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Abstract. We consider the Massera-Schiffer problem for the equation
—y'(2) +a(2)y(x) = f(z), zeR,

where f € L;,OC(IR)7 p e [l,00) and 0 < g € L°°(R). By a solution of the problem we mean
any function ¥, absolutely continuous and satisfying the above equation almost everywhere
in R. Let positive and continuous functions u(z) and 6(z) for z € R be given. Let us
introduce the spaces

Lo(®) = {1 € LER): 111, 0,0 = [ ) @)Pde <o .

Lp®,0) = { £ € LE®): 111, = [ 100)S ()P < o0 .

We obtain requirements to the functions p, 6 and ¢ under which (1) for every function
f € Lp(R, 0) there exists a unique solution y € Lp(R, 1) of the above equation; (2) there is an
absolute constant ¢(p) € (0, 0o0) such that regardless of the choice of a function f € Ly(R, 6)
the solution of the above equation satisfies the inequality

Il @ <c®IflL,r6)-
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1. INTRODUCTION

In the present paper, we consider the equation
(1.1) =y (z) +q(x)y(z) = f(z), z€R,
where f € LY¢(R), p € (1,00) and
(1.2) 0 < g€ LY(R).

We continue the research started in [6], where a criterion has been obtained for
the correct solvability of equation (1.1) in the space L,(R), see Theorem 1.2 below.
However, in this paper we do not restrict our considerations to the space L,(R),
p € (1,00), but also investigate a more general problem to find a pair of spaces
which is admissible for equation (1.1), i.e., the Massera-Schiiffer problem, see [7],
Chapter 5, Sections 50-51 and Definition 1.1 below. Thus, our goal is to determine
the space frame within which equation (1.1) always has a unique bounded solution,
see (1.5) below.

Let us now go to precise formulations. Throughout the sequel, u(z) and 6(x)
stand for positive functions continuous on z € R (weights), and L, ,(R), L, ¢(R),
p € (1,00), denote the corresponding weight spaces

— 00

13 Lp®) = {7 € L@ 111, 0= [ ) ) do < oo}

) Lpa®) = {7 € L@ 101, = [ @ P ar < oo

For brevity, we write Ly, Lyg. |- ls |0 instead of Ly (R}, Lyo(R), [z, -
-2, o(r), Tespectively. In the case p =1 (0 = 1), we write L, (L) and [|-|l,(|||l,»),
respectively. By a solution of (1.1), we understand any absolutely continuous func-
tion y(z), € R, satisfying equality (1.1) almost everywhere on R.

Definition 1.1. We say that the spaces L,, and L,¢ constitute a pair
{Lp,u; Lp o} admissible for equation (1.1) if requirements (I)—(II) hold:

(I) for every function f € L, g, there exists a unique solution y € L, , of (1.1),

(II) there exists a constant ¢ € (0, c0) such that regardless of the choice of f € L, o,
the solution y € Ly, ,, of (1.1) satisfies the inequality

(1.5) [Yllp.u < €l fllp0-

Note that Definition 1.1 is a restriction of a general definition given in [7], Chap-
ter 5, Sections 50-51. Therefore, the question on the validity of requirements (I)—(II)
for equation (1.1) is called the Massera-Schiffer problem.
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Below we use the following convention: for brevity, we say “problem (I)—(II)”
or “question on (I)—(II)” instead of “problem (or question) on the requirements to
the functions ¢(-), u(-) and 6(-) under which requirements (I)—(II) of Definition 1.1
hold”; we say “a pair {L, ,; Ly ¢} admissible for (1.1)” instead of “a pair of spaces
{Lp,u; Lpe} admissible for equation (1.1)”; we often omit the word “equation” be-
fore (1.1); by the letter ¢ we denote absolute positive constants which are not es-
sential for exposition; requirement (1.2) is our standing assumption, i.e., throughout
the sequel we assume it holds and do not mention this in the statements.

In [6], in the case that the pair {L,;L,} is admissible for (1.1), (1.1) is said to
be correctly solvable in L,. We keep this terminology in the present paper. Let us
quote the main result of [6].

Theorem 1.2 ([6]). For p € [1,00), equation (1.1) is correctly solvable in L, if
and only if there exists a € (0,00) such that go(a) > 0. Here

z+a
(1.6) qo(a) = inf / q(t) dt.

z€R Jo_q

A new proof of Theorem 1.2 can be found in Section 5 below.

We continue the research of [6] with the following goal: given equation (1.1), deter-
mine the requirements to the weights p(-) and 6(-) under which the pair {L,, ;,;; Ly}
is admissible for (1.1) also in the case, where go(a) = 0 for all a € (0,00). Such an
approach allows one to continue being interested also in equations (1.1) to which
Theorem 1.2 is not applicable. For example:

(1) go(a) > 0 for some a € (0,00) but f ¢ L,(R),
(2) go(a) =0 for all @ € (0,00), f € Ly(R),
(3) qo(a) =0 for all @ € (0,00), f & Lp(R).
Note that for a second order linear differential equation, an analogue of prob-

a)
a)

lem (I)-(II) was studied in [3]. As in [3], our main result (see Theorem 3.3) reduces
the question on (I)—(II) to the problem on the boundedness of a certain integral
operator S: L, — L,. From this criterion, under additional requirements to the
functions ¢(-), p(-) and 6(-), one can deduce various particular conditions controlling
the solution of problem (I)—(II), see Sections 3 and 5.

To conclude this section, for the reader’s convenience we describe the structure
of the present paper. In Section 2 we collect preliminaries, Section 3 contains the
statements and comments, all the proofs are given in Section 4, see Section 5 for
examples of the solution of problem (I)—(II).
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2. PRELIMINARIES
Below we give a summary of the main results used in our proofs.

Theorem 2.1 ([5]). Let u(x) and 8(x) be continuous, positive functions for x € R,
and let H be the integral operator

(2.1) (1)) = ) [ 00r@d seR

For p € (1,00) the operator H: L, — L, is bounded if and only if H, < co. Here
H, = sup H,(x),

zER
T 1/p 00 , 1/p D
(2.2) H,(z) = </ w(t)? dt) (/ 0(t)? dt) , TER, p = 7
—00 x p—=
In addition,
(2:3) Hy < [[Hllpp < ()7 ()7 Hy,

Suppose that together with (1.2) the following condition holds:

0 0o
(2.4) / g(t)dt = / g(t)dt = oo.
—o0 0
Define the function d(x), z € R, by the equality (see [1])
r+d
(2.5) d() = (g{d: /H o(t) dt = 2}.

From (2.4) it follows that the function d(z), x € R, is well-defined, it is positive and
finite for all x € R, and we have

z+d(z)
(2.6) / qt)dt =2, zeR.
z—d(x)

Lemma 2.2 ([2]). Suppose that (2.4) holds, x € R, and |h| < d(x). Then we have
the inequalities

(2.7) ld(z + h) — d(@)| < |h|, d(z+h) < 2d(z).
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Remark 2.3. The function d(-) was introduced in [1]. Such functions were first
used by Otelbaev and therefore all similar functions are called Otelbaev functions,
see [8].

Definition 2.4 ([2]). Let there be given a positive continuous function o(t) for
t € R, a point = on the real axis, and a sequence of points {z,, }nens, N' = £1,£2,...
Consider the segments

on=[0,06P], o =z, +0(x,), neN.

