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Abstract. In this note, for a ring endomorphism α and an α-derivation δ of a ring R, the
notion of weakened (α, δ)-skew Armendariz rings is introduced as a generalization of α-rigid
rings and weak Armendariz rings. It is proved that R is a weakened (α, δ)-skew Armendariz
ring if and only if Tn(R) is weakened (α, δ̄)-skew Armendariz if and only if R[x]/(x

n) is
weakened (α, δ̄)-skew Armendariz ring for any positive integer n.

Keywords: Armendariz ring; (α, δ)-skew Armendariz ring; weak Armendariz ring; weak
(α, δ)-skew Armendariz ring

MSC 2020 : 16S36, 16S50, 16S99

1. Introduction

Throughout this paper, R denotes an associative ring with unity, α : R → R is an

endomorphism and δ an α-derivation of R, that is, δ is an additive map such that

δ(ab) = δ(a)b + α(a)δ(b) for all a, b ∈ R. We denote by R[x;α, δ] the Ore extension

whose elements are the polynomials over R, the addition is defined as usual and the

multiplication subject to the relation xa = α(a)x + δ(a) for any a ∈ R. Rege and

Chhawchharia in [22] introduced the notion of an Armendariz ring. They defined

a ring R to be an Armendariz ring if whenever polynomials f(x) = a0 + a1x+ . . .+

amxm, g(x) = b0 + b1x + . . . + bnx
n ∈ R[x] satisfy f(x)g(x) = 0, then aibj = 0

for each i and j. The name “Armendariz ring” was chosen because Armendariz

(see [5]) had noted that every reduced ring satisfies this condition. Some properties

of Armendariz rings were studied in Rege and Chhawchharia [22], Armendariz [5],

Anderson and Camillo [2], Huh et al. [14], and Kim and Lee [16]. Liu and Zhao in [20]

called a ring R weak Armendariz if whenever polynomials f(x) = a0 + a1x + . . . +

amxm, g(x) = b0 + b1x+ . . .+ bnx
n ∈ R[x] satisfy f(x)g(x) = 0, then aibj ∈ nil(R)
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for each i and j, where nil(R) denotes the set of all nilpotent elements of R. For

an endomorphism α and an α-derivation δ of a ring R, Moussavi and Hashemi

(see [21]) called R an (α, δ)-skew Armendariz ring if whenever polynomials f(x) =

a0+ a1x+ . . .+ amxm, g(x) = b0+ b1x+ . . .+ bnx
n ∈ R[x;α, δ] satisfy f(x)g(x) = 0,

then aix
ibjx

j = 0 for each i and j, which is a generalization of α-rigid rings and

Armendariz rings. Alhevaz et al. in [1] called a ring R weak (α, δ)-skew Armendariz

if whenever polynomials f(x) = a0+a1x+ . . .+amxm, g(x) = b0+b1x+ . . .+bnx
n ∈

R[x;α, δ] satisfy f(x)g(x) = 0, then aix
ibjx

j ∈ nil(R)[x;α, δ] for each i and j.

According to Krempa (see [17]), an endomorphism α of a ring R is said to be

rigid if aα(a) = 0 implies a = 0 for a ∈ R. Hong et al. in [13], Definition 3 called

a ring R α-rigid if there exists a rigid endomorphism α of R. Note that any rigid

endomorphism of a ring R is a monomorphism and α-rigid rings are reduced rings

by Hong et al. (see [13]). Properties of α-rigid rings have been studied in Krempa [17],

Hong et al. [13], and Hirano [11].

By [4], a ring R is α-compatible if for all a, b ∈ R, ab = 0 ⇔ aα(b) = 0. In [10],

Hashemi and Moussavi introduced (α, δ)-compatible rings and studied their proper-

ties. For an α-derivation δ of R, the ring is said to be δ-compatible if for each a, b ∈ R,

ab = 0 ⇒ aδ(b) = 0. A ring R is (α, δ)-compatible if it is both α-compatible and

δ-compatible. In this case, clearly the endomorphism α is monomorphic. Also, any

α-rigid ring is (α, δ)-compatible, see [13], Lemma 4.

