that

(4.3)
k(ad− bcβ1)

ad− bc
= 1, ab(β1 − 1) = 0, cd(1− β1) = 0.

So, if β1 = 1 then k = 1, which means that
(

1 0

0 β1

)
and

(
1 0

0 β2

)
are similar, and

hence β1 = β2.

If β1 6= 1 then ab = cd = 0 by (4.3). By nonsingularity of P it follows that

either P =
(

a 0

0 d

)
or P =

(
0 b

c 0

)
. If P =

(
a 0

0 d

)
then by (4.2) it follows that

(
1 0

0 β2

)
=

(
k 0

0 kβ1

)
, which implies β1 = β2. If P =

(
0 b

c 0

)
then by (4.2) it follows that

(
1 0

0 β2

)
=

(
kβ1 0

0 k

)
, which means that β1β2 = 1. �
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Assume that L is a complex 4-dimensional 3-Lie algebra and dim L(1) = 2. By [15],

there is a basis {e1, e2, e3, e4} of L with the multiplication table [e1, e2, e4] = ae3+be4,

[e1, e2, e3] = ce3 + de4, where A :=
(

a b

c d

)
is an invertible matrix. Moreover, we have

the next lemma.

Lemma 4.2 ([15], Section 3 ). The 4-dimensional 3-Lie algebras defined by A

and B respectively are isomorphic if and only if A is C∗-similar to B.

Keep notations L4,i (i = 0, 1, 4, 5, 6) of 4-dimensional 3-Lie algebras given by

Proposition 4.1 and L4,2, L4,3,β given by Corollary 4.1.

Example 4.1. Since L4,6 is a simple 3-Lie algebra (see [15], Theorem 4), by

Proposition 2.3 for any 4-dimensional Lie algebra g there is no quasi-trace function

(and hence no trace function) on g such that gτ ∼= L4,6.

Example 4.2. Let g be the 4-dimensional Lie algebra with a basis {e1, e2, e3, e4}
and the multiplication table [e1, e3] = e1, that is, g ∼= g4,1, see Table 4 below. Define

τ ∈ g∗ by τ(e1) = τ(e4) = 1, τ(e2) = τ(e3) = 0. By a long but direct check it

follows that τ ∈ F3-Lie(g). By (1.2) the 3-Lie algebra gτ is given by [e1, e3, e4]τ = e1,

which means that gτ ∼= L4,1. Moreover, since τ([e1, e3]) = τ(e1) 6= 0, τ is not a trace

function on g.

g Lie brackets

g4,0 trivial

g4,1 [e1, e2] = e1

g4,2 [e1, e2] = e3
g4,3 [e1, e2] = e2, [e1, e3] = e2 + e3

g4,4 [e1, e2] = e2, [e1, e3] = αe3,α ∈ C, 0 < |α| 6 1

g4,5 [e1, e2] = e1, [e3, e4] = e3

g4,6 [e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = e1
g4,7 [e1, e2] = e3, [e1, e3] = e4
g4,8 [e1, e2] = e2, [e1, e3] = e3, [e1, e4] = αe4, α ∈ C∗

g4,9 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = αe2 − βe3 + e4, α ∈ C∗, β ∈ C or α, β = 0

g4,10 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = α(e2 + e3), α ∈ C∗

g4,11 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e2
g4,12 [e1, e2] =

1
3e2 + e3, [e1, e3] =

1
3e3, [e1, e4] =

1
3e4

g4,13 [e1, e2] = e2, [e1, e3] = e3, [e1, e4] = 2e4, [e2, e3] = e4
g4,14 [e1, e2] = e3, [e1, e3] = e2, [e2, e3] = e4

g4,15 [e1, e2] = e3, [e1, e3] = −αe2 + e3, [e1, e4] = e4, [e2, e3] = e4, α ∈ C

Table 4. Classification of complex 4-dimensional Lie algebras, see [7].
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Let g be a 4-dimensional Lie algebra and 0 6= τ ∈ Fqtr(g). Then ker τ is

a 3-dimensional subalgebra of g. Keep the notation in Table 1.

Lemma 4.3. Let g be a 4-dimensional Lie algebra and 0 6= τ ∈ Fqtr(g).

(1) gτ ∼= L4,0 if and only if ker τ ∼= g3,0.

(2) gτ ∼= L4,i if and only if ker τ ∼= g3,i, i = 1, 4.

(3) gτ ∼= L4,5 if and only if ker τ ∼= g3,5.

P r o o f. By Proposition 2.4 we have (gτ )
(1) = (ker τ)(1) ⊆ ker τ , since ker τ is

a subalgebra of g.

(1) Since gτ ∼= L4,0 if and only if gτ is abelian, that is, 0 = (gτ )
(1) = (ker τ)(1),

the claim follows by Proposition 3.1.

(2) Choose a basis {f1, f2, f3} of ker τ and take an f4 ∈ g \ ker τ . Then

{f1, f2, f3, f4} is a basis of g. Assume that gτ ∼= L4,1. Then dim(gτ )
(1) = 1

and (gτ )
(1) * Z(gτ ) by Proposition 4.1. Since dim(ker τ)(1) = dim(gτ )

(1) = 1, to

show ker τ ∼= g3,1 it suffices to show that (ker τ)
(1) * Z(ker τ) by Remark 3.1. In

fact, by (gτ )
(1) * Z(gτ ) there are some 1 6 j, k 6 3 such that [fj , fk, f4]τ /∈ Z(gτ ).

By choices of fi and (1.2) it follows that [fj, fk] /∈ Z(gτ ), that is,

(4.4) [[fj , fk], fl, f4]τ 6= 0 for some 1 6 l 6 3,

or equivalently, by (1.2) and choices of fi,

(4.5) [[fj , fk], fl] 6= 0 for some 1 6 j, k, l 6 3,

which means that (ker τ)(1) * Z(ker τ) as required. Conversely, assume that

ker τ ∼= g3,1. Then dim(ker τ)(1) = 1 and (ker τ)(1) * Z(ker τ) by Remark 3.1,

therefore, dim(gτ )
(1) = 1. By (ker τ)(1) * Z(ker τ) there are some 1 6 j, k, l 6 3

such that (4.5) holds, and hence (4.4) holds, which means that (gτ )
(1) * Z(gτ ). So

gτ ∼= L4,1 as required by Proposition 4.1. Similarly one can show that gτ ∼= L4,4 if

and only if ker τ ∼= g3,4.

