Czechoslovak Mathematical Journal

Gaetana Restuccia; Zhongming Tang; Rosanna Utano
On the symmetric algebra of certain first syzygy modules
Czechoslovak Mathematical Journal, Vol. 72 (2022), No. 2, 391-409

Persistent URL: http://dml.cz/dmlcz/150408

Terms of use:

© Institute of Mathematics AS CR, 2022

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized

documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz


http://dml.cz/dmlcz/150408
http://dml.cz

Czechoslovak Mathematical Journal, 72 (147) (2022), 391-409

ON THE SYMMETRIC ALGEBRA OF CERTAIN
FIRST SYZYGY MODULES

GAETANA RESTUCCIA, Messina, ZHONGMING TANG, Suzhou,
RosANNA UTANO, Messina

Received November 22, 2020. Published online October 5, 2021.

Abstract. Let (R, m) be a standard graded K-algebra over a field K. Then R can be writ-
ten as S/I, where I C (x1,... ,mn)2 is a graded ideal of a polynomial ring S = K|[z1,...,Zn].
Assume that n > 3 and I is a strongly stable monomial ideal. We study the symmetric
algebra Symp (Syz;(m)) of the first syzygy module Syz;(m) of m. When the minimal gen-
erators of I are all of degree 2, the dimension of Sympg(Syz;(m)) is calculated and a lower
bound for its depth is obtained. Under suitable conditions, this lower bound is reached.
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1. INTRODUCTION

Symmetric algebras are important topics in commutative algebra and algebraic
geometry. For instance, let W be a closed subscheme of a scheme X, which is
defined by a quasi-coherent sheaf of ideals I. Then the normal bundle to W in X is
defined by the symmetric algebra of I/I2?. On the other hand, from the normal cone
to the normal bundle, there is a closed immersion, which is isomorphic if and only if
the symmetric and Rees algebra of I are isomorphic.

Let M be a finitely generated module over a commutative Noetherian ring R with
identity. There is an effective method to study the invariants of the symmetric alge-
bra Sympy (M) in [5], where the authors introduced the notion of s-sequences. If M
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is generated by an s-sequence, one can obtain an exact value for dimg(Sym(M)),
e(Sym(M)) and a bound for depth(Sym(M)) and the Castelnuovo-Mumford regular-
ity reg(Sym(M)) by the computation of the same invariants of some special quotients
of the base ring R by the annihilator ideals.

Let M be an R-module generated by f1,..., f,. Then M has a presentation

R —w R"— M —0

with m x n relation matrix A = (a;;). The symmetric algebra Sym(M) has the
presentation

R[yla"'ayn]/‘]a

n
where J = (g1,...,9m) and ¢g; = > a;;y; with ¢ = 1,...,m. Consider P =
j=1
Rly1,...,yn] as a graded R-algebra assigning degree one to each variable y; and

degree zero to the elements of R. Then J is a graded ideal and Sym (M) is a graded
R-algebra. Let < be a monomial order induced by y; < ... < y,. For f € P,
f=>aqy® we put in(f) = aay®, where y* is the largest monomial with respect

(07
to the given order such that a, # 0. We call in(f) the initial term of f. Note
that in contrast to the ordinary Grobner basis theory, the base ring R is not a field.
Nevertheless, we may define the ideal

in(J) = (in(f): f€J).

The ideal is generated by terms which are monomials in ¥, ..., ¥y, with coefficients

in R and is finitely generated since P is Noetherian. For ¢ = 1,...,n we set
i

M; =) Rfjandlet I, = M;_1 :g fi = {a € R: af; € M;_1}. We also set Iy = 0.

j=1
Note that I; is the annihilator ideal of the cyclic module M;/M;_1 = R/I,.
It is clear that

(I1y1, cee aInyn) c in(‘])a

and the two ideals coincide in degree one. If (I1yi, ..., Iyy,) = in(J), the genera-

tors fi,..., fn of M are called an s-sequence (with respect to <). If, in addition,
I C...C1I,, then fi,..., f, is called a strong s-sequence.

If fi1,..., fn forms a strong s-sequence, then Propositions 2.4 and 2.6 in [5] shows
that

dim(Symg(M)) = max{dim(R/I,) +r: r=0,1,...,n},
depth(Sympz(M)) > min{depth(R/I,) +r: r=0,1,...,n}.
Using s-sequences, some new results for symmetric algebras are obtained (cf. [5], [6],

(71, [8], [9]).
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Let Syz;(9) be the first syzygy module of the graded maximal ideal 9 =
(z1,...,2n) of a polynomial ring Klx1,...,x,] over a field K. Although the gen-
erators of Syz;(9M) do not form an s-sequence, in virtue of Jacobian dual, some
invariants of Sym(Syz, (90t)) are evaluated in [7] by the theory of s-sequences.