For an endomorphism α and an α-derivation δ of a ring R, we call R a weakened

(α, δ)-skew Armendariz ring if whenever polynomials f(x) =
m
∑

i=0

aix
i and g(x) =

n
∑

j=0

bjx
j ∈ R[x;α, δ] satisfy f(x)g(x) = 0, then aix

ibjx
j ∈ nil(R[x;α, δ]) for each i

and j. Clearly, weak Armendariz rings are weakened (α, δ)-skew Armendariz. We

show that weakly 2-primal (α, δ)-compatible rings are weakened (α, δ)-skew Armen-

dariz and thus weakened (α, δ)-skew Armendariz rings are a common generalization

of α-rigid rings and weak Armendariz rings. Also, we prove that R is a weakened

(α, δ)-skew Armendariz ring if and only if the n × n upper triangular matrix ring

Tn(R) is weakened (α, δ̄)-skew Armendariz if and only if R[x]/(xn) is weakened

(α, δ̄)-skew Armendariz ring for any positive integer n.

2. Weakened (α, δ)-skew Armendariz rings

Let δ be an α-derivation of a ring R. For any 0 6 u 6 v (u, v ∈ N), fv
u ∈ End(R,+)

will denote the map which is the sum of all possible “words” in α, δ built with u

letters α and (v−u) letters δ. For instance, f4
2 = α2δ2+αδ2α+δ2α2+αδαδ+δα2δ+

δαδα. In particular, f0
0 = 1, fn

0 = δn, . . . , fn
n−1 = αn−1δ + αn−2δα + . . . + δαn−1
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and fn
n = αn, where n ∈ N. For any positive integer n and r ∈ R we have xnr =

n
∑

i=0

fn
i (r)x

i in the ring R[x;α, δ] (see [18], Lemma 4.1).

Definition 2.1. Let α be an endomorphism and δ an α-derivation of a ring R.

The ring R is called a weakened (α, δ)-skew Armendariz ring if for each elements

f(x) =
m
∑

i=0

aix
i and g(x) =

n
∑

j=0

bjx
j ∈ R[x;α, δ], f(x)g(x) = 0 implies aix

ibjx
j ∈

nil(R[x;α, δ]) for each i and j.

Note that each Armendariz (or weak Armendariz) ring is weakened (α, δ)-skew

Armendariz, where α is the identity endomorphism of R and δ is the zero map-

ping. The following example shows that there exists an endomorphism α and an

α-derivation δ of an Armendariz (or weak Armendariz) ring R such that R is not

weakened (α, δ)-skew Armendariz.

E x am p l e 2.2. Let S be a reduced ring and R = S[x] a polynomial ring over S.

Then R is reduced and so Armendariz (or weak Armendariz). Consider the endo-

morphism α : R → R given by α(f(x)) = f(0) and α-derivation δ : R → R by

δ(f(x)) = xf(x) − f(0)x. Take p(y) = x − y and q(y) = x + xy ∈ R[y;α, δ]. Then

p(y)q(y) = 0. But x2 is not nilpotent and hence R is not weakened (α, δ)-skew

Armendariz.

Clearly, every subring S with α(S) ⊆ S and δ(S) ⊆ S of a weakened (α, δ)-skew

Armendariz ring is also weakened (α, δ)-skew Armendariz.

It will be useful to establish a criteria for transfering the weakened (α, δ)-skew

Armendariz condition from one ring to another.

Proposition 2.3. Let α be an endomorphism and δ an α-derivation of a ring R.

Let S be a ring and γ : R → S a ring isomorphism. Then R is weakened (α, δ)-skew

Armendariz if and only if S is weakened (γαγ−1, γδγ−1)-skew Armendariz.

P r o o f. Let α′ = γαγ−1 and δ′ = γδγ−1. Clearly, α′ is an endomorphism

of S. Also δ′(ab) = γδ(γ−1(a)γ−1(b)) = γ((δγ−1)(a)γ−1(b)+ (αγ−1)(a)(δγ−1)(b)) =

δ′(a)b + α′(a)δ′(b). Thus δ′ is an α′-derivation on S. Suppose that a′ = γ(a) and

b′ = γ(b) for each a, b ∈ R. Note that

γ(aαkδt(b)) = a′γ(αkδt(b)) = a′γ(αkγ−1γδtγ−1γ(b))

= a′(γαγ−1)k(γδγ−1)t(b′) = a′α′kδ′t(b′).