(3) By Proposition 4.1, gτ ∼= L4,5 if and only if dim(gτ )
(1) = 3 = dim(ker τ)(1).

By Remark 3.1 this is equivalent to ker τ ∼= g3,5. �

Now we consider the remaining cases when ker τ ∼= g3,2 and ker τ ∼= g3,3.

Lemma 4.4. Let g be a complex 4-dimensional Lie algebra and 0 6= τ ∈ Fqtr(g).

(1) If ker τ ∼= g3,2 then gτ ∼= L4,3,(
√
5−3)/2.

(2) If ker τ ∼= g3,3 then gτ ∼= L4,3,−1.
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P r o o f. (1) By ker τ ∼= g3,2 and Table 1 there exists a basis {f2, f3, f4} of ker τ
with the multiplication table given by [f3, f2] = f3 + f4, [f4, f2] = f4. Choose

an f1 ∈ g such that τ(f1) = −1. Then {f1, f2, f3, f4} is a basis of g and the
multiplication table of gτ is given by (see (1.2))

(4.6) [f1, f2, f4]τ = f4, [f1, f2, f3]τ = f3 + f4.

Then dim(gτ )
(1) = 2, and hence gτ is isomorphic to either L4,2 or L4,3,β, 0 < |β| 6 1,

by Corollary 4.1. Therefore, by Lemma 4.2 it remains to determine the C∗-similar

class of the matrix A =
(

0 1

1 1

)
given by (4.6). Since A has no multiple eigenvalues,

neither has kA for any 0 6= k ∈ C. So, A is C∗-similar to
(

1 0

0 β

)
by Lemma 4.1 and

gτ ∼= L4,3,β for a unique β ∈ C with 0 < |β| 6 1.

The characteristic polynomials of kA and
(

1 0

0 β

)
are given by λ2 − kλ− k2, λ2 −

(β+1)λ+β, respectively. So k2 = −β, k = β+1, which means that β2 +3β+1 = 0

and hence β = (
√
5− 3)/2 by 0 < |β| 6 1.

(2) Assume that ker τ ∼= g3,3. By Table 1 there exists a basis {f2, f3, f4} of ker τ
with the multiplication table given by [f3, f2] = f3, [f4, f2] = αf4. Choose an f1 ∈ g

such that τ(f1) = −1. Then {f1, f2, f3, f4} is a basis of g and the multiplication table
of gτ is [f1, f2, f4]τ = αf4, [f1, f2, f3]τ = f3, see (1.2). Set B =

(
0 α

1 0

)
. Since kB has

no multiple eigenvalues for any 0 6= k ∈ C∗, B is C∗-similar to
(

1 0

0 β

)
by Lemma 4.1,

and hence gτ ∼= L4,3,β for a unique β ∈ C with 0 < |β| 6 1. The characteristic

polynomials of kB and
(

1 0

0 β

)
are given by λ2 − k2α, λ2 − (β+1)λ+ β, respectively,

and hence β = −1. �

By Lemma 4.3 and Lemma 4.4 we get the main result of this section.

Theorem 4.1. Let g be a complex 4-dimensional Lie algebra and 0 6= τ ∈ Fqtr(g).

Then we have the following complete and exclusive cases.

(1) gτ ∼= L4,0 if and only if ker τ ∼= g3,0.

(2) gτ ∼= L4,i if and only if ker τ ∼= g3,i, i = 1, 4.

(3) gτ ∼= L4,3,(
√
5−3)/2 if and only if ker τ

∼= g3,2.

(4) gτ ∼= L4,3,−1 if and only if ker τ ∼= g3,3.

(5) gτ ∼= L4,5 if and only if ker τ ∼= g3,5.

The following corollary is straightforward.

Corollary 4.2. Let g be a complex 4-dimensional Lie algebra.

(1) There is no τ ∈ Fqtr(g) such that gτ ∼= L4,2 and gτ ∼= L4,6.

(2) There is no τ ∈ Fqtr(g) such that gτ ∼= L4,3,β for β 6= 1
2 (
√
5− 3),−1.
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Corollary 4.3. With the notation given by Table 4, all 4-dimensional 3-Lie alge-

bras induced by quasi-trace functions are given by Table 5.

P r o o f. We consider g4,1 only and the other cases are obtained similarly. By

Corollary 2.1, τ ∈ Fqtr(g4,1) if and only if

(4.7) τ([e1, e2, e3]τ ) = 0, τ([e1, e2, e4]τ ) = 0,

τ([e1, e3, e4]τ ) = 0, τ([e2, e3, e4]τ ) = 0.

By (1.2), (4.7) is equivalent to τ(t3e1) = 0, τ(t4e1) = 0, τ(0) = 0, τ(0) = 0, i.e.,

t1t3 = t1t4 = 0. By (1.2) the induced 3-Lie algebra is given by [e1, e2, e3]τ = t3e1,

[e1, e2, e4]τ = t4e1, [e1, e3, e4]τ = 0, [e1, e2, e3]τ = 0. �

Remark 4.3. Since different quasi-trace functions may induce isomorphic 3-Lie

algebras, it would be better to list isoclasses of 3-Lie algebras of the form gτ in

Table 5. However, by Theorem 4.1, it needs to determine the isoclass of ker τ , which

involves long computations.

5. Cohomology of 3-Lie algebras and Leibniz algebras

In this section we recall representations and cohomologies of 3-Lie algebras and

Leibniz algebras for our purpose. Throughout this section L denotes a 3-Lie algebra

with a 3-ary bracket [·, ·, ·]. We fix the following notation.

Notation 5.1. Denote x1 ∧ x2 ∧ . . . ∧ xn ∈ ∧nL by (x1, x2, . . . , xn).