We say that the segments {0,,}°, (or {o,,}.2 ) form an R(z, o(-))-covering of the
half-axis [z, 00) (or an R(z,o(-))-covering of the half axis (—oo, z])), respectively, if
the following conditions hold:

(1) a,(f) = ar(;r)l for n > 1 and 0,(:)1 = 051_) for n < -1,

(2) 01 =0 =23 U 0w =[z,00); U 00 = (~00,a].

n=1 n<—1

The system of segments {0, }nen- is called an R(x, o(+))-covering of the real axis,
or just an R(z,o(+))-covering. In the latter case, we also say that the covering of R
is generated by the function o(-) (the generating function of the covering) and the

point z (the initial point of the covering).

Lemma 2.5 ([2]). Suppose that a positive, continuous function o(t) satisfies for
t € R the conditions

(2.8) lim (t+o0(t)) = —oo, lim (t —o(t)) = oco.

t——o0 t—o0

Then for every x € R there exists an R(x, o(-))-covering of (—oo, z] and an R(z,0(+))-
covering of [z, 00).

Lemma 2.6 ([2]). Under criterion (2.4) for every x € R there exist R(z,d(-))-
coverings of (—oo, x] and of (x,00) (here d(-) denotes Otelbaev’s function (2.5)).

Remark 2.7. Since in the case of R(z, d(-))-coverings we have chosen the par-
ticular function d(-) (see (2.5)) as the generating function of the covering, we denote
the segments {0, }nen' by the symbol A. Therefore, according to Definition 2.4, we
have the relations

1
2

) A({E) = [:L’ - d(:[,’),:[,’ + d(x)]v T e [Ra

) A, =[AD, AP AW =, +d(z,), neN.
1) Aﬁﬁ = Ai;_)l forn > 1 and Ai;r_)l = Aﬁﬂ for n < —1,

2") Agf) = A(_Jrl) =z; U Ap=[z,0)and |J A, =(—00,1]

n>1 n<—1
Note that Definition 2.4 and Lemmas 2.5 and 2.6 can be viewed as modifications

(
(
(
(

of the notions and statements due to Otelbaev, see [8].
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3. REsuLTS
Our main results are based on Lemmas 3.1 and 3.2.
Lemma 3.1. Suppose that
(o)
(3.1) / p(t)P dt = oo
0

and let f(-) be a function with compact support from the class L,(R). Then the
solution y € Ly, of (1.1) admits the representation

(32) v = [~ e (- s a)at, zer

Let us introduce the integral operator

83 s =uo) [ gen(- [ tq(&)dff)f(t)dt, ek

Lemma 3.2. We have the following estimates for the norm of the operator S':
L,— L,

(3.4 S0 < 8l < 0PGS0 9 = L
Here
(35)  Sy=swpSy@), Spx)= (I >>1/p<.f<*><x>>1/p/, TER,
zeR
(3.6) JIS_)(J?) Pexp p q(& ) dt, = €R,
t
t
(3.7) Jlgfr)(m) = eXp( P [ q(¢ ) dt, x€R.

Our main result is Theorem 3.3.

Theorem 3.3. Suppose condition (3.1) holds and let p € (1,00). Then the pair
{Lp,1u; Lp o} is admissible for (1.1) if and only if the operator S: L, — L, is bounded.

Corollary 3.4. Suppose condition (3.1) holds and let ¢ € L1(R). Then the pair
{Lp,u; Lp o} is admissible for (1.1) if and only if A, < co. Here

(3.8) A, =supAy(z), Ay(z)= ( / ; p(t)? dt>1/p< :O ; (tl)p, >1/p/, z €R.

zER _
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Corollary 3.5. Suppose condition (3.1) holds and the function q(-) from (1.1)
can be written in the form

(3.9) q(x) = qi(z) + g2(z), z€R.

Suppose that the functions q1(-) and g2(-) satisfy the conditions

(3.10) 0<qi(-) € LY(R), P= sup
z,teR

t
/ qg(ﬁ)dg‘ < 0.

Then the pair {Ly ,; L, ¢} is admissible for (1.1) if and only if it is admissible for
the equation

(3.11) —¥'(@) + qu(@)y(x) = f(z), @R

Corollary 3.6. Suppose that the function ¢(-) can be written in the form (3.9),
where the function ¢ (x) is positive for x € R and condition (3.10) holds. In addition,
suppose that for q(-) = ¢1(-) equalities (2.4) hold. Set

(3.12) W) = @7, 8) = q@) ", zeR.
Then equality (3.1) holds and the pair {Ly, ,;; L, ¢} is admissible for equation (1.1).

From Theorem 3.3 it follows that its criterion does not give a straightforward
description of the set of solutions of the Massera-Schiiffer problem. However, for
the question on (I)—(II), Theorem 3.3 plays the role of Cauchy’s criterion from the
theory of number series — any solution of problem (I)—(II) is based on this theo-
rem, in an explicit or implicit way. For example, this is the case for the particular
solution of the question on (I)—(II) given in Corollary 3.6, see also the proof of Theo-
rem 1.2 in Section 5. On the other hand, in order to find a general relation between
the functions ¢(-), p(-) and () which controls the solution of problem (I)—(II), we
change the terminology and instead of speaking about the properties of the operator
S: L, = L, from Theorem 3.3, we study the properties of the above mentioned func-
tions. Note that to achieve this goal, we had to restrict the class of equations (1.1)
under consideration as well as the choice of the spaces {L, ,; Ly}

Let us now turn to precise statements.

Definition 3.7. We say that (1.1) is standard if the function g¢(z) is positive
and continuously differentiable for x € R and, in addition, satisfies the condition

q(z)

(3.13) )

We call the function ¢(-) the coefficient of a standard equation (1.1) (or just a stan-
dard coefficient) and denote by K the set of all standard coeflicients.
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Definition 3.8. We say that a pair {L, .; Ly} agrees with the standard equa-
tion (1.1) if for every o > 0 there exists a constant c¢(a) € [1,00) such that for
all ¢,z € R the functions ¢(-), p(-) and 6(-) satisfy the inequalities

[«@%D

<n@m<dwmﬁa

(3.14) c(a)™? eXp( —a

t
/ﬂ@%D,k—LZ

L@ sy @ @Y,
At =g () - 200 =15 (5) + bre®
)7

To check inequalities (3.14), the following lemma is useful.

where

Lemma 3.9. Let q(-) € K, suppose that the weights p(-) and §(-) are continuously
differentiable, and

lz| 500 p(z) q(x)  |2|500 O(z) q(x)

! 1 0’ 1
(3.15) wa) 1, @)
Then for p € (1,00) the pair {L, ,;Lp¢} agrees with (1.1). In particular, for
p € (1,00) the pair {L,; L,} agrees with any standard equation (1.1).
Definition 3.10. We say that equation (1.1) is quasi-standard if the function g(-)
can be written in the form (3.9), where ¢(-) € K and the function go(-) € LI*¢(R)
satisfies the condition

(3.16) lim s(x) = 0.

|| —o0

Here

(3.17) »(x) = sup
Is|<2/q1(x)

x+s
/ g2 (t) dt‘, z € R.

Tr—S

We call ¢1(-) the principal part of q(-) and ga(-) the perturbation of ¢i(-), or the
non-principal part of ¢(-).

Note that a quasi-standard equation is standard if ¢a(-) = 0 almost every-
where on R.