On the other hand, when R is a standard graded K-algebra whose defining ideal
is componentwise linear and M is the graded maximal ideal of R, the depth and reg-
ularity of Symp (M) are bounded in [4]. Using Grobner bases, in order to get certain
invariants of Symp (M), it suffices to study standard graded K-algebras with mono-
mial relations. Stable and strongly stable monomial ideals are suitable candidates.

Combining the above two situations, we consider the case Sympg(Syz,(m)),
where R is a standard graded algebra over a field K with the graded maximal
ideal m = (ay,...,ay). Then the algebra R can be written as S/I and m = 9M/1,
where S = K|[x1,...,7,] is a polynomial ring, M = (z1,...,2,) and I C M? is
a graded ideal of S. We are interested in the dimension and depth of Sym (Syz, (m)).

In the case M is generated by a strong s-sequence, the dimension and depth of
Symp (M) are estimated by that of R[y1, ..., yn]/(T1v1, -, Inyn), where 1 C...CI,,.

In our case, we have to treat a ring Rly1, ..., yn]/ (111, .-, Inyn,I), where I, D ... D
I, € I,41 € ... C I, with some s > 1, and I is generated by some mono-
mials in yp,...,y,. In Section 2, we will compute the dimension and depth of

Rly1, - yn)/(I1y1, - s InYn, I).

Write Symp(Syz,(m)) as Sfy;;: 1 < i < j < n]/J. In order to get the initial
ideal in(J), we find one Grobner basis of J in Section 3. Section 4 is devoted to
calculate the dimension of Sym g (Syz,(m)) and obtain one lower bound for its depth.

2. PRELIMINARIES
Let R be a Noetherian ring and
O—-L—>M-—>N-—=0

be an exact sequence of R-modules. Then there is an exact sequence of symmetric
algebras:
L ®gr Symg(M) — Symg(M) — Symg(N) — 0.

When L is a submodule of M, one has an isomorphism
Symp(N) = Symp(M)/(L),
where L is the set of 1-forms of elements of L, cf. [1], Proposition A2.2.
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Furthermore, suppose that M is an R-module generated by fi,..., f,. Then M
has a presentation
R™ —-R"—-M—0

with m x n relation matrix A = (a;;). The symmetric algebra Sym(M) has the
presentation

R[yla"'ayn]/‘]a

n
where J = (g1,...,9m) and g; = Y a;;y; with ¢ = 1,..., m. Under this presentation,
we get =1
SymR(N) = R[y17 s 7yn]/(‘]a L)7

where L = {riyi+...+ryn: 1fr+...+7rnfn € L}. We will use this presentation
in the next section.

Let K be a field, S = KJ[z1,...,2,]) and I be a monomial ideal of S. Denote
the minimal generating set of I by G(I). For any monomial u of S, set max(u) =
max{i: x; | u} and min(u) = min{i: z; | u}. Put m(I) = max{min(u): v € G(I)}
and M(I) = max{max(u): v € G(I)}. For a monomial ideal W of Klx,,..., ],
M (W) and m(W) are defined exactly as in K[z1,...,x,].

Definition 2.1. If for any monomial v € I, miu/xmax(u) € I holds for any
i < max(u), we say that I is stable. Furthermore, if for any monomial u € I and any
integer j such that x; | u, one has that z;u/x; € I for any ¢ < j, then we say that I
is strongly stable.

When [ is stable, it is shown in [2] that
Proj.dim(S/I) = max{max(u): v € G(I)}.
Then, by Auslander-Buchsbaum formula, one gets
depth(S/I) = n — max{max(u): v € G(I)}.
On the other hand, for the dimension we have
dim(S/I) = n — max{min(u): u € G(I)},

which follows from the equality height(/) = max{min(u): v € G(I)} (cf. [3], Exer-
cise 8.9). Then we have the following lemma.

Lemma 2.2. Let I be a stable monomial ideal of S = Klxi,...,2,]. Then
dim(S/I) =n — M(I) and depth(S/I) =n —m(I).
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In order to estimate the dimension and depth of a factor ring, we need to express
an ideal as an intersection of some satisfied ideals. By using the same arguments as
in the proof of Lemma 2.3 of [5], we get the following two lemmas.

Lemma 2.3. Let R be a Noetherian ring, I, ..., I, be ideals of R and u1, ..., us
be monomials in y1,...,y,. Then in Rly1,...,ynl,
(Liy1y s Inyn,uns - oo ug)
= ﬂ (Ii1+"'+Iiry~ay17"'7371‘1)"'a@\irv"'aynvulv"'aut)a
og<r<n

1<i1 <...<i<n
where Iy = 0 by convention.
Lemma 2.4. Let R be a Noetherian ring, I, ..., I, be ideals of R and u1, ..., us

be monomials in y1, . ..,Yy,. Suppose that thereisan1 < s <n such thatl; O ... 2D
I, C Iy C...C1L,. Thenin Rly1,...,Ynl,