According to Kasymov (see [18]), a representation of L on a vector space V is

defined such that L ⊕ V is again a 3-Lie algebra with L being a 3-Lie subalgebra

and V an abelian ideal, which is equivalent to the following definition.

Definition 5.1 ([18]). A representation of a 3-Lie algebra L on a vector space V

is a linear map θ : ∧2L → End(V ) such that for all x1, x2, x3, x4 ∈ L,

θ(x1, x2)θ(x3, x4)− θ(x3, x4)θ(x1, x2) = θ([x1, x2, x3], x4) + θ(x3, [x1, x2, x4]),

θ(x1, [x2, x3, x4]) = θ(x3, x4)θ(x1, x2)− θ(x2, x4)θ(x1, x3) + θ(x2, x3)θ(x1, x4).

A representation θ of L on a vector space V is denoted by (V, θ). For example,

we have the adjoint representation (L, ad) of L on itself by (1.1), where the map

ad: ∧2L → End(L) is given by ad(x1, x2)(x3) = [x1, x2, x3].
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g4 quasi-trace functions induced 3-Lie algebras

g4,0 t1, t2, t3, t4 ∈ C abelian 3-Lie algebras

g4,1 t1t3 = t1t4 = 0 [e1, e2, e3]τ = t3e1, [e1, e2, e4]τ = t4e1

g4,2 t3 = 0 [e1, e2, e4]τ = t4e3

g4,3 t2 = t3t4 = 0 [e1, e2, e3]τ = t3e2, [e1, e2, e4]τ = t4e2,

[e1, e3, e4]τ = t4(e2 + e3)

g4,4 (1− α)t2t3 = t2t4 = t3t4 = 0 [e1, e2, e3]τ = t3e2, [e1, e2, e4]τ = t4e2,

[e1, e3, e4]τ = αt4e3

g4,5 t1t3 = t1t4 = t2t3 = 0 [e1, e2, e3]τ = t3e1, [e1, e2, e4]τ = t4e1,

[e1, e3, e4]τ = t1e3, [e2, e3, e4]τ = t2e3

g4,6 t21 + t22 + t23 = 0, [e1, e2, e3]τ = t1e1 + t2e2 + t3e3,

t1t4 = t2t4 = t3t4 = 0 [e1, e2, e4]τ = t4e3, [e1, e3, e4]τ = −t4e2,

[e2, e3, e4]τ = t4e1

g4,7 t3 = t4 = 0 [e1, e2, e3]τ = −t2e4

g4 quasi-trace functions induced 3-Lie algebras

g4,8 (1 − α)t2t4 = 0, [e1, e2, e3]τ = t3e2 − t2e3,

(1− α)t3t4 = 0 [e1, e2, e4]τ = t4e2 − αt2e4,

[e1, e3, e4]τ = t4e3 − αt3e4

g4,9 t2t4 − t23 = 0, [e1, e2, e3]τ = t3e3 − t2e4,

αt22 − βt2t3 + t23 − t3t4 = 0, [e1, e2, e4]τ = −αt2e2 + (βt2 + t4)e3 − t2e4,

αt2t3 − βt23 + t3t4 − t24 = 0 [e1, e3, e4]τ = −αt3e2 + βt3e3 − (t3 − t4)e4

g4,10 t2t4 − t23 = 0, [e1, e2, e3]τ = t3e3 − t2e4,

αt22 + αt2t3 − t3t4 = 0, [e1, e2, e4]τ = −αt2e2 − (αt2 − t4)e3,

αt2t3 + αt23 − t24 = 0 [e1, e3, e4]τ = −αt3(e2 + e3) + t4e4

g4,11 t2t4 − t23 = 0, [e1, e2, e3]τ = t3e3 − t2e4,

t22 − t3t4 = 0, [e1, e2, e4]τ = −t2e2 − t4e3,

t2t3 − t24 = 0 [e1, e3, e4]τ = −t3e2 + t4e4

g4,12 t3 = 0 [e1, e2, e3]τ = 1
3 t2e3,

[e1, e2, e4]τ = 1
3 t4e2 + t4e3 − 1

3 t2e4,

[e1, e3, e4]τ = 1
3 t4e3

g4,13 t4 = 0 [e1, e2, e3]τ = t3e2 − t2e3 + t1e4,

[e1, e2, e4]τ = −2t2e4,

[e1, e3, e4]τ = −2t3e4

g4,14 t22 − t23 = t4 = 0 [e1, e2, e3]τ = −t2e2 + t3e3 + t1e4

g4,15 αt22 − t2t3 + t23 = 0, [e1, e2, e3]τ = αt2e2 − (t2 − t3)e3 + t1e4,

t4 = 0 [e1, e2, e4]τ = −t2e4, [e1, e3, e4]τ = −t3e4

Table 5. 4-dimensional 3-Lie algebras induced by quasi-trace functions.
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Remark 5.1. Unlike Lie algebras, given two representations (Vi, θi) of L, in

general there is no representation on Hom(V1, V2) induced by θi. However, if (V1, θ1)

is the adjoint representation of L then there is a representation of the Leibniz alge-

bra ∧2L on Hom(V1, V2), see Lemma 5.2 below.

A homomorphism f from (V1, θ1) to (V2, θ2) can be defined such that f induces

a 3-Lie algebra homomorphism f̃ from L ⊕ V1 to L ⊕ V2 with f̃ |L being the iden-
tity, see [16]. By a direct computation it follows that a linear map f : V1 → V2 is

a homomorphism if and only if

(5.1) θ2(x, y)(f(v)) = f(θ1(x, y)(v)) ∀ x, y ∈ L, v ∈ V1.

So we have the category L-Mod of representations of L. As in the case of Leib-

niz algebras (see [21]), there is a unital associative algebra U(L) such that L-Mod

is equivalent to the (left) module category U(L)-Mod (see [16], Proposition 4.4),

where U(L) can be (and will be) chosen as the unital associative algebra generated

by ∧2L subject to the following defining relations:

(5.2) XY −YX = [X,Y]F , 	
x1,x2,x3

(x1 ∧ x2)(x3 ∧ x4) = [x1, x2, x3] ∧ x4,

where X,Y ∈ ∧2L, xi ∈ L, and [·, ·]F is given by (1.3). Indeed, for any representation
(V, θ) of L, V becomes a U(L)-module via

(5.3) X(v) = θ(x1, x2)(v) ∀X = x1 ∧ x2 ∈ ∧2L, v ∈ V.