Theorem 3.11. Suppose (3.1) holds and (1.1) is a quasi-standard equation.
Let ¢:1(-) be the principal part of ¢(-) and suppose that the pair {L, ,;Lps},
p € (1,00), agrees with equation (3.11). Then this pair is admissible for (1.1) if and
only if m(q1(-), u(+),0(-)) < co. Here

~

(3.18) m(an(on().00)) = sup( 53—
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4. PROOFS

Proof of Lemma 3.1. Let f € L,, and suppose that supp f = [z1,2],
—00 < 21 < g < 00. Then from (1.1) it follows that

d%[y(é) exp(— /O5 q(S)dSH =—f(§) exp(— /O5 q(S)dS), feR.

For x € R and t > x, we get

an  swen(- [ awas) —vwes(- [Caas)
/f exp( /:q )dg.

In (4.1), set © = x. Then
¢

(4.2) y(t) = y(x2) exp (/ q(s) ds), t > xo.

x2
Assume that y(z2) # 0. Then (4.2) and the inclusion y € L, , imply that the relations

oS] t e8]
oo > g > el [y eso(p [ ats)as) at> ey [t = oo
T2 T2 xr2

hold and we arrive at a contradiction. Hence, y(z2) = 0 and therefore y(t) = 0 for
t > x9, see (4.2). Thus from (4.1) we obtain, as ¢ — co:

y(z) exp<— /Oz q(s) dS) = tlgrggo/ggtf(f) eXp<— /0g Q(S)dS) d¢
| s@en(- [ e as) de.

The latter equality gives (3.2). O

Proof of Lemma 3.2. The operator S (see (3.3)) can be written in a different
way:

(4.3) (Sf)(x / 61(t zeR,

m(@:u(@e){p(/:q(@dg), 91@):@@@(_ /quos)dg) reR.
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By Theorem 2.1, this gives the estimates

By < Slysy < @7 @) By, Hy = sup (o).

Here

(4.4) Hy(z) = (/_; wh (1) dt)l/p (/:o 9’1" (t) dt)l/p/, x €R.

From (4.4) and the obvious relations

/()tq(ﬁ)dﬁ— /qu(é)dé—/txq(f)dg for t < x,
t T t
d¢ = d d¢ fort >
[ a0 [Ca@act [ worese
together with (3.6) and (3.7), we get the equalities
Hy(z) = Sy(z), ze€R, H,=S5,,

which proves the lemma. ([

Proof of Theorem 3.3. Necessity. Let x1 and x2 be arbitrary numbers (21 < x2).
Set

0 ift%[ml,xg],

4.5 = / '
B IO o (- b [(aoas) el

Then we have the obvious relations

(46) 0= [ s a

—0o0

= /: % exp (—p(p' -1 /Ot q(s) dS) d

T2 1 , t
= /I1 Wexp(—p /0 q(s) ds) dt < co.

Since the pair {L, ,;L,¢} is admissible for (1.1), (1.1) with f(-) from (4.5) has
a unique solution y € Ly, ,, in view of (4.6). By Lemma 3.1, this solution is given by
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formula (3.2). This gives the estimate

(47) o= [ |t [ sresn(- [ 4(s) as ) a
> [ uteres(p [ aas)
[ ol )l
= [ erem(s [ o)
<[ e (- [[aas)af a
> [ uteren(n [ as) ac]
<[[ (- [[was)al”
On the other hand, the solution (3.2) satisfies inequality (1.5), in which the con-

stant ¢ does not depend on the choice of f € L, g. Therefore, from (4.6) and (4.7)
we get

a8 | [ ueres(s [ awas)a
([ ool [oan)e]

<lylpe <lfllpe

e /: 9(;)1), exp <—p’ /Ox q(s) ds) de
- ([ [ aw)a]
[ e [ aoras) o Y e mmenr

In (4.8), the numbers x; and x2 (21 < z3) are arbitrary. Therefore, from (4.8) it
follows that Hp(z) < ¢, € R, see (4.4). Hence, (see the proof of Lemma 3.2), we
obtain S, < co. It remains to refer to (3.4).

p
dx

Sufficiency. Let us show that under the assumptions of the theorem, the require-
ments of Definition 1.1 hold. Since ||S]|p—p < o0, we have also S, < oo, see (3.5).
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Therefore, the integrals J,g_)(x) and J,g+)(x) (see (3.6), (3.7)) converge for all x € R.
We introduce the function y(x), € R, of (3.2). This function is well-defined because
by Hélder’s inequality the integral in (3.2) converges:

o< [ [ gk oo [(arac) o] i

= (ISP @) || fllper e R.

p,0

From (3.2), we deduce the obvious formula

(49)  yl) = exp< | @ d£> < | exp(— / ) df)f(t) dt>, zeR.

We then compute the derivative of y(-) written in the form (4.9) and obtain that y(-)
is a solution of (1.1). In addition, y € L, ,, because ||.S|p—p < oc:

[Yllp.n = 1SOF)lp < ISllp—pllfllpe < oo

Let us check that y(-) is a unique solution of (1.1) in the class Ly ,. Indeed, the
general solution Y (x), = € R, of equation (1.1) is of the form

Y(z) = cz(z) +y(z), x€R, c= const.,

where the function y(-) is defined in (3.2) and

A(z) = eXp(/Ox 4(6) df), zER.

Assume that Y'(-) € L, ,,. Then also cz(-) € L, , because y € Ly, ,,. Hence,

00 > [ef?||z[[},. = ICI”/ () z(2) " de

— 00

> |cf? /Ooo p(z)” exp(p/oz q(§) d€) da

>|c|p/ wx)Pder =00 if ¢ #0.
0

Therefore, ¢ = 0, as required. 0
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Proof of Corollary 3.4.  Necessity. Put Q = ||g||1. If the pair {L, ,;Lp¢} is
admissible for (1.1), then ||S||,—p, < oo by Theorem 3.3, and therefore S, < co by
Lemma 3.2. This implies (see (3.5), (3.6), (3.7) and (3.8)) that

x T 1/p
00 > 5p = sup [/OO p(t)? eXp<—p/t q(§) d§> dt}

([ el 0]

sup [ / ' u(t)? exp(—pQ) dt] v { /z h e(tl),,, exp(—p’@)dt} "

zeR —00

= exp(—2Q)A,.

WV

Sufficiency. Let A, < co. Then (see (3.5), (3.6), (3.7) and (3.8))

s sl [ worad] [ 5]
> sup [/; u(t)? exp (—p /tx q(§) d£> dt] v
[ sl fr0ade]

=S,

>

Hence, S, < oo, and therefore ||S|,—p < 00, see (3.4). It remains to refer to
Theorem 3.3. U

Proof of Corollary 3.5. To prove this statement, we have to use the line of
reasoning of the proof of Corollary 3.4 and the obvious inequalities (see (3.4), (3.5),
(3.6), (3.7) and (3.10)):

exp(P) [ 0P (< [ a©)ae)

< J$)(@) < exp(pP) /

— 00

x

pu(t)? exp <—p /tx a1(8) d£> dt;




Proof of Corollary 3.6. Equality (3.1) in case (3.12) can be checked in
a straightforward way. Let us show that the following estimates hold (see (3.6), (3.7)
and (3.10)):

exp(pP)
p

exp(p'P)

(4.10) T (@) < . I (@) < pa

z € R.

