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1. Introduction and preliminaries

Univalent functions, which are functions which are analytic, one-on-one and onto

a certain domain, play a significant role in geometric function theory and in complex

analysis in general. Although the main problem in the area, the Bieberbach conjec-

ture, was closed by de Branges in 1984, the theory of univalent functions still remains

attractive. A concept from this theory that was recently rediscovered and finds its

application in the theory of singularities (see [4]) and in the study of power series with

integral coefficients, is the Hankel determinant of functions f(z) = z+a2z
2+a3z

3+. . .

analytic in the unit disk D := {z ∈ C : |z| < 1} for q > 1 and n > 1 defined by

Hq(n) =
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The class of all such functions is denoted by A.
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The upper bound (preferebly sharp) of the modulus of the Hankel determinants

has been extensively studied in recent time, mainly the second order case H2(2) =

a2a4 − a23 and the third order case

H3(1) =
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∣
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= a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22).

This problem, as most others over the class of univalent functions, is difficult to

tackle with for the general class, and instead its subclasses are studied. The best

known result for the whole class A is the one of Hayman (see [6]) who showed that
|H2(n)| 6 An1/2, where A is an absolute constant, and that this rate of growth is

the best possible. For the subclasses, we list the results for the classes of starlike and

convex functions

S∗ =
{

f ∈ A : Re
zf ′(z)

f(z)
> 0, z ∈ D

}

and

C =
{

f ∈ A : Re
(

1 +
zf ′′(z)

f ′(z)

)

> 0, z ∈ D

}

,

with the upper bound of the second Hankel determinant 1 and 1

8
(see [8]), and of

the third Hankel determinant 0.777987 . . . (see [13]) and 4

135
= 0.0296 . . . (see [10]),

respectively. The estimates for the second order determinant are sharp, while of the

third order are not, but are best known. Other related results can be found in [2],

[10], [12], [14], [15].

We will study the class R ⊂ A of univalent functions satisfying

(1) Re f ′(z) > 0, z ∈ D,

and the class R1 ⊂ A satisfying

Re(f ′(z) + zf ′′(z)) > 0, z ∈ D.

The functions from the class R are said to be of bounded turning since Re f ′(z) > 0

is equivalent to | arg f ′(z)| < 1

2
π, and arg f(z) is the angle of rotation of the image

of a line segment starting from z under the mapping f . They are of special interest

since they are not part of class of starlike functions which is very wide subclass of

univalent functions. This is due to the counterexample by Krzyż (see [11]) showing

that S∗ does not contain R, and R does not contain S∗. In addition, classes R
and R1 are related in the same way as the classes of starlike and convex functions,

i.e. R1 ⊂ R (see [1]) as C ⊂ S∗, and

f ∈ R1 ⇔ zf ′(z) ∈ R as f ∈ C ⇔ zf ′(z) ∈ S∗.
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For the class R in [7] the authors showed that

|H2(2)| 6
4

9
= 0.444 . . . ,

and in [9] (with α = 1 in Corollary 2.8),

|H3(1)| 6
1

540

(877

3
+ 25

√
5
)

= 0.64488 . . .

While the first estimate is sharp, the second one is not and we improve it here. We

also give an upper bound of H3(1) for the class R1.

For the study we use a different approach than the common one. In the cur-

rent research on the upper bound of the Hankel determinant dominates a method

based on a result on coefficients of Carathéodory functions (functions with positive

real part on the unit disk) involving Toeplitz determinants. This result is due to

Carathéodory and Toeplitz (see [14], Theorem 3.1.4, page 26) and its proof can be

found in Grenander and Szegő (see [5]).

In this paper we use different method, based on the estimates of the coefficients

of Schwartz functions. Here, it is a part of that result needed for the proofs.