(Ilyla - "7Inyn)u1)' "7U't)

S n
= (ylv"'vyn)ﬂ(ﬂ m(IT+It)y1""’yT17yt+1)'"’yn?ulﬂ"')ut)>'

r=1t=s
In particular, when s =1, i.e. Iy C...CI,,

n

(It InYny U1,y ooy ug) = m(IT,yT+1, ey Yny ULy e Ug).
r=0

Let I and J be two ideals of a Noetherian ring R. It is well-known that
dim(R/(I N J)) = max{dim(R/I), dim(R/J)}.
On the other hand, from the short exact sequence
0—-R/(INJ)=R/I®R/J—-R/(I+J)—0
we have
depth(R/(I N J)) > min{depth(R/I), depth(R/J), depth(R/(I + J)) + 1}.
The following result generalizes Proposition 2.4 of [5].

Proposition 2.5. Let K be a field, R = Klz1,...,2m) and [ D ... D I, C
Is41 C ... C 1, beideals of R. Then for any monomial ideal I of K[y1,...,Yn],

dim(R[yl, ce 7yn]/(11y1, U T I))
= max {dim(R), dim(R/ (L, + 1)) + dim(K[yr, ... /T OV Ky, ... ue]) ).

1<r<:

s<t<n
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Proof. By Lemma 2.4 we have

dim(R[y1, .- yn)/(L1v1, -« s Inyn, 1))

= d1m(R[y1, 7yn]/(y17 ;yn)

s n
ﬂ(ﬂ ﬂ(Iv"+It7y1;---;yr—17yt+1;---;yn7l))>

r=1t=s

= 11213§5{d1m(R)7 dlm(R[ylv s 7yn]/(Ir + Ita Yty Yr—1,Yt+15- - - Yn, I))}
sitg\n

= lrgrai(s{dim(R), Am(R[yr, -yt /(L + L, IN K[y, ...y yt]))
sgtg\n

Notice that

R[yTa"'7yt]/(I7"+It7ImK[y7"7"'ayt])
gR/(IT—"It) ®KK[yTaayt]/(ImK[yTa7yt])7

by Proposition 2.2.20 of [10]. Then by [10], Exercise 2.1.14

dim(R[yr, -« ye) /(L + L, IN K [ypy ..., yt]))

Thus, the result follows. O

By [10], Theorem 2.2.21

depth(Rlyr, .., ye]/(Lr + Lt; IO Klyr, -, 01])))
= depth(R/ (I, + 1)) + depth(Kyr, ..., 4] /(I N Kyr, - . 42])),

which will be used in the following arguments for depth.

Lemma 2.6. Let K be a field, R = K[z1,...,2y) and I; C ... C I,, be ideals
of R. Then for any monomial ideal I of K[y1,...,yn],

depth(R[y1, ..., yn)/(T1y1, -« -, InYn, 1))
> 0<mr12n{depth(R/I7") + depth(K[yh sty yT]/(I m K[yla e ayT]))7

depth(R/1,.) + depth(K[y1, ..., yr—1]/ (I N K[y1, ..., yr—1])) + 1}.
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Proof. We use induction on n. When n = 1, one has

depth(R[y1]/(11y1,1))
= depth(R[y1]/((y1) N (11, 1))
2 min{depth(R[y1]/(y1)), depth(R[y1]/ (11, 1)), depth(R[y1]/(y1, 1)) + 1}
= min{depth(R), depth(R/I1) + depth(K[y1]/I),depth(R/I1) + 1}.

n—1

Now assume that n > 1. Notice that by Lemma 2.4, (| (Ir,Yrt1s---sYn, L) =
r=0

n—1 =
( n (IT7y7"+1a DRI 7yn51)) N (R)I) = (Ily17 .. 'aIn—lyn—17ynaI)7 hence

r=0

n—1
(n (IrvyTJrla' 7ynaI)> + (InvI) = (Inayna-[)

r=0

Then

depth(R[y1, .-, yn)/(T1y1, - - s InYn, 1))

= depth(R[yl, syl (T yrgrs - ,yn,I)>

r=0

- depth<R[y1, - ,yd/((ﬁl(b,ywu S 7yn,1)> a (Imf)))

r=0
n—1

> min{depth (R[yl, ey Ynl/ ﬂ Ly Yrt1y -+ Yny I)),
r=0

depth(R[y1, ..., yn]/In, 1)),

depth(R[yl, e ,yd/((hl(b,yr_i_l, e ,yn,1)> + (In,I))> + 1}

r=0
= min{depth(R[y1, ..., yn]/ (111, s In—1Yn—1,Yn, 1),
depth(R[y1, ..., yn]/(In, 1)), depth(Rly1, ..., yn]/(In, yn, I)) + 1}
= min{depth(R[y1, ..., Yn—1])/(T1y1,- - s In-1Yn—-1, I N K[y1,. .., Yn—-1])),
depth(R/I,) + depth(K[y1,...,yn]/I),
depth(R/I,) + depth(K[y1, .., yn—1]/(I N K[y1, ..., yn—1])) + 1}.