Therefore γ(afv
u(b)) = a′fv

u (b
′) for each a, b ∈ R and 0 6 u 6 v. Let g(x) =

m
∑

i=0

aix
i

and h(x) =
n
∑

j=0

bjx
j ∈ R[x;α, δ]. According to the above argument, g(x)h(x) = 0
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in R[x;α, δ] if and only if g′(x)h′(x) = 0 in S[x;α′, δ′], where g′(x) =
m
∑

i=0

a′ix
i and

h′(x) =
n
∑

j=0

b′jx
j ∈ S[x;α′, δ′]. Also aix

ibjx
j ∈ nil(R[x;α, δ]) for each i, j if and

only if a′ix
ib′jx

j ∈ nil(S[x;α′, δ′]) for each i, j. Thus, R is weakened (α, δ)-skew

Armendariz if and only if S is weakened (γαγ−1, γδγ−1)-skew Armendariz. �

Let α be an endomorphism and δ an α-derivation of a ring R. Recall that for an

ideal I of R, if α(I) ⊆ I, then α : R/I → R/I defined by α(a + I) = α(a) + I for

a ∈ R is an endomorphism of a factor ring R/I, and if δ(I) ⊆ I, then δ̄ : R/I → R/I

defined by δ̄(a+I) = δ(a)+I for a ∈ R is an α-derivation of a factor ring R/I. Also,

for each f(x) =
m
∑

i=0

aix
i ∈ R[x;α, δ], denote f(x) =

m
∑

i=0

aix
i ∈ (R/I)[x;α, δ̄], where

ai = ai + I for each i.

Proposition 2.4. Let α be an endomorphism and δ an α-derivation of a ring R.

Let I be an ideal of R with α(I) ⊆ I and δ(I) ⊆ I. If R/I is a weakened (α, δ̄)-skew

Armendariz ring and I[x;α, δ] is nil, then R is a weakened (α, δ)-skew Armendariz

ring.

P r o o f. Let f(x) =
m
∑

i=0

aix
i and g(x) =

n
∑

j=0

bjx
j ∈R[x;α, δ] satisfy f(x)g(x) = 0.

Then from canonical ring isomorphism R[x;α, δ]/I[x;α, δ] ∼= (R/I)[x;α, δ̄] we have

m
∑

i=0

aix
i

n
∑

j=0

bjx
j = 0.

Thus, aix
ibjx

j ∈ nil((R/I)[x;α, δ̄]) for each i, j, since R/I is weakened (α, δ̄)-skew

Armendariz, then (aix
ibjx

j)nij ∈ I[x;α, δ]) for a positive integer nij . Since I[x;α, δ]

is nil, aix
ibjx

j ∈ nil(R[x;α, δ]) for each i and j. Therefore R is weakened (α, δ)-skew

Armendariz. �

Recall that a ring R is an NI ring if the set of nilpotent elements, nil(R), forms an

ideal. In the following lemma, we determine a property for idempotents of a weakened

(α, δ)-skew Armendariz NI ring.

Lemma 2.5. Let R be a weakened (α, δ)-skew Armendariz NI ring. Then δ(e) ∈

nil(R) for each e2 = e ∈ R.

P r o o f. Let e2 = e ∈ R. Then we have δ(e) = δ(e2) = δ(e)e + α(e)δ(e). Now

suppose that f(x) = δ(e)+α(e)x and g(x) = (e− 1)+ (e− 1)x ∈ R[x;α, δ]. Then we

have f(x)g(x) = 0. Since R is a weakened (α, δ)-skew Armendariz ring, δ(e)(e−1) =

δ(e)e − δ(e) ∈ nil(R). On the other hand, if we take p(x) = δ(e) − (1 − α(e))x and

q(x) = e + ex ∈ R[x;α, δ], then we have p(x)q(x) = 0. Thus, δ(e)e ∈ nil(R) since R

is a weakened (α, δ)-skew Armendariz ring. So δ(e) ∈ nil(R), as desired. �
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Recall that a ring R is Abelian if every idempotent of R is central. The follow-

ing theorem is a characterization of an Abelian ring R to be weakened (α, δ)-skew

Armendariz in terms of its idempotents.