Let H∗(L,−) be the right derived functor of the invariant submodule functor (−)L.

Using U(L) it is shown that (see [16], Proposition 5.2)

(5.4) H∗(L, V ) = Ext∗U(L)(C, V )

for any representation (V, θ) of L.

There is another cohomology of L which is induced by that of the Leibniz alge-

bra ∧2L (see (5.11) below). Recall that a Leibniz algebra is a vector space A with

a bilinear map [·, ·] : A⊗A → A such that (see [20], [21])

(5.5) [x, [y, z]] = [[x, y], z] + [y, [x, z]], x, y, z ∈ A.

In fact, it is a left Leibniz algebra. In this paper by Leibniz algebras we always mean

left Leibniz algebras. By Theorem 2 of [9], for any 3-Lie algebra L, ∧2L becomes

a Leibniz algebra with respect to the bracket [·, ·]F given by (1.3), called the basic
Leibniz algebra of L. We have the following lemma.
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Lemma 5.1. There is a covariant functor F from the category of 3-Lie algebras

to the category of Leibniz algebras given by F (L) = ∧2L, F (f)(x∧y) = f(x)∧ f(y),

where f : L → L1 is a 3-Lie algebra homomorphism.

P r o o f. Straightforward. �

A representation of a Leibniz algebra A is a triple (W, l, r), where W is a vector

space and l, r : A → gl(W ) are linear maps satisfying

(5.6) l([a, a′]) = [l(a), l(a′)], r([a, a′]) = [l(a′), r(a)], r(a′)l(a) = −r(a′)r(a).

See (1.5) in [21]. The bracket [·, ·] on gl(W ) is the usual commutator. Note that (5.6)

is equivalent to (MLL)′, (LML)′ and (LLM)′ given by (1.5) of [21], which define

co-representations of right Leibniz algebras.

Set CLp(A,W ) = Hom(⊗pA,W ). We get a cochain complex with the coboundary

operator ∂ : CLp(A,W ) → CLp+1(A,W ) given by

(5.7) (∂(ϕ))(a1, . . . , ap+1)

=

p∑

j=1

(−1)j+1l(aj)ϕ(a1, . . . , âj, . . . , ap+1) + (−1)p+1r(ap+1)ϕ(a1, . . . , ap)

+
∑

16j<k6p+1

(−1)jϕ(a1, . . . , âj, . . . , ak−1, [aj, ak], ak+1, . . . , ap+1),

where ϕ ∈ CLp(A,W ), ai ∈ A. Here we consider left Leibniz algebras. So (5.7) is

the “left” version of (1.8) in [21]. The pth cohomology group is

HLp
l,r(A,W ) = ZLp

l,r(A,W )/BLp
l,r(A,W ),

where ZLp
l,r(A,W ) (or BLp

l,r(A,W )) is the space of p-cocycles (or p- coboundaries,

respectively). We have the following result, which is the nongraded version of Propo-

sition 2.2 in [25]. Note that the representations of 3-Lie colour algebras in Defini-

tion 2.4 of [25] are a generalization of Definition 5.1.

Lemma 5.2. Assume that (V, θ) is a representation of a 3-Lie algebra L.

Then (Hom(L, V ), l, r) is a representation of the Leibniz algebra ∧2L with l, r :

∧2L → End(Hom(L, V )) given by

(5.8) (l(x, y)(f))(z) = θ(x, y)(f(z))− f([x, y, z]),

(r(x, y)(f))(z) = f([x, y, z])− 	
x,y,z

θ(x, y)(f(z)),

respectively, where x, y, z ∈ L, f ∈ Hom(L, V ).
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Fix any representation (V, θ) of L. For any integer p > 1 we have the canonical

isomorphism (can) of vector spaces given by

(5.9) can: Hom(⊗p−1(∧2L)⊗ L, V ) → Hom(⊗p−1(∧2L),Hom(L, V )),

ω 7→ ω̃ : ω̃(X1, . . . ,Xp−1)(z) = ω(X1, . . . ,Xp−1, z), Xi ∈ ∧2L, z ∈ L,

which induces a map dθ : Hom(⊗p−1(∧2L) ⊗ L, V ) → Hom(⊗p(∧2L) ⊗ L, V ) such

that the diagram

Hom(⊗p−1(∧2L)⊗ L, V )

dθ

��

can
// Hom(⊗p−1(∧2L),Hom(L, V ))

∂

��

Hom(⊗p(∧2L)⊗ L, V )
can

// Hom(⊗p(∧2L),Hom(L, V ))

commutes. Here ∂ is given by (5.7). Since ∂ is a coboundary operator, so is dθ. By

a direct computation using (5.9) and (5.7) it follows that

(5.10) (dθ(ω))(X1, . . . ,Xp, z)

=
∑

16j<k6p

(−1)jω(X1, . . . , X̂j , . . . ,Xk−1, [Xj ,Xk]F ,Xk+1, . . . ,Xp, z)

+

p∑

j=1

(−1)jω(X1, . . . , X̂j , . . . ,Xp, [Xj , z])

+

p∑

j=1

(−1)j+1θ(Xj)ω(X1, . . . , X̂j , . . . ,Xp, z)

+ (−1)p+1(θ(yp, z)ω(X1, . . . ,Xp−1, xp) + θ(z, xp)ω(X1, . . . ,Xp−1, yp))

for all Xi = xi ∧ yi ∈ ∧2L and z ∈ L, which is exactly (4) of [19].