The results follow by the induction hypothesis. O
The following proposition reduces the general case to the case above.
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Proposition 2.7. Let K be a field, R = Klz1,...,2m) and [ D ... D I, C
Is41 C ... C 1, be ideals of R. Then for any monomial ideal I of K[y1,...,yn],

depth(R[yla ctt )yn]/(Ilyl7 et 7Inyn7l))
> min {depth(R[ys,..-,Yn]/Ts¥ss- s Inyn, I N Kys, ..., ynl])),

1<r<s—1

depth(R[yr, .-, ynl/((Lr + L )yry -« s (Ir + 1n)Yns IO K [Yrs -, Unl)),
depth(R[yr11, - -+, Yn]
/((Iv" + Ir+1)yr+17 RN ) (IT + In)ynvl N K[yT-i-la s Jjn])) + 1}'

Proof. It is enough to show that

depth(R[y1, .-, ynl/(liy1, - - s Inyn, 1))
> min{depth(R[yz, ..., ynl/(L2y2, - -, Inyn, I N K[ya, ..., yn])),
depth(R[y1, ..., yal/((IL + 11)yr, -, (10 4 In)yn, 1)),
depth(R[yz, . . -, ynl /(11 + I2)y2, - - -, (11 + Ln)yns IN Kya, ..., ynl)) + 1}

Set .
J yla"'ayn <n n(Ir+It7y17"'7yTlaytJrlv'"vynaI))v
r=2t=s
‘]2 yla"'ayn (ﬂ(Il+It7yt+17"'7yn5[)>'
t=s

Then by Lemma 2.4, (Iiy1,. .., Lwyn,I) = J1 N Ja. We see that
J1 = (ylv 12y27 ceey Inynv I)

by putting I; = R in Lemma 2.4. Considering the sequence I1+1; C ... C I;+1, and
applying Lemma 2.4 again, we get that Jo = ((I1 + I1)y1, ..., (I1 + I,)yn, I). Then

depth(R[y1, ..., yn)/ L1y, - - Loy, 1))
2 min{depth(R[ys, ... ,yn]/J1),depth(R[y1, ..., yn]/ J2),
depth(R[y1, ..., yn]/(J1 + J2)) + 1}
= min{depth(R[y1,...,yn]/(y1, L2y2,s .- -, Inyn, I)),
depth(R[y1, ..., ya]/ (L + 10)y1, - .., (It + In)yn, 1)),
depth(R[y1, ..., ynl/(y1, (1 + L)y, - -, (It + Ln)yn, I)) + 1}
= min{depth(R[ya, ..., yn]/(T2y2, -, Inyn, I N K[ya,...,ya])),
depth(R[y1, ..., ynl/((Is + 1)1, - - -, (It + In)yn, 1)),
depth(Rlyz, ..., yn)/ (11 + I2)y2, . .., (I1 + In)yn, IN Kya, ..., yn])) + 1},

as required. (I
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Suppose that [ is strongly stable. Let us simplify the formulas in Proposition 2.5
and Lemma 2.6.

By Lemma 2.2, we have
Am(K[yr, ..y /UNK[Yyry...p])) =t —r+1— (MINK[yp,...,yt]) =7+ 1)
=t—MUINK[Yr,...,yt]),
and

depth(K[yr, .. yt)/UNK[yr,...oye])) =t —r+1—=(mI N K[yr,...,p)) —r+1)
:t_m(ImK[yraayt])

Corollary 2.8. Let K be a field, R = Klz1,...,2m]) and I D ... D Iy C
Isy1 € ... C I, be ideals of R. Then for any strongly stable monomial ideal I
OfK[yla . ayn];

dim(R[yl, . ,yn]/(Ilyh oy Inyn, I))
— magxn{dim(R), dim(R/I;) +t — M(I N Kys, ..., y])}-

s<t

Proof. For a fixed t with s < ¢t < n, as I, + I; O I, + I, = I, and
MUINK[Yr, ..., yt]) =2 MI N Klys,...,y]) for all 1 <r < s, one has that

dim(R/(I, + I)) < dim(R/I,),

and

dim (K [yr, .-,y /(IO Kyr, ..., ye])) = [Yrs -5 t])

[ysa"'ayt])
= dim(K[ys, .., y)/ (TN K[ys, ..., y])).

Then for all 1 < r < s,

dim(R/(I, + It)) + dim(K [y, .. ., y)/ T N K[Yp, ..., yt]))
= dim(R/I;) +t —M{INK[ys,...,y¢])-

Hence, the result follows from Proposition 2.5. (]
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Corollary 2.9. Let K be a field, R = K[z1,...,zm,) and I; C ... C I,, be ideals
of R. Then for any strongly stable monomial ideal I of K[y1,...,yn],

depth(R[y1, ..., yn)/(T1y1, -« -, InYn, 1))
= Olén'gn{depth(R/L«) + depth(K[y1, .-,y |/ N K[y1,...,yr]))}

<r
Proof. By Lemma 2.6, it is enough to show that

depth(K[y1, ..., y-|/I 0 Kly1,...,yr])
< depth(Kyr, ... yr—1]/ (I N Ky1, ... yr—1])) + 1.