Lemma 1.1. Let ω(z) = c1z + c2z
2 + . . . be a Schwarz function. Then for any

real numbers µ and ν such that (µ, ν) ∈ D1 ∪D2, where

D1 =
{

(µ, ν) : |µ| 6 1

2
, −1 6 ν 6 1

}

and

D2 =
{

(µ, ν) :
1

2
6 |µ| 6 2,

4

27
(|µ|+ 1)3 − (|µ|+ 1) 6 ν 6 1

}

,

the following sharp estimate holds

|c3 + µc1c2 + νc31| 6 1.

We will also use the following, almost forgotten result of Carlson (see [3]).

Lemma 1.2. Let ω(z) = c1z + c2z
2 + . . . be a Schwarz function. Then

|c2| 6 1− |c1|2 and |c4| 6 1− |c1|2 − |c2|2.
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2. Main results

First we give the sharp estimate of the third Hankel determinant for the class R.

Theorem 2.1. Let f ∈ R be of the form f(z) = z + a2z
2 + a3z

3 + . . . Then

|H3(1)| 6
207

540
= 0.38333 . . .

P r o o f. Condition (1) is equivalent to

f ′(z) =
1 + ω(z)

1− ω(z)
,

i.e.

(2) f ′(z)(1 − ω(z)) = 1 + ω(z),

where ω is analytic in D, ω(0) = 0 and |ω(z)| < 1 for all z in D. If

ω(z) = c1z + c2z
2 + . . . ,

then by equating the coefficients in (2), we have

(3) a2 = c1,

a3 =
2

3
(c21 + c2),

a4 =
1

2
(c3 + 2c1c2 + c31),

a5 =
2

5
(c4 + 2c1c3 + 3c21c2 + c41 + c22).

Using (3) we have

H3(1) =
1

540
(−12c41c2 − 16c32 − 54c31c3 + 108c1c2c3 − 135c23

+ 60c21c
2
2 − 7c61 − 72c21c4 + 144c2c4)

=
1

540
(−54c3(c3 − 2c1c2 + c31)− 81c23 − 12c41c2 − 16c32

+ 60c21c
2
2 − 7c61 + 72(2c2 − c21)c4)

and

(4) |H3(1)| 6
1

540
(54|c3||c3 − 2c1c2 + c31|+ 81|c3|2 + 12|c1|4|c2|+ 16|c2|3

+ 60|c1|2|c2|2 + 7|c1|6 + 72(2|c2|+ |c1|2)|c4|).
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If we choose µ = −2 and ν = 1 in Lemma 1.1, since (µ, ν) ∈ D2, we receive that

|c3 − 2c1c2 + c31| 6 1. So, from (4) we get

(5) |H3(1)| 6
1

540
(54|c3|+ 81|c3|2 + 12|c1|4|c2|+ 16|c2|3 + 60|c1|2|c2|2

+ 7|c1|6 + 72(2|c2|+ |c1|2)|c4|).

Assume that |c2| 6 1

2
(1−|c1|2). Hence, 2|c2|+ |c1|2 6 1. From this inequality and

Lemma 1.2,

|H3(1)| 6
1

540
(54|c3|+ 81|c3|2 + 12|c1|4|c2|+ 16|c2|3 + 60|c1|2|c2|2 + 7|c1|6

+ 72(1− |c1|2 − |c2|2)),

so

|H3(1)| 6
1

540
(72 + 54|c3|+ 81|c3|2 + 16|c2|2(|c2| − 1) + 56|c2|2(|c1|2 − 1)

+ 4|c1|2(|c2|2 − 1) + 7|c1|2(|c1|4 − 1) + 12|c1|2(|c1|2|c2| − 1)− 49|c1|2)

6
1

540
(72 + 54|c3|+ 81|c3|2),

since all other terms are less or equal to zero because of |c1| 6 1 and |c2| 6 1 (see

Lemma 1.2).

Providing that |c2| 6 1

2
(1 − |c1|2) we have

|H3(1)| 6
207

540
= 0.38333 . . .