For brevity set Cp−1(L, V ) = Hom(⊗p−1(∧2L) ⊗ L, V ). Hence we get a cochain

complex (⊕pCp−1(L, V ), dθ) which is induced from the cochain complex of the Leibniz

algebra ∧2L. Denote the pth cohomology group by

(5.11) Hp
θ(L, V ) = Zp

θ (L, V )/Bp
θ(L, V ),

where Zp
θ (L, V ) (or Bp

θ(L, V )) is the space of (p+1)-cocycles (or (p+1)-coboundaries,

respectively). Therefore, H∗
θ(L, V ) is deduced from HL∗

l,r(∧2L,Hom(L, V )) via the

representation of ∧2L on Hom(L, V ) given by Lemma 5.2.
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Lemma 5.3. Let L be a 3-Lie algebra and (V, θ) a representation of L. Then

(V, θ,−θ) is a Leibniz algebra representation of ∧2L.

P r o o f. Fix any xi ∈ L, 1 6 i 6 4. By (5.6) it suffices to show that

θ([x1 ∧ x2, x3 ∧ x4]F ) = [θ(x1, x2), θ(x3, x4)],

which is equivalent to

θ([x1, x2, x3] ∧ x4 + x3 ∧ [x1, x2, x4]) = θ(x1, x2)θ(x3, x4)− θ(x3, x4)θ(x1, x2).

By Definition 5.1 the result follows. �

Let (V, θ) be a representation of the 3-Lie algebra L. By Lemma 5.3, it is possible

to compare H∗
θ(L, V ) and the cohomology of ∧2L in V . Consider the representation

(V , θ, −θ) of the Leibniz algebra ∧2L. Fix any z ∈ L and p > 0. Then there is

a linear inclusion of vector spaces

⊗p(∧2L) →֒ ⊗p(∧2L)⊗ L : X1 ⊗ . . .⊗Xp 7→ X1 ⊗ . . .⊗Xp ⊗ z, Xi ∈ ∧2L,

which induces a map fp = fp
z : Cp(L, V ) → CLp(∧2L, V ) : ω 7→ ω̃, where

(5.12) ω̃(X1, . . . , Xp) = ω(X1, . . . , Xp, z), Xi ∈ ∧2L, 1 6 i 6 p.

Proposition 5.1. Assume that z ∈ Z(L) and θ(x ∧ z) = 0 for any x ∈ L. Then

{fp = fp
z }p>0 is a cochain map from

(⊕
p>0

Cp(L, V ), dθ
)
to

(⊕
p>0

CLp(∧2L, V ), ∂
)
,

which induces a map Hp
θ(L, V ) → HLp

θ,−θ(∧2L, V ) given by [ω] 7→ [fp(ω)],

ω ∈ Zp
θ (L, V ).

P r o o f. It suffices to show that ∂ ◦ fp = fp+1 ◦ dθ. Fix any Xi ∈ ∧2L, 1 6 i 6

p+ 1. By linearity we may assume that Xi = xi ∧ yi. By (5.7) and (5.12) we have

((∂ ◦ fp)(ω))(X1, . . . ,Xp+1) = (∂(ω̃))(X1, . . . ,Xp+1)

=

p+1∑

j=1

(−1)j+1θ(Xj)ω(X1, . . . , X̂j , . . . ,Xp+1, z)

+
∑

16j<k6p+1

(−1)jω(X1, . . . , X̂j , . . . ,Xk−1, [Xj ,Xk]F ,Xk+1, . . . ,Xp+1, z).
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On the other hand, by (5.10) and (5.12) we have

((fp+1 ◦ dθ)(ω))(X1, . . . ,Xp+1)

= (dθ(ω))(X1, . . . ,Xp+1, z)

=
∑

16j<k6p+1

(−1)jω(X1, . . . , X̂j , . . . ,Xk−1, [Xj ,Xk]F ,Xk+1, . . . ,Xp+1, z)

+

p+1∑

j=1

(−1)jω(X1, . . . , X̂j , . . . ,Xp+1, [Xj , z])

+

p+1∑

j=1

(−1)j+1θ(Xj)ω(X1, . . . , X̂j , . . . ,Xp+1, z)

+ (−1)p+2(θ(yp+1, z)ω(X1, . . . ,Xp−1, xp+1) + θ(z, xp+1)ω(X1, . . . ,Xp, yp+1))

=
∑

16j<k6p+1

(−1)jω(X1, . . . , X̂j , . . . ,Xk−1, [Xj ,Xk]F ,Xk+1, . . . ,Xp+1, z)

+

p+1∑

j=1

(−1)j+1θ(Xj)ω(X1, . . . , X̂j , . . . ,Xp+1, z),

where the underlined terms are zero since z ∈ Z(L) and θ(x ∧ z) = 0 for any x ∈ L

by assumption. So ∂ ◦ fp = fp+1 ◦ dθ as required. �

Example 5.1. Let θ = ad be the adjoint representation of L. Then the condition

z ∈ Z(L) implies that ad(x∧ z) = 0 for any x ∈ L. So, for any z ∈ Z(L), there exists

a map Hp
θ(L,L) → HLp

θ,−θ(∧2L,L) given by [ω] → [fp
z (ω)], ω ∈ Zp

θ (L,L), where f
p

is given by (5.12).

6. Representations of the induced 3-Lie algebras

In this section g denotes a Lie algebra with bracket [·, ·]. Keep notation as in
former sections. For any τ ∈ g∗ there is a linear map τ ♯ : ∧2g → g given by

(6.1) τ ♯(x ∧ y) = τ(x)y − τ(y)x ∀ x, y ∈ g.

Lemma 6.1. Assume that 0 6= τ ∈ g∗. Then im(τ ♯) = ker τ .

P r o o f. Since τ(τ ♯(x ∧ y)) = 0, x, y ∈ g, im(τ ♯) ⊆ ker τ . Fix a basis {ei}i∈I of

ker τ . Choose any e 6∈ ker τ . Then {ei}i∈I ∪ {e} is a basis of g. Since τ ♯(ei ∧ ej) = 0

and τ ♯(ei ∧ e) = −τ(e)ei 6= 0, im(τ ♯) is generated by {ei}i∈I . �
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Let τ ∈ g∗. Consider the 3-ary bracket [·, ·, ·]τ given by (1.2) on gτ = g. On ∧2gτ

we have the bracket [·, ·]F with respect to [·, ·, ·]τ given by (1.3).