It is true because

depth(K[y1, ...,y |/ INK[y1,...,yr]) =7 —m{I N K[y1,...,yr]),
depth(K[y1, ..., yr—1]/INK[y1,...,yr—1]) =7 =1 —=mINKy1,...,Yyr—1]),

and
m(INKy,...,y]) Z2m{INK[y1, ..., Yyr—1])

3. GROBNER BASIS

Let K be a field, S = K[x1,...,2,] be a polynomial ring and 9 = (z1,...,z,)
be the graded maximal ideal of S. Let

S —=S" = M—0

be a presentation of 9 as an S-module and ey, ..., e, be the canonical basis of S™.
Then Syz, (M) is generated by the (%) syzygies {zie; — zje;: 1 <i < j < n}. Now,
consider the presentation of Syz, (90)

Se — SG) = Syz, (M) — 0.

Let 045 — x5e; — xje;, 1 < i < j < n, be the canonical basis of SG). 1t is known
(cf. [1]) that Syz,(90) is generated by the set of cyclic syzygies:

{zioju —xjoum + xR0 1 <i<j<k<n}
and they are (}). The symmetric algebra of Syz, (9) has the presentation:
Symg(Syz, (M) = Sy;: 1 <i <j<n]/T,
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where y;; — 0;; and T is the relation ideal generated by the set
{Tiyn — iy + Tryig: 1 <i<j<k<n}.

Proposition 3.1. One Grobner basis of T with respect to a term order < on
Slyij: 1 < i < j < n]induced by Ty, > Tp_1 > ... > T1 > Yin > Yip-1 > ... >
Y12 > Yon > ... > Yn_1,n Is the following:

{Tiyjn — iy + oy 1 <i<j<k<n}
<

U{ar (Y90 — Yinyji + yayin): 1 <i<j<k<l<n,1<r<n}

Proof. See the proof of Lemma 3.1 of [6]. O

Now assume that R = S/I, where I C 9t? is a monomial ideal of S with G(I)
{u1,...,ut}, i.e., R is a standard K-algebra with monomial relations. Set m; =
max(u;) and u} = u;/Tm,, 1 = 1,...,t. Let m be the graded maximal ideal of R.

Notice that for any R-module N,

Symp(N) = R ®@s Symg(N) = Symg(N)/ISymg(N).
Lemma 3.2. Suppose that [ is strongly stable. Then
Symp(Syz,(m)) = Sly;;: 1 <i<j<n]/J,
where

J = (U1, U Tl — Tk + Telig, © < J < K5 WYjm., < mi, 1 <i< ).

Proof. Set I®" = @? | I. From

0 0 0
1 1 1

0 — Syn(M)NI® — [ — ]
3 1 1

0 — Syz1 (901) - S - M - 0
1 \ 1

0 — Syz1(m) - R - m — 0
3 1 1
0 0 0

we have an exact sequence
0 — Syz1(9MM) N I®P"™ — Syz; (M) — Syz;(m) — 0.
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Then Symg(Syz;(m)) = SymS(Syzl(im))/(Syz/lm@") . Hence,

Symp(Syz1(m)) = R ®g Syms(Syz1(m)) = Symg(Syzi (m))/ISyms(Syz1 (m))
= Symg (Syz1(9M))/(1, Syz, (M) N I1€7)
:S[yiji 1<Z<]<n]
J(ua, U Ty — TYak + TkYig, 0 < J < ki Syza () N IEm).
Note that
Syzi1 (M) = (zie; —zje;: 1 <i<j<n)
and
a(rie; —xje;) € 19" wa € I: (x4, ;).
It follows that (Sym")) = (((u1, .- ue) s (@i, 2))yis: @ < F). Then wjy; m,
belongs to this set for any j < m; and 1 < i < ¢. Set

J = (w1, Y — TjYik + TeYijs 0 < J < ks wiyjm,, j<mg, 1 <i<t).

Let us show that (Sym")) C J. Then the lemma follows.

It is clear that
(ul,...,ut):xiz( e e Ut )
[ulvxi] [utaxi]

and

UsUk

[ws[ur, 25], urus, ]

:s,k:1,...,t;1<i<j<n>.

(u1, .- ue) = (@, 25) = (

Then it is enough to show that (usur/|us[uk, z;], uk[us, z:]])yi; € J. Notice that if
x; f us or x; 1 ug, then wsug/[usuk, z;], up[us, z;]] is divided by wus or wuy, which
implies that (usug/[us[uk, x;], uplus, ©i]])yi; € (u1,...,us). Hence, we may assume
that z; | us and z; | ug.