Theorem 2.6. Let R be an Abelian ring, α an endomorphism and δ an

α-derivation of R. Then the following statements are equivalent:

(i) R is weakened (α, δ)-skew Armendariz;

(ii) For each idempotent e ∈ R such that α(e) = e and δ(e) = 0, eR and (1 − e)R

are weakened (α, δ)-skew Armendariz;

(iii) For an idempotent e ∈ R such that α(e) = e and δ(e) = 0, eR and (1− e)R are

weakened (α, δ)-skew Armendariz.

P r o o f. (i) ⇒ (ii): It is obvious, since eR and (1 − e)R are subrings of R.

(ii) ⇒ (iii): It is clear.

(iii)⇒ (i): Suppose that for an idempotent e ∈ R such that α(e) = e and δ(e) = 0,

eR and (1 − e)R are weakened (α, δ)-skew Armendariz and let f(x) =
m
∑

i=0

aix
i

and g(x) =
n
∑

j=0

bjx
j ∈ R[x;α, δ] with f(x)g(x) = 0. Then (ef(x))(eg(x)) = 0

and ((1 − e)f(x))((1 − e)g(x)) = 0. Since eR and (1 − e)R are weakened (α, δ)-

skew Armendariz, there exist mij , nij ∈ N such that (eaix
iebjx

j)mij = 0 and

((1 − e)aix
i(1− e)bjx

j)nij = 0. On the other hand, since α(e) = e and δ(e) = 0, we

have α(ebj) = eα(bj) and δ(ebj) = eδ(bj). Hence, one can see that (eaix
iebjx

j)mij =

e(aix
ibjx

j)mij = 0 and ((1 − e)aix
i(1 − e)bjx

j)nij = (1 − e)(aix
ibjx

j)nij = 0. Let

kij = max{mij , nij}. Then e(aix
ibjx

j)kij = 0 and (1 − e)(aix
ibjx

j)kij = 0. There-

fore (aix
ibjx

j)kij = e(aix
ibjx

j)kij + (1 − e)(aix
ibjx

j)kij = 0. Hence R is weakened

(α, δ)-skew Armendariz. �

For weak Armendariz rings we have the following result.

Proposition 2.7. If R[x;α] is a weak Armendariz ring, then R is a weakened

α-skew Armendariz ring.

P r o o f. Suppose f(x) =
m
∑

i=0

aix
i and g(x) =

n
∑

j=0

bjx
j ∈ R[x;α] satisfy

f(x)g(x) = 0. Then we have ck = a0bk + a1α(bk−1) + . . . + akα
k(b0) = 0 for

each 0 6 k 6 m+ n. Now, let

p(y) = a0 + (a1x)y + (a2x
2)y2 + . . .+ (amxm)ym,

q(y) = b0 + (b1x)y + (b2x
2)y2 + . . .+ (bnx

n)yn
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be polynomials in R[x;α][y]. Thus, we have p(y)q(y) =
m+n
∑

k=0

(ckx
k)yk = 0, since

ck = 0 for each 0 6 k 6 m + n. So aix
ibjx

j ∈ nil(R[x;α]) for each 0 6 i 6 m

and 0 6 j 6 n, since R[x;α] is weak Armendariz. Hence, R is a weakened α-skew

Armendariz ring and the result follows. �

Let αi be an endomorphism and δi an αi-derivation of a ring Ri, i = 1, 2, . . . , k.

Let R =
k
⊕

i=1

Ri. Then the map α : R → R defined by α((ai)) = (αi(ai)) is an endo-

morphism of R and δ : R → R defined by δ((ai)) = (δi(ai)) is an α-derivation of R.

Proposition 2.8. Let αi be an endomorphism and δi an αi-derivation of a ring Ri

for each 1 6 i 6 k. Then Ri is a weakened (αi, δi)-skew Armendariz ring if and only

if R =
k
⊕

i=1

Ri is a weakened (α, δ)-skew Armendariz ring.