Lemma 6.2. τ ∈ g∗ is a quasi-trace function on g if and only if the map τ ♯ :

∧2gτ → g given by (6.1) satisfies that τ ♯([X1,X2]F ) = [τ ♯(X1), τ
♯(X2)] for any X1,

X2 ∈ ∧2g. In this case, τ ♯ is a homomorphism of Leibniz algebras (g is regarded as

a Leibniz algebra).

P r o o f. By linearity we may assume that Xi = xi ∧ yi ∈ ∧2g, i = 1, 2.

By (1.2), (1.3) and (6.1) it follows that

(6.2) τ ♯([X1,X2]F ) = τ ♯([x1, y1, x2]τ ∧ y2 + x2 ∧ [x1, y1, y2]τ )

= τ(x1)τ(x2)[y1, y2]− τ(x1)τ(y2)[y1, x2]− τ(y1)τ(x2)[x1, y2]

+ τ(y1)τ(y2)[x1, x2] + τ([x1, y1, x2]τ )y2 − τ([x1, y1, y2]τ )x2

= [τ(x1)y1 − τ(y1)x1, τ(x2)y2 − τ(y2)x2]

+ τ([x1, y1, x2]τ )y2 − τ([x1, y1, y2]τ )x2

= [τ ♯(X1), τ
♯(X2)] + τ([x1, y1, x2]τ )y2 − τ([x1, y1, y2]τ )x2.

So, if τ ∈ Fqtr(g) then τ([x1, y1, x2]τ ) = τ([x1, y1, y2]τ ) = 0 by Corollary 2.1, which

means that τ ♯([X1,X2]F ) = [τ ♯(X1), τ
♯(X2)] as required. In particular, since gτ is

a 3-Lie algebra, which implies that ∧2gτ is a Leibniz algebra with respect to [·, ·]F
by [9], τ ♯ is a Leibniz algebra homomorphism.

Conversely, assume that τ ♯([X1,X2]F ) = [τ ♯(X1), τ
♯(X2)] for any X1, X2 ∈ ∧2g.

By (6.2) it follows that

(6.3) τ([x1, y1, x2]τ )y2 − τ([x1, y1, y2]τ )x2 = 0 ∀ xi, yi ∈ g.

Fix any x, y, z ∈ g. By Corollary 2.1, to show τ ∈ Fqtr(g) it suffices to show that

τ([x, y, z]τ ) = 0. If dim g = 1 then g is abelian and hence τ is always a quasi-trace

function by Example 2.5. So we may assume that dim g > 2 and z 6= 0. Then, we

can choose z′ ∈ g such that z, z′ are linearly independent.

Set x1 = x, y1 = y, x2 = z, y2 = z′. Then τ([x, y, z]τ )z
′ − τ([x, y, y′]τ )z = 0

by (6.3). Since z, z′ are linearly independent, τ([x, y, z]τ ) = 0 as required. �

Let τ ∈ F3-Lie(g). Recall the associative algebra U(gτ ) (see (5.2)) associated to gτ .

Let U(g) be the universal enveloping algebra of g.

Theorem 6.1. Let τ ∈ F3-Lie(g). The map τ ♯ given by (6.1) induces a homo-

morphism of associative algebras from U(gτ ) to U(g) if and only if τ is a quasi-trace

function on g, i.e., τ ∈ Fqtr(g).
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P r o o f. Since U(gτ ) is generated by ∧2gτ and U(g) is generated by g respec-

tively, it suffices to check that τ ♯ sends defining relations of U(gτ ) to that of U(g).

Recall that the defining relations of U(gτ ) are

(6.4) XY −YX = [X,Y]F ,

[x1, x2, x3]τ ∧ x4 = 	
x1,x2,x3

(x1 ∧ x2)(x3 ∧ x4),

where X,Y ∈ ∧2gτ , xi ∈ gτ , and [·, ·, ·]τ is given by (1.2), while the defining relation
of U(g) is

(6.5) xy− yx = [x, y] ∀ x, y ∈ g.

By (6.1) in U(g) we have

(6.6) 	
x1,x2,x3

τ ♯(x1 ∧ x2)τ(x3) = 	
x1,x2,x3

(τ(x1)x2 − τ(x2)x1)τ(x3) = 0

and

(6.7) 	
x1,x2,x3

τ ♯(x1 ∧ x2)x3 = 	
x1,x2,x3

(τ(x1)x2x3 − τ(x2)x1x3)

= 	
x1,x2,x3

τ(x1)(x2x3 − x3x2)

(6.5)
= 	

x1,x2,x3

τ(x1)[x2, x3]

(1.2)
= [x1, x2, x3]τ .

By (6.6) and (6.7) we have in U(g)

(6.8) τ ♯([x1, x2, x3]τ ∧ x4)− 	
x1,x2,x3

τ ♯(x1 ∧ x2)τ
♯(x3 ∧ x4)

= τ([x1, x2, x3]τ )x4 − τ(x4)[x1, x2, x3]τ

− ( 	
x1,x2,x3

τ ♯(x1 ∧ x2)τ(x3))x4 + τ(x4)( 	
x1,x2,x3

τ ♯(x1 ∧ x2)x3)

= τ([x1, x2, x3]τ )x4 − τ(x4)[x1, x2, x3]τ + τ(x4)[x1, x2, x3]τ

= τ([x1, x2, x3]τ )x4.

By Corollary 2.1, Lemma 6.2 and (6.8) the result follows. �

As a direct application of Theorem 6.1 and Lemma 6.1 we have the following

corollary.

Corollary 6.1. Assume that 0 6= τ is a quasi-trace function on g. Then the image

of the homomorphism τ ♯ : U(gτ ) → U(g) equals to U(ker τ), the universal enveloping

algebra of the Lie algebra ker τ .
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Using the homomorphism τ ♯ : U(gτ ) → U(g) in Theorem 6.1 we get the following

corollary.