Since (usur/[usz;, urz;])y;; is divided by (ux/z;)ysj, it is enough to show that
(ug/z;)yi; € J for any i < j. If j = myg, the result is clear. Now assume that
j < myg. Then one has

Uk Uk UL URT;
—Yij = —— (@miYij — TjYimy + TiYjm,) + o Yime

Lj Ly, Lj my LjTm,y,

yj:mk'

By the strong stability of I, we have that uxx;/z; € I. But max(ugx;/x;) = my,
which implies that (ugpz;/T;Tm, )yjm, € J. The result follows. O
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Remark 3.3. Notice that from the above proof, (u/x;)y;; € J for any u € G(I)
with z; | u. Furthermore, if z;, | v and i < j < jo, then (u/z;,)y;; € J also holds

because
u o uz; /T, -
—Yij = — Yij
x]o {E]
with ux;/x;, € I.

From now on, we will fix a term order < on S[y;;: 1 <14 < j < n] induced by
Ty >Tp—1>...201 > Yin > Yin-1> .- Y12 >Yon > o > Yn—1,n-
The main result of this section is the following theorem.
Theorem 3.4. Suppose that I is strongly stable. Then
{G(I); %yjkau €GI),z; |u,j <k <i2iYjx — TjYir + TYij, 1 < j < k;
To(YijYrt — Yik¥il + YaYjr), 1 < Jj <k <l,1 <s< n}

is a Grobner basis of J with respect to the above term order.

Proof. Firstly, notice that to show that one set is a Grobner basis, it is sufficient
to prove that for any two elements o and [ of this set, the S-pair

) S () N
S0P e, (@]~ (). m ()]

has a standard expression with zero remainder with respect to the above term order.
We may assume that [in(«),in(5)] # 1. We will use the following property: If u,v € S
are monomials and f,g € K[y;;: 1 <i < j < n|, then S(uf,vg) = (wv/[u,v])S(f,g).
Denote the above four groups in the set of the theorem by (I)—(IV), respectively.
Since (I) and (II) are monomials and (IIT)U(IV) is a Grobner basis by Proposi-
tion 3.1, it is enough to consider the following cases:
(a) a € (I) and B € (III). Let v € G(I) with x| u. Then (u/zx)z;, (u/xr)z; € 1
for i < j < k by the strong stability of I. Hence,

U U
S(u, iyjx — TYir + TuYi;) = —TiYix — —2;Yix € (G(U)).
Tk Tk
(b) a € (I) and B € (IV). Let u € G(I) with = | u. Then

S(u, 25 (Yigyrt — YikYit + Yayix)) = w(ijyr — yirys) € (G(I)).
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(c) a € (II) and B € (III). For the S-pair S((uw*/xi )y /i, TiYjk — TjYik + ThYij),
where j' < k' <4’ and i < j < k, there are three possibilities:

(c1) (7, k) # (i, ) and 2 | u* /i

(c2) (', K") = (4,7) and z, | u*/xir;
(c3) (', K") = (4,7) and =y t u* /.
In (c1), the S-pair is (u}/xi )y ey — (s /T )y yix, where ui = (u*/xy)z,; and
ujy = (u*/xg)z; are all in I, hence, (uj/zi )y and (uj/zy )y belong to (II).
Similarly in (c2), the S-pair is (u}/xx)yjx — (u3/xk)yik, where ui = (u*/xy )z and
uy = (u*/xy )z are all in I. In (c3), the S-pair becomes uiy;i — u3y:r, where uj
and uj are as in (cz). Then the S-pair belongs to (G(I)). Therefore, the S-pair has
a standard expression with zero remainder in any possibilities.

(d) o € (IT) and 8 € (IV). We note that

u Ts u

S(x_ilyj’k’axS(yijykl_yikyjl+yilyjk)> = mx—i/s(yj'kuyz‘jykz—yikyjﬁyuyjk%
which is divided by (u/zy)yj e if yjri is coprime with y;y;r, and divided by
(w/i )yrrryyrg — (W/Ti )Yieyje or (w/mi)yiyyen — (w/zi )y yjn i (k") = (4,1)
or (j,k). Since (u/xi )yrk, (w/zi)y;ir, (u/xir )y and (u/xi )y, are all in (II), the
S-pair has a standard expression with zero remainder in any cases.

Then the result follows. O

Using this Grobner basis, we get immediately the following corollary.
Corollary 3.5. Suppose that I is strongly stable. Then
in(J) = (G(I), {xﬂyjk; we GU), zi |u, j <k < z}
i

{zryij: © <j <k} {zsyayjn: i<j<k<l,1<s<n}).