Both estimates in (4.10) are checked in the same way. Consider, say, the second one:

IS (2) = /:O @ exp <—p’ /; q(¢) d£> dt
- [ e [w@acy [ mieae)at
< /:O ql(t)exp(—p’/; q1(§) d§ +p' /:qQ(ﬁ)dﬁ ) dt

N

/x (1) exp(—p' /; a1(8) df) eXp(p’;;lepR /: 22(§) d§D dt

exp(p'P) /:O a1 (t) exp(—p’ /: a1 (§) d£> dt
exp(p'P) [—%exr)(—p’ /x t Q1(£)) ;Zj

- %/P) (1 - exp<—p' /:o q1(§) d§)>

exp(p'P)
p

N

~

Note that here we used the equality ||q1(-)||z, (0,00) = 00 which holds by the asumption
of Corollary 3.6. Now from (3.4), (3.5), and (4.10), it follows that ||.S||,—p < co. It
remains to refer to Theorem 3.3. (I

Proof of Lemma 3.9. The assertions of the lemma for the functions u(-) and 6(-)
are checked in the same way; therefore, we only consider the case of the function puf(-).
By (3.13) and (3.15), for a given 8 > 0, there exists x¢(5) such that

SR
u(t) q(t) =

Then from the obvious equality

(4.11) <

’ Q(t) \5

for |t| = zo(B).

L)

@y w1 d@)
/J(t) (q(t) ) u(t) Q(t) qg(t)v t € R,
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and (4.11), we obtain the estimates

(4.12) -B< ﬁ(%)/ < B for [t] = xo(B)
= —Bq(t) < (% (g‘%)l < Ba(t) for |t] > x0(B)
Put
(4.13) M) = et anto) %’
MB) = o %
o(8) = max{ = M(3)}.

In the following table, we present all possible locations of the points z(53), t
and = on R.

Case 1.1 Case 1.2 Case 1.3

t < —z0(P) —xo(B) <t < wo(P) t 2 xo(B)

z < —0(B) z < —2o(B) z < —20(B)
Case 2.1 Case 2.2 Case 2.3

t < —xo(B) —20(B) <t < xo(B) t > xo(B)

—2o(B) Sz <xo(B) —wo(B) Sz <w0(B) —x0(B) < * < wo(B)

Case 3.1 Case 3.2 Case 3.3

t < —xo(B) —20(B) <t < xo(B) t > xo(B)

z 2 xo(B) z 2 xo(B) z 2 xo(B)

Table 1.

Let us check that in all the cases of Table 1 we have the inequalities (see (4.13))

o) < )

Case 1.1 and Case 3.3: Both the cases are treated in the same way. For example,
in Case 3.3 for t > x > z(83) (and similarly for x > ¢ > z¢(3)) from (4.12) we get

(®) M < c(B)? exp(ﬁ q(§)

w(x

“;

(4.14)  ¢(B)2 eXp(

/—\
w

(4.15) exp( df‘) < exp( ﬁ/ 5) “—;Z(—i
< eXp(ﬁ )<eXp(ﬁ /tq )dED-
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Case 1.2 and Case 2.1: Both the cases are treated in the same way using (4.15).
For example, in Case 1.2, we have

1) ()

q(t)

[u(t) (u(—%(ﬁ)))*j [u(—xo(g)) (u(x))*l}

E q(—zo(B)) q(=z0(B)) \ ¢

q(z)

<M oo (o] [ at0r0e])
—x0(8) t
< c(B)? eXp(ﬂ / aac+ [ NG dé”D
— (5 exp( de\)
() (a1 Tae) (=l B)\1 Ta(=ao(8)) (pla)y-1
0w "l o= (ﬁ))) e @) |
m(8)

—z0(B)
e (A w0

> c(B)” eXP<—5/x (B)q(§)d§+/_txo(ﬁ)q(€)d€D

/;q@dfs).

Case 1.3 and Case 3.1: Both the cases are treated in the same way using (4.15).

> o(8) eXp(—ﬁ

For example, in Case 1.3, we have

(t) (px)\~
%(W

= [0 (Y [ o OD ol O ool )

<c(ﬁ)2eXp<ﬁ/ o dg‘w t d§D

< el enp(8 / &) de + / e /z;ﬂ)"@dg‘)
<0(ﬂ)26xr>(6/ q(é déD

@(M B

q(t) \q(x)

razo(B)) @)\ [ a8\ (o (B [/ izl B ()
-l o) =) o) o) 0]

—x0(B)
> (8)2 eXP(—B‘ [ a9

-B

/x :(B) a(©) ng
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WV

(5)"? eXp(—ﬁ

—x0(B) zo(B) t
dé + dé + d )
/x w€de+ [ IRGE" / G e\

— gc(ﬁ)Qexp(—ﬁ /:q(f) )

Case 2.2: Here inequalities (4.14) follow from (4.13)
(D) < 2 < coren (5] [ a0
[ aoa).

t z)\~! _
O (M) -2 up( 5
Case 2.3 and Case 3.2: Both the cases are treated in the same way using (4.15).

WV
o

q(t) \ gq(x)
For example, in Case 2.3, we have

(t) @)\ ) plo(B)\ 1 [aleo(B)) p@)\
%(%) :[%(M< 0( ) HZ@S(@)(Z@)) }

exp( " e dED
)
o i) 1‘%&( <(§>§) 1 a5y o)
/x G dg\ -4/ " e de

(©) ng.

Let us emphasize that in (4.14) ¢ and z are arbitrary points from R; in particular,

> c(B) 2 exp( —f

> c(B) " exp (—

Thus, inequalities (4.14) are proven.

this implies that for any ¢,z € R the inequalities (4.14) remain true after switching
for ¢t and t for x. In (4.14), set u(z) = 1, z € R. Then we obtain that if q(-) € K,
then for all  and ¢ from R we have the estimates

)ae) ).

/ ng I < (e (6 / e

In particular, from (4.16) it follows that for p € (1,00) the pair {L,;L,} agrees
with (1.1) if ¢(-) € K. Further, write (4.14) in a different way:

41 (o) (LY exp((4] [ ate) ae)

((;(—j)))l/p < e(B)? (%)1/# exp (,8

(4.16) c(B)72 exp(—ﬁ

/:q(f)

), xz,t € R.
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Then from (4.16) and (4.17), we obtain the relations
)

(4.18) (%)p% < ()2 eXp((Zp— 1)8 /:q(f) ng, t € R,
(4.19) (%)p%26(6)“4”‘2’e>cp<—(2p—1)6 /:qos)dg\), Lo R,

Now for a given a > 0, set

5= 2]);“_1, c(a) = ¢(B)| s_a/2p-1)

and inequalities (4.18) and (4.19) take the form (3.14). O

Let us go over to some auxiliary assertions needed for the proof of Theorem 3.11.

Lemma 4.1. If ¢(-) € K, then equalities (2.4) hold.