Corollary 6.2. Assume that τ is a quasi-trace function on g. Let (V, ̺) be a rep-

resentation of g. Then the composition ̺τ := ̺ ◦ τ ♯ : U(gτ ) → End(V ) affords

a representation of the 3-Lie algebra gτ on V , and τ induces a functor from g−Mod

to gτ −Mod.

Note that ̺τ is given by

(6.9) ̺τ (x1, x2) = τ(x1)̺(x2)− τ(x2)̺(x1) ∈ End(V ), x1, x2 ∈ gτ = g.

Now we recall the Chevalley-Eilenberg cochain complexes of g. Let (V, ̺) be a repre-

sentation of g. The space Cp(g, V ) of p-cochains is Hom(∧pg, V ), while the cobound-

ary operator δ̺ : Cp(g, V ) → Cp+1(g, V ) is given by

(6.10) (δ̺(f))(x1, . . . , xp+1)

=

p+1∑

j=1

(−1)j+1̺(xj)f(x1, . . . , x̂j , . . . , xp+1)

+
∑

16j<k6p+1

(−1)j+kf([xj , xk], x1, . . . , x̂j , . . . , x̂k, . . . , xp+1).

Let Zp
̺(g, V ) (or Bp

̺(g, V )) be the space of p-cocycles (or p-coboundaries, respec-

tively). Then, the pth cohomology group of g (with coefficients in V ) is

Hp
̺ (g, V ) = Zp

̺(g, V )/Bp
̺(g, V ).

For the representation given in Corollary 6.2 and the cohomology H∗(gτ , V ) intro-

duced in [16] (see (5.4)) we have the following corollary.

Corollary 6.3. Let τ be a quasi-trace function on g and (V, ̺) a representa-

tion of g. If U(g) is a projective module of U(gτ ) via the homomorphism τ ♯ then

H∗(gτ , V ) ∼= H∗
̺ (g, V ).

P r o o f. Recall that H∗
̺ (g, V ) = Ext∗U(g)(C, V ). Since U(g) is a projective mod-

ule of U(gτ ), by the theorem of change of rings any projective resolution of the trivial

representation of g is also a projective resolution of the trivial representation of gτ ,

and hence the result follows. �
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7. Some comparison of cohomologies arising

from quasi-trace functions

In this section g is a Lie algebra and τ is a quasi-trace function on g. We fix

a representation (V, ̺) of g. Then we have a representation (V, ̺τ ) of the 3-Lie

algebra gτ given by Corollary 6.2. We construct some cocycles of gτ from those of g,

and compare the cohomologies of g and the Leibniz algebra ∧2gτ associated to the

3-Lie algebra gτ .

In the case that τ is a trace function, 1-cocycles and 2-cocyles of gτ are studied

in [3] for the trivial representation and adjoint representation of gτ . Note that the

trivial representation of gτ is induced by the trivial representation of g via Corol-

lary 6.2, while the adjoint representation of gτ cannot be induced by the adjoint

representation of g via Corollary 6.2 in general, see Corollary 6.1.

At first we consider 1-cocyles. Note that C1(g, V ) = Hom(g, V ) = C0(gτ , V ).

Proposition 7.1. It holds that Z1
̺(g, V ) ⊆ Z0

̺τ
(gτ , V ).

P r o o f. It suffices to show that

(7.1) (d̺τ
(λ))(x, y, z) = 	

x,y,z
τ(x)(δ̺(λ))(y, z),

where δ̺ (or d̺τ
) is given by (6.10) (or (5.10), respectively), and λ ∈ C1

̺(g, V ),

x, y, z ∈ gτ = g. Indeed,

(d̺τ
(λ))(x, y, z) =− λ([x, y, z]τ ) + 	

x,y,z
̺τ (x, y)λ(z) (by (5.10))

=− λ( 	
x,y,z

τ(x)[y, z])

+ 	
x,y,z

(τ(x)̺(y) − τ(y)̺(x))λ(z) (by (1.2), (6.9))

= 	
x,y,z

(τ(x)(−λ([y, z]) + ̺(y)λ(z)− ̺(z)λ(y)))

= 	
x,y,z

τ(x)(δ̺(λ))(y, z) (by (6.10))

as required. �

Proposition 7.1 generalizes Theorem 4.3 of [3]. More precisely, the identity (7.1)

generalizes Lemma 4.2 of [3] where τ is a trace function on g.

For 2-cocycles we consider the linear map, denoted again by τ ♯, from C2(g, V )

= Hom (∧2g, V ) to C1(gτ , V ) = Hom(∧2g⊗ g, V ), given by

(7.2) (τ ♯(ω))(x, y, z) = 	
x,y,z

τ(x)ω(y, z), ω ∈ C2(g, V ), x, y, z ∈ g.
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With respect to the trivial representation and the adjoint representation of gτ , (7.2) is

defined for a trace function τ in Theorems 4.2 and 4.4 of [3].

Proposition 7.2. Let τ be a quasi-trace function on g and (V, ̺) be a representa-

tion of g. Then there is a morphism H2
̺(g, V ) → H1

̺τ
(gτ , V ) given by [ω] 7→ [τ ♯(ω)].

P r o o f. At first we show that d̺τ
(τ ♯(ω)) = 0 for any ω ∈ Z2

̺(g, V ), i.e.,

τ ♯(ω) ∈ Z1(gτ , V ). Since δ̺(ω) = 0, by (6.10) it follows that

(7.3) 0 = (δ̺(ω))(x, y, z) = 	
x,y,z

̺(x)ω(y, z)− 	
x,y,z

ω([x, y], z), x, y, z ∈ g.

Fix any xi ∈ g = gτ , 1 6 i 6 5. Since τ ∈ Fqtr(g), τ([x1, x2, x3]τ ) = 0 by (2.5). So,

by (7.2) it follows that

τ ♯(ω)([x1, x2, x3]τ , x4, x5) = τ(x4)ω(x5, [x1, x2, x3]τ ) + τ(x5)ω([x1, x2, x3]τ , x4).