4. DIMENSION AND DEPTH

Suppose that I is strongly stable and its minimal generators uy, ..., u; are all of
degree 2. Then by Corollary 3.5, we have

in(J) = (u1,...,u, 121, ..., Lnzy),

where I, r = 1,...,n, are ideals of Q := KJy;;: 1 <14 < j < n]. Let us identify
these ideals I, and then calculate the dimension and depth of the symmetric algebra

Symp(Syz; (m)).
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Set I, = INKlxy,...,zy]. Put m(0) = M(0) = 0. From Corollary 3.5, we see
that the generating set of I,. consists of three parts A, B and C' given by
Az, = Qe N{zrysj: 1 < j <k},
Bz, = Qu, N{xsyayr: 1 <j<k<l,1<s<n},
Cz, = Qx,. N {Eyjk: u€eG(), i |u, j <k< z}
z;
It is clear that o
A={y:i<j<r},
B ={yuy;r: i <j<k<l},
C=A{yjr: zizr € GI), j <k < i}
Since y;; € A for i < j < r, we may assume that ¢ > r in C. Furthermore, notice
that by the strong stability of I, if z;x; € I with [ > r, then x;z,, z,z; € I. It follows
that the maximal ¢ in C' is just M (I>,). Hence, C = {y;;: i <j < M(I»,)}. Then
I = (yij: i < j <max{r,M(Iz,;)+1}; yayr: 1 <j <k <l).

Notice that I = I D Ixo O ... D Isy,, which implies that M (I) = M(I>1) >
M(Is2) 2 ... 2 M(Isy,) and if I, # 0, then M (I>,) > r, so max{r, M (I>,)+
M(Is,) 4+ 1. On the other hand, it is easy to see that max{r: I, # 0}
Then we have the following conclusions:

LOLD...20hyw Chyny+1 €. C I

Lemma 4.1. Q/I,. is Cohen-Macaulay with
2n—2—M(Is,), r=1,....,m(I),
2n —1—r, r=m(l)+1,...,n.

dim(Q/ 1) = {

Proof. Set r* = max{r, M(I>,) + 1} and Q, = Kly;;: 1 <i<j<n,j=>r*.
Then Q/I, = Q. /1], where I] = (yay;r: i <j <k <l,j = r"). Denote

Yir* yl,r*Jrl cee Yin
Yrx—1,0%  Yrx—1pr*+1  --- Yrr—1n
Y. =
Yr= r=+1 S Yr*.n
Yn—1,n

Then I/ = (in(m): m is a 2-minor of Y,-).

As shown in the proof of Proposition 3.4 of [7], @,/I] is Cohen-Macaulay of
dimension 2n — 1 — r*. Furthermore, if Iy, # 0, then r* = M(Is,) + 1 and if
I, =0, then r* = r. Then the lemma follows. g
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Now we can prove the main theorem.

Theorem 4.2. Let R = K[x1,...,z,|/I, n > 3, be a standard K-algebra with
a strongly stable monomial relation ideal I C (w1, ...,2,)? whose generators are all
of degree two, and m be the graded maximal ideal of R. Then

dim(Sym g (Syz, (m))) = max{in(n —1),2n — 1 = M(I N K@ 1), Tm(n+1]) }

and
depth(Symg(Syz,;(m))) > 2n — 1 — M(I) — m(I).

Proof. We keep the notations as before. Then

dim(Symp(Syz;(m))) = dim(S[y;;:

It follows from Corollary 2.8 that

dim(Symg (Syz, (m)))
= m(r};g)tzn{dim(Q), dim(Q/I;) +t — M(I N K21y, .., T¢])}
= m(r})lg)t(@{%n(n — 1) dim(Q/I;) +t — M(I N K [Zp(r), .- -, 3¢]) }.

By Lemma 4.1, dim(Q/ 1)) = 2n — 2 — M(Izp(p)) and dim(Q/1;) = 2n — 1 — ¢
for t > m(I). Notice that M (I N K[z,,p]) = m(I) and M (I N K[2y ), ..., T]) =
M(I N K21y, Tm(r)+1]) for all m(I) <t < n. Then

dim(Symg(Syz;(m))) = max{%n(n —1),2n =2 — M(Ixp(r)),
2n — 1 — M(I N K[:L‘m([), xm(1)+1])}.

It is easy to see that if M(Is,,)) = m(l), then M (I N K[Zp (1), Tm(r)+1]) = m(I),
and if M (Ixp(ry) > m(I), then M (I N K[Zp(1), Tm(r)+1]) = m(I) + 1. Thus, in any
case,

maX{Qn —2- M(I}m(j)), 2n — 1 — M(I N K[l‘m([),xm([)+1])}

=2n—1— M(I n K[l‘m([),xm([)+1]).