Now, assume that 1

2
(1− |c1|2) < |c2| 6 (1− |c1|2). Applying Lemma 1.2 in (5),

|H3(1)| 6
1

540
(54|c3|+ 81|c3|2 + 12|c1|4|c2|+ 16|c2|3 + 60|c1|2|c2|2

+ 7|c1|6 + 72(2|c2|+ |c1|2)(1 − |c1|2 − |c2|2)).

From our assumption it follows that 2|c2|+ |c1|2 > 1, so

|H3(1)| 6
1

540
(54|c3|+ 81|c3|2 + h1(|c1|2, |c2|)),

where

h1(x, y) = 7x3 − 72x2 + 72x+ 12x2y − 12xy2 − 144xy − 128y3 + 144y,
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(x, y) ∈ D and D is such that x + 2y > 1, x + y 6 1 and x > 0. But −12xy2 6 0

and 7x3 6 7, so

h1(x, y) < g1(x, y) = −128y3 + (144− 144x+ 12x2)y − 72x2 + 72x+ 7.

It is enough to derive the greatest value of g1 (even in the square [0, 1]× [0, 1]). The

critical points of g1 satisfy the system of equations

{

(x− 6)y + 3− 6x = 0,

−32y2 + (12− 12x+ x2) = 0.

The first equation is contradictory if x ∈ (1
2
, 1]. Suppose that x ∈ [0, 1

2
]. From this

equation, y = (6x− 3)/(x− 6). Putting it into the second one we obtain

12− 12x+ x2 − 32
(6x− 3

x− 6

)2

= 0,

or equivalently

144 + 480x(1− 2x) + 6x(1− 4x2) + 90x+ x4 = 0,

which has no solutions in [0, 1
2
].

On the boundary of the square [0, 1]× [0, 1] there is

g1(x, 0) = 7 + 72x− 72x2 6 25,

g1(x, 1) = 23− 72x− 60x2
6 23,

g1(1, y) = 7 + 12y − 128y3 6 7 +
√
2,

g1(0, y) = 7 + 144y − 128y3 6 7 + 24
√
6 = 65.787 . . .

This means that in this case

H3(1) 6
1

540
(135 + 65.787 . . .) <

207

540
.

Summing up, |H3(1)| 6 207

540
. �

Now we give the estimate of the third Hankel determinant for the class R1.

Theorem 2.2. Let f ∈ R1 be of the form f(z) = z + a2z
2 + a3z

3 + . . . Then

|H3(1)| 6
3537

129600
= 0.02729 . . .
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P r o o f. Similarly as in the proof of the previous theorem, for each function f

from R1 there exists a function ω(z) = c1z + c2z
2 + . . . analytic in D such that

|ω(z)| < 1 for all z in D and

f ′(z) + zf ′′(z) =
1 + ω(z)

1− ω(z)
,

i.e.

(f ′(z) + zf ′′(z))(1− ω(z)) = 1 + ω(z).

Equating the coefficients in the previous expression leads to

a2 =
c1
2
,

a3 =
2

9
(c21 + c2),

a4 =
1

8
(c3 + 2c1c2 + c31),

a5 =
2

25
(c4 + 2c1c3 + 3c21c2 + c41 + c22).

From here, after some calculations we receive

H3(1) =
1

1166400
(−1217c61 − 1140c41c2 + 13116c21c

2
2 + 7936c32 − 9234c31c3

+ 972c1c2c3 − 18225c23 + 2592(8c2 − c21)c4)

=
1

1166400

(

−8991c23 − 9234c3

(

c3 −
2

19
c1c2 + c31

)

− 1140c41c2

+ 13116c21c
2
2 + 7936c32 − 1217c61 + 2592(8c2 − c21)c4

)

,

and further

|H3(1)| 6
1

1166400

(

8991|c3|2 + 9234|c3|
∣

∣

∣
c3 −

2

19
c1c2 + c31

∣

∣

∣
+ 1140|c1|4|c2|

+ 13116|c1|2|c2|2 + 7936|c2|3 + 1217|c1|6 + 2592(8|c2|+ |c1|2)|c4|
)

.