By this and similar identities we deduce from (5.10) that

(7.4) (d̺τ
(τ ♯(ω)))(x1, x2, x3, x4, x5)

= − (τ(x4)ω(x5, [x1, x2, x3]τ ) + τ(x5)ω([x1, x2, x3]τ , x4))

− (τ(x3)ω([x1, x2, x4]τ , x5) + τ(x5)ω(x3, [x1, x2, x4]τ ))

− (τ(x3)ω(x4, [x1, x2, x5]τ ) + τ(x4)ω([x1, x2, x5]τ , x3))

+ (τ(x1)ω(x2, [x3, x4, x5]τ ) + τ(x2)ω([x3, x4, x5]τ , x1))

+ (τ(x1)̺(x2)− τ(x2)̺(x1))( 	
x3,x4,x5

τ(x3)ω(x4, x5))

− (τ(x3)̺(x4)− τ(x4)̺(x3))( 	
x1,x2,x5

τ(x1)ω(x2, x5))

− (τ(x4)̺(x5)− τ(x5)̺(x4))( 	
x1,x2,x3

τ(x1)ω(x2, x3))

− (τ(x5)̺(x3)− τ(x3)̺(x5))( 	
x1,x2,x4

τ(x1)ω(x2, x4)).

By (1.2), (7.3) and anti-symmetry of ω, the right hand side of (7.4) can be rewritten as

(d̺τ
(τ ♯(ω)))(x1, x2, x3, x4, x5)

= τ(x1)τ(x4)(δ̺(ω))(x2, x5, x3) + τ(x2)τ(x4)(δ̺(ω))(x3, x5, x1)

+ τ(x1)τ(x5)(δ̺(ω))(x2, x3, x4) + τ(x2)τ(x5)(δ̺(ω))(x3, x1, x4)

+ τ(x1)τ(x3)(δ̺(ω))(x2, x4, x5) + τ(x2)τ(x3)(δ̺(ω))(x4, x1, x5)

= 0,

which means d̺τ
(τ ♯(ω)) = 0 as required.
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Now we show that, if [ω1] = [ω2] then [τ ♯(ω1)] = [τ ♯(ω2)], where τ
♯(ω1), τ

♯(ω2)

are given by (7.2). Assume that ω2−ω1 = δ̺(λ) for some λ ∈ C1
̺(g, V ) = Z0(gτ , V ).

For any x, y, z ∈ g, by (7.2) it follows that

(τ ♯(ω2))(x, y, z)− (τ ♯(ω1))(x, y, z)

= 	
x,y,z

τ(x)ω2(y, z)− 	
x,y,z

τ(x)ω1(y, z) = 	
x,y,z

τ(x)(ω2 − ω1)(y, z)

= 	
x,y,z

τ(x)(δ̺(λ))(y, z) = (d̺τ
(λ))(x, y, z) (by (7.1)).

So, τ ♯(ω2)− τ ♯(ω1) = d̺τ
(λ), and hence [τ ♯(ω2)] = [τ ♯(ω1)] as required. �

Let g be a Lie algebra and τ a quasi-trace function. By Lemma 5.3 and Corol-

lary 6.2, (V, ̺τ ,−̺τ ) is a representation of the Leibniz algebra ∧2gτ , whose bracket

is given by (1.3). For any integer p > 0, define τ (p) : Cp(g, V ) = Hom(∧pg, V ) →
CLp(∧2gτ , V ) = Hom(⊗p(∧2gτ ), V ) by

(7.5) ω 7→ τ (p)(ω) , ω ◦ τ ♯,

where τ ♯ is given by (6.1). For the cochain complex (⊕pC
p(g, V ), δ̺) associated

to (V, ̺) (see (6.10)) and the cochain complex (⊕pCLp(∧2gτ , V ), ∂) associated to

(V, ̺τ ,−̺τ ) (see (5.7)), we have the following result.

Proposition 7.3. Let τ ∈ Fqtr(g) and (V, ̺) be a representation of g. Then {τ (p)}
is a cochain map from (⊕pC

p(g, V ), δ̺) to (⊕pCLp(∧2gτ , V ), ∂). In particular, there

is a map fromHp
̺ (g, V ) toHLp

̺τ ,−̺τ
(∧2gτ , V ) given by [ω] → [τ (p)(ω)], ω ∈ Zp

̺(g, V ).

P r o o f. It suffices to show that ∂ ◦ τ (p) = τ (p+1) ◦ δ̺. Fix any Xi ∈ ∧2gτ = ∧2g,

1 6 i 6 p + 1, and any ω ∈ Cp(g, V ). Note that l(Xi) = ̺τ (Xi), r(Xi) = −̺τ (Xi).

By (5.7) and Lemma 6.2 it follows that

(7.6) ((∂ ◦ τ (p))(ω))(X1, . . . ,Xp+1)

= (∂(τ (p)ω))(X1, . . . ,Xp+1)

=

p+1∑

j=1

(−1)j+1̺τ (Xj)ω(τ
♯(X1), . . . , τ̂ ♯(Xj), . . . , τ

♯(Xp+1))

+
∑

16j<k6p+1

(−1)jω(τ ♯(X1), . . . , τ̂ ♯(Xj), . . . , τ
♯(Xk−1),

[τ ♯(Xj), τ
♯(Xk)], τ

♯(Xk+1), . . . , τ
♯(Xp+1)).
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On the other hand, we have

((τ (p+1) ◦ δ̺)(ω))(X1, . . . ,Xp+1)(7.7)

= (τ (p+1)(δ̺ω))(X1, . . . ,Xp+1) = (δ̺(ω))(τ
♯(X1), . . . , τ

♯(Xp+1)) (by (7.5))

=

p+1∑

j=1

(−1)j+1̺(τ ♯(Xj))ω(τ
♯(X1), . . . , τ̂ ♯(Xj), . . . , τ

♯(Xp+1))

+
∑

16j<k6p+1

(−1)j+kω([τ ♯(Xj), τ
♯(Xk)],

τ ♯(X1), . . . , τ̂ ♯(Xj), . . . , τ̂ ♯(Xk), . . . , τ
♯(Xp+1)) (by (6.10)).

Since ω is anti-symmetric, by (7.6) and (7.7) we have ∂ ◦ τ (p) = τ (p+1) ◦ δ̺. �
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