Proof. Both equalities in (2.4) are checked in the same way. Therefore, we only
check the second one. Put B = ||q||1,(r,) and assume that B < co. Then for 3 =1
from (4.16) we obtain

5> B = / )/Ooo%thC(l)Qq(O)/OOOeXp<—‘/th(f)d§D

> ¢(1)"24(0) / exp(~B)dt

= 0.
We get a contradiction. O

Lemma 4.2. Let ¢(-) € K and let d(-) be the Otelbaev function, see Definition 3.7
and (2.5), (2.6). Then

(4.20) lim (x+d(x)) =—o0; lim (z —d(x)) = oco.

r——00 Tr—00

Proof. The existence of the function d(-) follows from (2.4), see [1]. Further,
both equalities (4.20) are checked in the same way; consider, say, the second one.
Assume the contrary. Then there exist a constant ¢ € [1,00) and a sequence {x,,} 52,
such that

lim z, =00, x,—d(z,)<c<oo, z,=2c¢c,n=12 ...
n— oo

By (2.4) and (2.6), this implies that

ntd(zn) Tn
2 | 0> [ a()dg 500 asn o,

n—d(zn)

We get a contradiction. Hence, equalities (4.20) hold. O
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Lemma 4.3. Let ¢(-) € K. Then
(4.21) g(x)d(x) <2 if|z] > 1.
Proof. Put (see Remark 2.7)
' @)
4.22 e(x) =2 sup ,
( ) ( ) teA(z) (I(t)Q
Clearly, (4.20) and (3.13) imply that

z € R.

(4.23) lim e(z) =0.

|| —o0

Furthermore, the cases z < —1 and = > 1 in (4.21) are treated in the same way.
Therefore, below we only consider the case z > 1.
From (2.6), the Schwarz inequality and (4.23), we obtain

2d(x) = /::j:) @dt < [/A@ q(t) dt} i UA(I) %} 1/2

<5 [ G-l
<ol [ kel
- 1/2
<Rl S [yl /
A
= &(z) (2 _ i;)) < qu(g) = d(z)q(z) < % <2 forz>> 1.

O

Lemma 4.4. Let q(-) € K, |z| > 1, t € A(z). Then we have the estimates,
see (4.22)

1 q(t) 1
(424) L—el@) < 1+4¢e(x) s q(x) STo e(x)’

Proof. Let |z| > 1, t € A(z). We now use (4.22) and (4.21) to get

1 1 to|
Lo L[ 0 ] )y ) )
q(t)  q(x) » () 2 2 q(x)
The obtained estimate implies inequalities (4.24). O

495



Lemma 4.5. Let ¢(-) € K and |z| > 1. Then

(4.25) 1—e(x) < gq(z)d(z) < 1+¢e(z).

Proof. We now use relations (2.6) and (4.24):

z+d(z) z+d(x) B
2= [ 0= [t s 2

x q
—d(x) —d(z) 4(x) 1—e(x)
z+d(z) z+d(x) t 2d
2= / g(t)dt = / 9 myar > 221 o0,
z—d(x) z—d(z) q(a:) 1+ E(l‘)
The inequalities obtained imply estimates (4.25). O

Lemma 4.6. If ¢q(-) € K, then the Otelbaev function d(z), x € R, corresponding
to q(-) is differentiable for all x € R and

(4.26) lim d'(z) = 0.

|z]—o00

Proof. Since ¢(-) € K, then the function ¢(&) is continuous for all £ € R and
therefore by the theorem of implicit functions (see [4], Chapter X, Section 5), the
function d(x), € R, is everywhere differentiable. Therefore, from (2.6) we get

(4.27) 0= [ /x :j()) a(t) dt],

= (1 +d'(2)g(z +d(z)) — (1 - d'(2))g(z - d(z)), z€R

Note that from (4.21), (4.22) and (4.24), it follows that

g [ Ol 2)
(4.28) /A @l /A o (LY aterar < 20 a(o)

Therefore, by (4.28) we get
(4.29) |q(z + d(z)) — q(z — d(z))| < / l¢'(t)] dt < 267@))2(1(%),
A(z)

z+d(z) T
(430) glo+d@w) +alo—da) =2+ [ (@de- [ g
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Now from (4.23), (4.27), (4.29) and (4.30), we get (4.26)

' ()] < % <26(z), O(x) = % —0 as |z - .
O
Lemma 4.7. If¢(-) € K, then
(4.31) lim |z]q(z) = cc.

|| —o0

Proof. Equality (4.31) is considered in the same way for the cases © — —oo and
x — 00, and below we only treat the second case. By (4.20), (4.26) and I'Hopital’s

rule, we have
_ _
lim 224 gy, 124@)
r—00 X T —>00 1

=1.

Hence, we have the asymptotic equality

(4.32) z—d(z) =21 —v(z)), lim v(z)=0 = zv(z)=d(z), lim v(z)=0.
T —00 LT—>00

Since according to (4.25) we have the inequalities

(4.33) 271 Cq(x)d(z) <2 for all |z > 1,

by (4.32) and (4.33) we get

<zg(z) < — lim v(z) =0.

2
ZV(J)) Z/(JT) ’ |z|— o0

These relations imply equality (4.31). O

Corollary 4.8. Let f(x) be defined, positive, and continuously differentiable for
all x € R. Suppose, in addition, that lim f'(z) = 0.Then

|z|— 00
lim M =0.
|z| 00 T
Proof. Set 1
q(z) = ——, z€R
") =T
The assertion then follows from Lemma 4.7. O
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Lemma 4.9. If (1.1) is a quasi-standard equation, then equalities (2.4) hold, the
function d(z), x € R, see (2.5), is well-defined, and for every x € R there exist
R(z, d(-))-coverings of the half-axes (—oo, x| and [z, 00), see Remark 2.7.

Proof. Equalities (2.4) are checked in the same way, so we only consider the
second one. Since ¢; € K and (3.16) holds, there exists 2o > 1 such that s(z) < 1
and the estimate (4.21) holds for all |z| > z. Put

2

(4.34) 7(x) = , reR, w) =w(),wP(@)], P (z)=2z=£7()
@ (x)

Then by (4.31) we have

(4.35) lim (x — 7(x)) = lim a:(l __2 ) =00

z—00 T—00 rq1 ((E)

Therefore, by Lemma 2.5 there exists an R(x, 7(-))-covering of the half axis [xg, 00)
by segments {w, }52 1, where (see Definition 2.4)

2 2
}, n> 1.

(4.36) wp = [xn — T(2n), 2 +7(zn)] = [xn ES) ZTn + @)

On the other hand, since ¢;(-) € K, by Lemma 4.1 equalities (2.4) hold for the
function ¢;(-). Hence, one can define the function

x+d
(4.37) dy(z) = ég%{d: /Iid q1(t)dt = 2}
for which we have the equality (see (2.5) and (2.6))
z+dq(x)
(4.38) / at)dt=2, zeR.
z—dq(x)
By (4.36), Lemma 4.3 and the choice of xg, we get the inclusions

2 n 2
, L
ql(xn) "

An = [on = di(n), 20 + di (20)] € [0 -

Then by Definition 2.4 and the choice of zg,

qu<t>dt= i/wnq““t:i[/w
> i[/mm(t)dt—

n=1

q1(t) dt + /

Wn,

q2(t) dt]

n

/ 2 (1) dtH > nfj(a ) > i(z s

=1

The remaining assertions of the lemma now follow from (2.5) and Lemma 2.6. O
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Lemma 4.10. Let (1.1) be a quasi-standard equation. For a fixed x € R, consider
and {A,}>2, from R(z,d(-))-coverings of the half-axes
(—o0, 2] and [z, 00), respectively. Then we have the equalities

the segments {A,},2

— 00

AL AL

@) [ D a@de=am o nz [ Na@de=2ml n<o

NS
If, in addition, there exists § € (0, 2] such that for every t € R, we have the relations
(4.40) dd(t) < d(s) < 2d(t) ifse A(t) =[ATD (&), AP (@), AB () =t +d(t),

and the inequalities

A A A
ndé / " ndé
4.41 5 —= < q£d£<2/ —, n>1,
) a0 4O S o OV 0 T
A Al AD
-1 d§ / —1 / -1 d§
4.42 5 —_ < q(&)de <2 — n< -1,
(4.42) ao d0) S Jao OS2 [ T
t+d(t) d¢ )
4.43 1< / — < =
(4.43) t—ay d&) "9