Now, for µ = − 2

19
and ν = 1 in Lemma 1.1, we have (µ, ν) ∈ D1 and

∣

∣c3− 2

19
c1c2+

c31
∣

∣ 6 1, which implies

|H3(1)| 6
1

1166400
(9234|c3|+ 8991|c3|2 + 1140|c1|4|c2|+ 7936|c2|3

+ 13116|c1|2|c2|2 + 1217|c1|6 + 2592(8|c2|+ |c1|2)|c4|).
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Assume that |c2| 6 21

32
(1− |c1|2). Hence, 8|c2|+ |c1|2 6 1

4
(21− 17|c1|2). From this

inequality and Lemma 1.2,

|H3(1)| 6
1

1166400
(9234|c3|+ 8991|c3|2 + 1140|c1|4|c2|+ 7936|c2|3

+ 13116|c1|2|c2|2 + 1217|c1|6 + 648(21− 17|c1|2)(1− |c1|2 − |c2|2))

and

|H3(1)| 6
1

1166400
(13608 + 9234|c3|+ 8991|c3|2 + 7936|c2|2(|c2| − 1)

+ 7444|c1|2(|c2|2 − 1) + 1140|c1|2(|c1|2|c2| − 1) + 1217|c1|2(|c1|4 − 1)

+ 5672|c2|2(|c1|2 − 1)− 3807|c1|2 − 11016|c1|2(1− |c1|2 − |c2|2))

6
1

1166400
(13608 + 9234|c3|+ 8991|c3|2),

since all other terms are less or equal to zero (again because of |c1| 6 1 and |c2| 6 1

which follows from Lemma 1.2).

The greatest value of the function in brackets is attained for |c3| = 1 and it is

equal to 31833. In this way we have proven that

|H3(1)| 6
31833

11664000
=

3537

129600
= 0.02729 . . .

under the condition |c2| 6 21

32
(1− |c1|2).

Assume now that 21

32
(1 − |c1|2) < |c2| 6 (1− |c1|2). From Lemma 1.2,

|H3(1)| 6
1

1166400
(9234|c3|+ 8991|c3|2 + 1140|c1|4|c2|+ 7936|c2|3

+ 13116|c1|2|c2|2 + 1217|c1|6 + 2592(8|c2|+ |c1|2)(1 − |c1|2 − |c2|2)).

From the assumption it follows that 8|c2|+ |c1|2 > 1

4
(21− 17|c1|2) and

|H3(1)| 6
1

1166400
(9234|c3|+ 8991|c3|2 + h2(|c1|2, |c2|))

6
1

1166400
(18225 + h2(|c1|2, |c2|)),

where

h2(x, y) = − 12800y3 + 10524xy2 + (1140x2 − 20736x+ 20736)y

+ 1217x3 − 2592x2 + 13608x

and (x, y) ∈ D, D is such that x+ 21

32
y > 1, x+ y 6 1 and x > 0.
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We shall derive the greatest value of h2 in E = {(x, y) : x > 0, y > 0, x+ y 6 1},
i.e. in the superset of D. Note that

∂h2

∂x
=3(3508y2 − 6912y + 760xy + 1217x2 − 1728x+ 4536)

= 3(760(1− x)(1 − y) + 3076(1− y)2 + 484(1− x)2 + 216 + 733x2 + 432y2)> 0.

It means that the greatest value of h2 is obtained on the boundary of E. We have

h2(x, 0) = 1217x3 + 11016x+ 2592x(1− x) 6 1217x3 + 11016x 6 12233,

h2(0, y) = 20736y− 12800y2 6
209952

25
= 8398.08 . . .

Additionally, it is not difficult to show that

h2(x, 1 − x) = 7936 + 21060x− 40164x2 + 23401x3 6 12233.

Hence, in this case,

H3(1) 6
1

1166400
(18225 + 12233) =

15229

583200
= 0.02611 . . .

Summing up, |H3(1)| 6 3537

129600
= 0.02729 . . . �
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