P r o o f. It is not hard to see that there exists a ring isomorphism ϕ : R[x;α, δ] →
k
⊕

i=1

(Ri[x;αi, δi]), given by ϕ
( m
∑

s=0

Asx
s
)

= (fi), where As = (a1s, a2s, . . . , aks) in R

and fi(x) =
m
∑

s=0

aisx
s in Ri[x;αi, δi] for each 0 6 s 6 m and 1 6 i 6 k. Let

f(x) =
m
∑

s=0

Asx
s and g(x) =

n
∑

t=0

Btx
t ∈ R[x;α, δ] satisfy f(x)g(x) = 0, where As =

(a1s, a2s, . . . , aks) andBt = (b1t, b2t, . . . , bkt) ∈ R and ais, bit ∈ Ri for each 0 6 s 6 m

and 0 6 t 6 n. Then from isomorphism R[x;α, δ] ∼=
k
⊕

i=1

(Ri[x;αi, δi]) we have

that fi(x)gi(x) = 0 for each 1 6 i 6 k, where fi(x) =
m
∑

s=0

aisx
s and gi(x) =

n
∑

t=0

bitx
t ∈ Ri[x;αi, δi]. Since Ri is weakened (αi, δi)-skew Armendariz for every

1 6 i 6 k, there exists psti ∈ N such that (aisx
sbitx

t)psti = 0 for each 1 6 i 6 k. Let

pst = max{pst1, pst2, . . . , pstk}. Then (Asx
sBtx

t)pst = 0. Therefore R =
k
⊕

i=1

Ri is

a weakened (α, δ)-skew Armendariz ring. Conversely, since Ri is an invariant subring

of R for each 1 6 i 6 k, the assertion holds. �

Let R be a ring and σ denotes an endomorphism of R with σ(1) = 1. In [6] the

authors introduced skew triangular matrix ring, denoted by Tn(R, σ), as a set of

all triangular matrices with addition point-wise and a new multiplication subject

to the condition Eijr = σj−i(r)Eij . So (aij)(bij) = (cij), where cij = aiibij +

ai,i+1σ(bi+1,j) + . . .+ aijσ
j−i(bjj) for each i 6 j.

The subring of the skew triangular matrices with constant main diagonal is denoted

by S(R, n, σ); and the subring of the skew triangular matrices with constant diagonals

is denoted by T (R, n, σ). We can denote A = (aij) ∈ T (R, n, σ) by (a11, . . . , ann).

Then T (R, n, σ) is a ring with addition point-wise and multiplication given by:
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(a0, . . . , an−1)(b0, . . . , bn−1) = (a0b0, a0 ∗ b1 + a1 ∗ b0, . . . , a0 ∗ bn−1 + . . .+ an−1 ∗ b0),

with ai ∗ bj = aiσ
i(bj) for each i and j. Therefore, clearly one can see that

T (R, n, σ) ∼= R[x;σ]/(xn), where (xn) is the ideal generated by xn in R[x;σ].

Also, we consider the following two subrings of S(R, n, σ):

A(R, n, σ) =

{⌊n
2
⌋

∑

j=1

n−j+1
∑

i=1

ajEi,i+j−1 +
n
∑

j=⌊ n
2
⌋+1

n−j+1
∑

i=1

ai,i+j−1Ei,i+j−1

}

;

B(R, n, σ) = {A+ rE1k : A ∈ A(R, n, σ) and r ∈ R}, n = 2k > 4.

Let σ be an endomorphism of a ring R, α an endomorphism of R and δ an α-

derivation of R such that σα = ασ and δσ = σδ. The endomorphism α of R is

extended to the endomorphism α : D → D defined by α((aij)) = (α(aij)) and the

α-derivation δ of R is also extended to δ̄ : D → D defined by δ̄((aij)) = (δ(aij)),

where D is one of the rings Tn(R, σ), S(R, n, σ), A(R, n, σ), B(R, n, σ) or T (R, n, σ).

Also, the map σ : R[x;α, δ] → R[x;α, δ] defined by σ
( m
∑

i=0

aix
i
)

=
m
∑

i=0

σ(ai)x
i is an

endomorphism of R[x;α, δ].

Kim and Lee in [15], Example 1 showed that n× n upper triangular matrix rings

over a ring R are not Armendariz when n > 2. But we have the following result.