Proof. Note that the upper estimate in (4.40) is an a priori one, see (2.7). Let
us check the first equality in (4.39) (the second one can be established in a similar
way). Now we use Definition 2.4 and (2.6) to get

A(+)

(4.44) /

In the proof of estimates (4.41) (inequalities (4.42) are checked in a similar way), we
use relations (4.40) and (4.44):
NG NG NG A

v g0 £ oL
AW N n A()
/ =X o weae <X
kz":/ § /Ag—> é)

zr+d(zk)

)d¢ = Z/ §)d¢ = Z/ g)df—iz—m

zp—d(zr)
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In the proof of estimates (4.43) we use (4.40) to obtain
/t+d(t) ds /t+d(t) d t) ds t+d(t) 1 d 2
t—d(r) d(s —dy d(s)d(t) / ay 0d(t S5

/t-‘rd(t) ds /t+d(t) d(t) ds /t+d(t) 1
—_— 1.
t—dr) d(s aey d(s)d(t) ~ Ji_aw 2d(t

O

Lemma 4.11. Under the assumptions of Lemma 4.10, we have the inequalities

(4.45) ¢t /_; wu(t)?P exp (—2p /tif %) dt

< C/oo ,u(t)pexp(—ép/tz %) dt, z€R, pe(1,o00);
(4.46) cl/:o g(tl)p, exp(—Qp’ /:%) dt

<ec ,exp(—ép’/ )dt zER, p = —.
/x Q(t)P x d(f) p—= 1

Proof. Inequalities (4.45) and (4.46) are checked in the same way. Therefore, we
only consider (4.46). Moreover, the proof of (4.46) differs from the proof of (4.41) only

in applying, in a an obvious way, (4.41) and (4.43), so that no additional comments
are needed.

Thus we arrive at the lower estimate in (4.46):

eXP< P'/:(I(f)df> dt
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- i /A o exp(‘” (/A ot " %)) &
>3 .. e (- (/Atw Gt /:(>) 7G))
- i/A o ex"(‘” (/A< Pl 5)> &
~en() % [ (- [ )
o) e )

In a similar way, we obtain the upper estimate in (4.46):

/:o ﬁ exp (‘P’ /: q(¢) d£> at

(4.48) JSP (x)

/ (i
/ g(tl)p’ exp(—p'é/AA;'?) % Ty /At%) (&) df) dt
> [, =

A

’ N 1 / ! d¢ S
< exp(2p )T;/A ()" expl —p 5(/A§—> W +/t @)) @

)
, ° 1 / ! d¢
< exp(2p);1/m oy P _pé/Ap @) «

= exp(2p’) /:0 9(751)1" exp (—p’é /: %) dt.

In the next lemmas we show that under the assumptions of Theorem 3.11, there
exists ¢ € (0, 2] such that inequalities (4.40) hold. (Recall that under condition (2.4),
the upper estimate in (4.40) is an a priori one, see (2.7).) The requirements of

O

Theorem 3.11 are assumed to hold below and are not mentioned in the statements.
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Below we also need one simple assertion from [2]. To state it, for a fixed z € R, let
us introduce the function F'(x,n) with n > 0:

z+n
F(z,n) :/ g(t)dt, >0, z€R.
z—n

Lemma 4.12 ([2]). Suppose that (2.4) holds. Then for every x € R the inequality

n = d(z) (or 0 < n < d(x)) holds if and only if F(x,n) > 2 (or F(z,n) < 2),
respectively.

Below, together with (4.34), we use the following notation (see (3.17) and (4.22)):
(4.49) l(x) =e(x) + »(x), x€R.
Clearly, from the hypotheses of Theorem 3.11 it follows (see (3.16), (4.23)) that

(4.50) lim I(z) = 0.

|z| =00
Lemma 4.13. For |z| > 1 the function d(x), x € R, satisfies the inequalities

1—1(x) . 1+i(x)
o) SH@ s |

(4.51) (@)

Proof. Let t € w(z) = [z — 2/q1(x),x + 2/q1(x)], |z| > 1, see (4.34). Then we
have the relations, see the proof of Lemma 4.4

(4.52)
11 rAGI wp GEN, o _e@) L e@)
2@~ ow <. e %< (o el el < Sl —al < o5

1—e(x) 1 1+e(x)
a(x) " a) T alz)

1 q1(t) 1
=1—¢(z) < 1+ e(2) < a1 (x) ST — ()

= ift € w(x)

for t € w(z), |z| > 1.

Set now L 1w
@) ==y
Then [z — n(z),z + n(z)] C w(z) (see (4.50)) and we get
z+n(x) x+n(z) z+n(x)
Faa@)= [ adt= [ amdr [ abd

—n(z) —n(z) z—n(z)

|z > 1.

) 20(z)
> /In(z) @ (J)) (I1(x) dt — %(1') > 1+ 6(3?) ql(x) — %(x)

1—e(x)
1+e(x)

=2+ »(x) = 2,
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see (3.17), (4.52). Hence, n(x) > d(z) for |z| > 1 by Lemma 4.12. Set now

. _1-I(x) .
) = 5 a1,

Then, taking into account (4.49), (4.50) and (4.51), we get

z+n(x) x4n(x) z+n(x)
mem:/‘ q@w:/ mma+/ ga(t) dt

z—n(x) —n(x) x—n(z)

T () _2nte)
< /x_n(x) () q(z) dt + 2(w) < 7= =F) a1 () + 2(x)

1+e(x
C1—e(2)

»(z) < 2.
Hence, 0 < n(z) < d(z) for |z| > 1 by Lemma 4.12. O

Corollary 4.14. We have

1 dt
(4.53) 5 < ((—)) <2 forte Alx) =z —d(z),z+d(z)], |z| > 1.
x
Proof. The upper estimate in (4.53) holds for all z € R, see (2.7). Furthermore,
from (4.51) and (4.50) it follows that A(z) C w(z) if || > 1. Then, if t € A(z) and
|z| > 1, by (4.35) and Lemma 4.13, we have

1+1(t)
a1(t)

Hence, for t € A(z) and |z| > 1, by (4.50), (4.51), (4.52) and (4.54), we get

d(t) 1-1(t) qi(z) 1-1(¢t)
i) ° o) 1+ ~ 1+1)

(4.54)

d(t) <

ift e A(z), || > 1.

N =

(1 —e(x) >
(]

Corollary 4.15. There exists 6 € (0,2] such that for every t € R inequali-
ties (4.40) hold.