Then the equality for the dimension follows.
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For the depth, by Proposition 2.7, we have

depth(Symp(Syz, (m)))
= depth(S[yi;: 1 <i<j<n]/J)>depth(S[y;;: 1 <i<j<n]/in(J]))
= depth(Q[z1, ..., zn])/(l121,. .., Inzn, 1))

> i depth(Q[zom(1)s - - - »
1< iy LAPRQLemr 0]

[T Zm(1)s -+ s InTrs TNV K [Zpn(1)s -+ 2 T]))s
depth(Q[zr, ..., xn]/((Lr + L)Xy ..o, (Ir + L) xn, IN K[zy, ..., 24])),
depth(Q[zr41,- .., Zn)

J((Ir + Lg1)Trg1y oo, (L + In)xn, I N K[2pyq, ... xy])) + 1}

By Corollary 2.9 and Lemma 4.1, one has

depth(Q[xm(I), T ]/(Im([)xm([), vy Tpxn, TN K[{Em(j), )

> depth
m<?>li?<n{ epth(Q),

depth(Q/1;) + depth(K [z 1y, - - -, 2] /(I N K2y 1y, - - -, 2]))}
= min {depth(Q),depth(Q/I;) +t —m(I N K[y 1y, .-, 2¢])}

m(I)<t<n
= m(I)IﬂgKn{%n(n —1),2n—2—MIspm),2n —1—m(I N K|z, ..,z
= min{in(n —1),2n —2 = M(Ismp),2n — 1 = m(I N K[Zm(rys -, Tn)) }
= min{% (n—1),2n —2— M(I> m([)),Zn— 1 —m([>m(1))}
= min{3n(n —1),2n -2 — M(Isnm))}
> min{in(n—1),2n—2 - M)},
depth(Q[zr, - .., zn]/((Lr + L)X, ..., (Ir + In)xpn, I N KTy, ..., zy]))

> min {depth(@),
depth(Q/(Ir + It)) + depth(K[xy, ..., x¢] /(I N K[zr, ..., 24]))}
— min (depth(Q), Aepth(@/ (I, + 1)+~ m(I 1 Klrr, .-, .])
= min{depth(Q), min {depth(Q/IL.) +t —m{I N K[z,,...,z])},

r<t<m(I)

i {Qepth(Q/ Lty o) =L A K ai])}}

= mm{depth(Q), 7n<£r<1171n1(1){2n —2—M(Isy)+t—mINK[zy,...,x])},

i on—1-— M(Is,) + 1,8y +t—m(IN K|z, ...,
i {20 = - max{M(Top) + 1} 46 = m(I 0 K, m])} |

min{%n(n —1),2n—2—-MIsy) +7r—m(Isr),2n —1— M(I>r)},

WV

i)}
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where ¢t —max{M (Is,)+ 1,t} >m(I)+1—(MIs,)+1) fort =m(I)+1,...,n,is
used, and similarly,

depth(Q[r41, - - - Tnl/((Lr + L 1)Try1s o, (e + Ln)Tn, IV K@p g1, .0, 20]))
> min {depth(Q),depth(Q/(I; + It)) +t —m(I N K[xr11,...,2¢]))}

r+1<t<n

— min{depth(Q), i (20— 2= M(Iop) + 6 =m0 Kl o)

' m—1-— M(I 1 —mINK }
m(I)Iﬂgtgn{n max{M(I>,) + 1,t} +t —m(I N Kzyyp1,...,24])}

> min{%n(n —1),2n—2—-M(Is,) +r+1—mIsr41),2n —1— M(I)n)}.
It follows that

depth(Symp(Syz; (m)))
> min ~ {in(n—1),2n—2— M(I),2n — 2 — M(I5,) + 1 — m(Is,),

1<r<m(I)—1
2n—1— M(I}r), 2n — M(I)r) +r— m(I>r+1), 2n — M(I)r)}

= min{in(n—1),2n -1 - M(I) —m(I),2n — 2 — M(I)}
=2n—1—-MI)—m(I).

Remark 4.3. As %n(n —1) > 2n — 2 for n > 4, it follows that
dim (Sym (Syzy (m))) = n(n — 1)
for n > 4. Suppose that M(I) =1, ie. I = (2?). Then
depth(Sympg(Syz, (m))) > 2n — 3.
When n = 3, by Lemma 3.2,

SymR(SyZ1(m)) = K[xla z2, 90379127y137y23]/($%7$1y23 — X213 + $3y12)-

It is easy to see that x%, T1Y23 — T2Y13 + x3y12 is a regular sequence. Then
Symp(Syz; (m)) is Cohen-Macaulay of dimension 4.

Assume that n > 4. Since Symy(Syz;(m)) = Symg(Syz, (9))/(2?), 2? is a regu-
lar element in Symg(Syz, (91)), and Symg(Syz,; (%)) has depth 2n — 2 by [7], Theo-
rem 4.1, it follows that depth(Sym g(Syz;(m))) = 2n — 3. Hence, the lower bound for
depth in Theorem 4.2 is reached. Notice that the dimension and depth are different
in this case, hence, Symg(Syz,(m)) is not Cohen-Macaulay.
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