Proof. The upper estimate in (4.40) follows from (2.7). Furthermore, there
exists 2o > 1 such that inequalities (4.40) hold for § = % and |z| > o, see (4.53).
Let |z| < zo. Since the function d(-) is continuous and positive (see (2.5), (2.6), (2.7)),
the segments A(t), A(x) are finite for ¢t € A(z), |z| < xo, and therefore there exist
m € (0,00), M € (0,00) such that 0 < m < d(t), d(z) < M, for ¢t € A(z), |x| < .

Hence, d(t)/d(z) > 6, > 0 for t € A(x), |x| < xg, 61 = m/M. Clearly, for
§ = min{3$; 01} we get (4.40). O
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Corollary 4.16. There exists a constant ¢ € [1,00) such that

(4.55) ' <qi(x)d(x) <c forxeR.

Proof. Let f(z) = d(z)q1(z), x € R. Then there exists zo > 1 such that
f(z) € [271,2] if |z| > z0 (see (4.51)). On the other hand, the function f(z)
is positive and continuous for € [—x,zo] (see (2.7) and Definition 3.10). This
implies (4.55). O

Thus, under the hypotheses of Theorem 3.11, Corollaries 4.15 and 4.16 hold. Let
d > 0 and ¢ € [1,00) be the constants defined there, put

(4.56) 1= max{2, c; %; g}

Corollary 4.17. Forx € R and p € (1,00), p’ = p(p—1)~!, we have the inequal-
ities (see (3.6), (3.7)):

@51)  exooan) [ uer e (o [ a(@dc)dr < O )
<esplen) [ utoren(-L [ a(eac) a

—o0 C1

t
(4.58)  exp(—c1p’) / 9 - exp <—clp’/ q1(6) d{) dt < ngj')(x)

[e3e] / t
< eXp(clp’)/ 9(1})1”/ exp(—f—l/ (J1(£) df) de¢

Proof. Both inequalities are proved in the same way, so below we only con-

sider (4.58). Since equation (1.1) is quasi-standard, by Lemma 4.10 we have a well-
defined function d(z), x € R, and there exists an R(z,d(-))-covering of the semi-
axis [x,00). By the estimates (4.47), (4.48), (4.55) and (4.56) this implies that

I (@ )>exp(—%p,)/ooﬁexp<—2p'/;%> dt
> exp(—c1p) / 9 eXp<—Clp'/t (f)df) dt
I (2) < exp(2p) /x 0% eXp( s / )
<oien!) [~ gaen(-L [(aac)d
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Remark 4.18. By the assumption of Theorem 3.11, the pair {L, ,; L, ¢} agrees
with equation (3.11), i.e., for @ > 0 there exists a constant c¢(«) € [1,00) such that
estimates (3.14) hold, see Definition 3.8. Thus, in the proof of Lemma 4.19 below
we need different constants o > 0 and constants ¢(«) corresponding to each other
by (3.14). All these pairs are collected in the following table.

/

N o ) ra 2

2c1 2c1

N p_’) (i)

el0) o) b als) (e
Table 2.

Here p € (1,00), p’ = p(p—1)~! and the constant c; is defined in (4.56). Throughout
the sequel we use the notation from Table 2 without any additional comments.

Lemma 4.19. For p € (1,00) and © € R, we have the inequalities (see (3.6),
(3.7), (4.57) and (4.58)):

(4.59) (;jp;-);;fgp) gfgj < IO @)
< ol explem) B
40 e i <5
< %64(;—;) exp(clp’)m-

Proof. Inequalities (4.59) and (4.60) are continuations of estimates (4.57)
and (4.58) and are proved in the same way. Therefore, below we only consider (4.60).
Since the pair {L, ,; L, ¢} agrees with equation (3.11), according to Table 2, (4.58)
and Lemma 4.1, we have for all z € R that

50> et | (G) Slnoer(-ar [ oo

> i . n@ee(-0r e / () a

_exp(—c1p’) 1 o I t
- T e (e [ o)
exp(—c1p’) 1
(14 c)p'e2(p’) O(@)P qu ()
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Similarly, using the upper estimate in (4.58), we obtain the second inequality
n (4.60):

/

1< 230 [ o )
<exp(c@l(p eXp /201) /Ooq1 eXp(_Qp_c,l/x Q1(§)d§) dt

2 , P 1 p o[
_Fexp(qp )64(2_C1>W{_exp<_2_cl/x Q1(€)d§>
2 (7 ey

= p/ 04(261) € p(clp)e(l‘)p'ql(l‘).

Finally, let us turn to Theorem 3.11. We have to prove that if the conditions
(1) p € (1,00) and equality (3.1) holds,
(2) equation (1.1) is quasi-standard,
(3) the pair {L, ,,; Ly} agrees with equation (3.11)
are satisfied then the pair {L, ,; Ly ¢} is admissible for equation (1.1) if and only
if m(q(-), p(+),0(-)) < o0, see (3.18).

Proof of Theorem 3.11. Necessity. Suppose that under conditions (1), (2), (3)
the pair {L ,;; Lp,¢} is admissible for equation (1.1). Then [|S|,—, < 0o by Theo-
rem 3.3 and therefore S, < co by Lemma 3.2. Therefore, from conditions (2), (3)
and Lemma 4.19 we obtain the relations

00 > S, = sup(J$7) (@) /P (IS0 () ¥
z€R
. exp(—2m)(p)‘l/’/’(p’)‘””/ Sup(u(x) )
(14 c1)ea(p) /P es(p)/P zer\O(z) qu(2)

ie, m(q1(-), 1(-),0(-)) < oo as required.
Sufficiency. Since p € (1, 00), conditions (2), (3) hold and m(q1 (), u(+),0(:)) < oo,
we have S, < oo (see (3.5)) by Lemma 4.19:

Sp = sup(Jy @) 7 (2, @)
/

< 201(p')_1/pl( )~ 1/P(exp(261))04(2p1)1/[)/05(%)1/[) i‘ég(%ﬁ) <

Then ||S|lp—p < 0o by Lemma 3.2. Since condition (3.1) also holds by assumption,
it remains to refer to Theorem 3.3. O
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5. EXAMPLES

Below we consider problem (I)—(II) in the case of equation (1.1) with coeffi-
cients ¢(-) given in the form (3.9), where

(5.1) a(z) =(14+2%)% @) =0+2")%Co0sz?, z€R, acR.

In the sequel, whenever we mention (1.1), we only mean the case (5.1).

Our goal is as follows: for every value of the parameter @ € R, find at least
one pair {L, ,; Ly ¢} admissible for (1.1). Here, according to the strength of our
statements, we subdivide the study of problem (I)—(II) into the following cases:

Case a@ > 0: We apply Theorem 1.2 and show that in this situation the pair
{Lp; Ly}, p € (1,00), is admissible for (1.1). To this end, we introduce the function

x+1
(5.2) o(x) = / (14t*)“cost?dt, x>2.
z—1

The integral (5.2) can be written in a different way:

+1 1 2\«
(5.3) ¢@y:/ L%%L@mRWm r>2.
x—1

It is easy to see that for a given v > 0, there exists xo(«) > 1 such that for x > z(«a)
and ¢ € [ — 1,z + 1], the function

(1412)*

P(t) = 5 telz—1,2+1], z > xo(a),

is monotone. Indeed, since

(1 + t2)oz—1

W) = [2a -1 -1,

t>1,

we have ¢/(t) > 0 for a > % and ¢ > 1, and ¢/(t) < 0 for & € [0, 4] and t > 1, as
required. Furthermore, for ¢ € [t — 1,z + 1] and & > x¢(a) > 2, we have

1 1 t 1
(5.4) -<1l--<-<1+-X2
2 x x T
1 t\2 14 ¢2 t\2
(5.5) = - < min{l; (—) } < + < max{l; (—) } < 4.
4 x 1+ 22 x
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By the second mean value theorem (see [9], Chapter X, Section 5), (5.4) and (5.5),
this implies that for > z(a) > 1 we have

x+1
66 lel=|[ veneya

B2
<2 max (Jp(t)]) sup / (sint2)'dt‘
t€lz—1,x+1] B1,B2€le—1,2+1)1/ 8y
1 1\«
g 4 ) =4 2t 20/—1(1 _) < 2304 20’—1.
te[xrr—l??g{c+1} [ (®)] te[ch—lElL,);-i-l] 2| | + 2 v

Hence, for > zo(a) > 2, we have (see (5.4), (5.5) and (5.6))

r+1 r+1 x+1
6 [ awd= [ a@as [ woa

—1 —1 z—1

r+1 1 t2 a r+1
2/ ( ki 2) (1+22)>dt — / (1+t2)acost2dt'
o1 M4z z—1
1 1
> % gl > 3 x 2 ao(a) >2, ¢> 1.
c

x+1
Qz) = / q(t)ydt, =z €0,z

is continuous and positive on [0, z¢], and therefore i[nf ]Q(x) > 0. Together
x€[0,20

with (5.7) (taking into account that the function ¢(t), t € R, is even), this implies
that go(1) > 0 (see (1.6)) and it remains to refer to Theorem 1.2.

Case o € (—1,0): It is easy to see that ¢1(-) € K for o € (—3,0), see (3.13). To
check (3.16) as x — oo (the case where & — —o0 is similar because the functions ¢; (+)
and g2() are even), we put

O(z) = [z — 2 H1el|g2lol g 4 ol tlel|g2lel] 2> 1.

Then, obviously, [x — s,z + s] C O(z) for |s] < 2/¢q:1(x) and z > 1. In addition, for
t € O(z) and x > 1, inequalities (5.4) and (5.5) remain true. Below, for z > 1, once
again we apply the second mean value theorem (see [9], Chapter X, Section 5) and

inequalities (5.4) and (5.5):
x+s
/ q2 (t) dt‘

z+s 1 )
. /
I, e

c
< < ;
1e0(2) 1+ t2)lel = x(1 + 22)lel

»(x) = sup
Is|<2/q1(x)

< sup
[z—s,2—5]CO(x)
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i.e., equality (3.16) holds, and therefore one can apply Theorem 3.11. Set

pa)= (422 wER B>, pe(lo0)
(5.8) P

o) = (1+a2)PHl, we R, ae (~2,0).

Then (3.1) holds, and from Lemma 3.9 it follows that the pair {L, ,;Lp¢} with
weights (5.8) agrees with (3.11) and m(q1(-), u(+),0(:)) = 1. Hence, by Theorem 3.11,
the pair {L,, ,; Lp ¢} is admissible for (1.1).

Note, in addition, that this result can be obtained in a different way. Indeed, it is
easy to see that for a € (—%, 0) the integral

[e’e] ) [e’e] . tQ)/dt 1
Hdt=2 | (1+2) tht:Z/ L+2/ 1+ £2)® cos 2 dt
/_Ooqz’” /0 (147" cos gyl T2 (L) eos

converges by Dirichlet’s test, and therefore P < oo, see (3.10). It remains to repeat
the aforesaid regarding weights (5.8) and equation (3.11) and refer to Corollary 3.5.
1

Case a = —5: Consider the union of Cases 5.2 and 5.3, i.e., below we have

o € [—1,0). Set

= 1 = 2)|al/p’

Then, obviously, (3.1) holds and P < oo, see (3.10). This inequality is checked, as
above, with the help of Dirichlet’s test. Therefore, with such a choice of weights, the
pair {L, ,; Ly ¢} is admissible for (1.1) by Corollary 3.6.

Case a < —1: Clearly, the functions ¢i(-), g2(-) (and hence ¢(-)) belong to L1 (R)
for a < —%. Therefore, by Corollary 3.4, if condition (3.1) holds and A, < oo
(see (3.8)), then any pair {L, ,; Ly, ¢} is admissible for (1.1).

To conclude, we give another example of applying Theorem 3.3: we show that it
implies Theorem 1.2.

Proof of Theorem 1.2. Necessity. Let the pair {L,; L,} be admissible for (1.1).
Since (3.1) automatically holds and |S||,—p < oo by Theorem 3.3, we have
Sp < 0o by Lemma 3.2. This implies equalities (2.4). Indeed, assume, say, that
llallz,0,00) < 00. Then, since J,gf)(O) > 0 (recall that here u(-) = 1), we get

00 > 5, = sup( ) (@) P (I ()
zER
- 1 (+) 1/p’
> (J5 )P (T, ()7

. 1
> (J50)P (/O exp(—p’llqllLl(o,ooﬂdt)

= Q.
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We get a contradiction. Hence, equalities (2.4) hold, and therefore the function d(z),
z € R, is well-defined. It is easy to see that a < oo, where a = sup d(z). Indeed, we

use the inequality S, < oo once again and get (see (2.6)): ver

x x 1/
00 > Sy = ilelﬁvoo exp(—p/t q(f)d£> dt] ’
o t 1/p
x U eXp<—p’/ q(¢) dé) dt]
x x+d(x) 1/p
— d¢ ) d
QSEIEIE |:/;c—d(9c) eXP( p/;c—d(x) q(f) g) t:|
z+d(x) z+d(z) 1/p’
X U eXP(—p’/_d( : q(§) df) dt]

exp(—4) supd(x)

z€R
= a = supd(z) < exp(4)S, < .
z€R

WV

WV

This implies that go(a) > 2 > 0 as needed:

x+a z+d(z)
=i > i = .
qo(a) ;ga/gka q(t)dt > ;Iela /xd(m) q(t)dt=2>0

Sufficiency. Suppose that go(a) > 0 for some a € (0,00) (see (1.6)). Then for
p € (1,00) we have the inequalities (see (3.6), (3.7)):

(5.9) sup JIS_)(J?) < 00, sup JZ(),JF)(J:) < 0.
z€R z€R

Since both inequalities in (5.9) are checked in the same way, we only prove the second
case. Fix « € R and define segments

(X,32,, X=X, xM), XF =z,4+a, n>1

n=1

with the properties
XO =, XP=xG), n>1.

Then we have

x() n
ey [ D=3 [ a©dez - Da@. 0>

x
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From (5.10) it now follows that

5w = [~ ew(- | s ac)
—gjl [ o / 9 ac ) at

> t
<2ty [ow(- [ a@ac)a
n=2 n 1

X

o] Xf,y_)
< 2a+22anp<—p’/() q(¢) d€>

n=2 X

< 2a (1 + gexp(—p’(n - 1)(10(@)))

= 2a[1 + (1 — exp(—p'qo(a))) "]

< Q.
Thus, by (5.9) and Lemma 3.2, we have

1S lp—sp < ()P () VP'S, = (p) /P (0¥ S‘;%.§<J]§*><x>>1/p<<f,§/+ J@)? < 0.

Hence, the pair {L,; L,} is admissible for (1.1) by Theorem 3.3. O
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