Proposition 2.9. Let σ and α be endomorphisms of a ring R and δ an α-

derivation of R such that σα = ασ, δσ = σδ and n is a positive integer number.

Then R is a weakened (α, δ)-skew Armendariz ring if and only if D is a weak-

ened (α, δ̄)-skew Armendariz ring, where D is one of the rings Tn(R, σ), S(R, n, σ),

A(R, n, σ), B(R, n, σ), T (R, n, σ).

P r o o f. We only prove this proposition for the case D = Tn(R, σ). Note that

any invariant subring of weakened (α, δ)-skew Armendariz rings is a weakened (α, δ)-

skew Armendariz ring. Thus, if Tn(R, σ) is a weakened (α, δ̄)-skew Armendariz ring,

then R is a weakened (α, δ)-skew Armendariz ring. Conversely, Let I = {A ∈ D :

each diagonal entry of A is zero}. Then I[x;α, δ̄] is a nil ideal of D[x;α, δ̄]. On the

other hand, we can obtain D/I ∼=
n
⊕

i=1

Ri, where Ri = R. The proof is completed by

Proposition 2.4 and Proposition 2.8. �

Corollary 2.10. If R is an (α, δ)-skew Armendariz ring, then D is a weak-

ened (α, δ̄)-skew Armendariz ring, where D is one of the rings Tn(R, σ), S(R, n, σ),

A(R, n, σ), B(R, n, σ), T (R, n, σ).

Given a ring R and a bimodule RMR, the trivial extension of R by M is

T (R,M) = R⊕M with the usual addition and the multiplication: (r1,m1)(r2,m2) =

(r1r2, r1m2 +m1r2).
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This is isomorphic to the ring of all matrices

(

r m

0 r

)

, where r ∈ R and m ∈ M

and the usual matrix operations are used.

Corollary 2.11. Let α be an endomorphism and δ an α-derivation of a ring R.

Then R is a weakened (α, δ)-skew Armendariz ring if and only if the trivial extension

T (R,R) is a weakened (α, δ̄)-skew Armendariz ring.

P r o o f. It follows from Proposition 2.9. �

Note that if σ is an identity endomorphism of R, then we have the following

corollary.

Corollary 2.12. Let σ and α be endomorphisms of a ring R and δ an α-derivation

of R such that σα = ασ and δσ = σδ. Then we have the following statements:

(i) R is a weakened (α, δ)-skew Armendariz ring if and only if for each positive

integer n, R[x;σ]/(xn) is a weakened (α, δ̄)-skew Armendariz ring.

(ii) R is a weakened (α, δ)-skew Armendariz ring if and only if for each positive

integer n, R[x]/(xn) is a weakened (α, δ̄)-skew Armendariz ring.

Now we can give the examples of weakened (α, δ)-skew Armendariz rings which

are not (α, δ)-skew Armendariz.

E x am p l e 2.13. Let α be an endomorphism and δ an α-derivation of a field F

and R =

(

F F

0 F

)

be the 2-by-2 upper triangular matrix ring over F . Let f(x) =
(

1 0

0 0

)

+

(

1 −1

0 0

)

x and g(x) =

(

0 0

0 1

)

+

(

0 1

0 1

)

x ∈ R[x;α, δ̄]. Then it is

easy to see that f(x)g(x) = 0, but

(

1 0

0 0

)(

0 1

0 1

)

x 6= 0. So R is not (α, δ̄)-

skew Armendariz. Since F is a field, F is an (α, δ)-skew Armendariz. Thus, by

Corollary 2.10, R is a weakened (α, δ̄)-skew Armendariz ring.

E x am p l e 2.14. Let R be a weakened (α, δ)-skew Armendariz ring. Let

Sn =









































a a12 a13 . . . a1n
0 a a23 . . . a2n

0 0 a . . . a3n
...
...

...
. . .

...

0 0 0 . . . a















: a, aij ∈ R



























with n > 4.
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Suppose

f(x) =















0 1 0 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0
...
...
...
. . .

...

0 0 0 . . . 0















+















0 1 −1 0 . . . 0

0 0 0 0 . . . 0

0 0 0 0 . . . 0
...
...
...
...
. . .

...

0 0 0 0 . . . 0















x

and

g(x) =



















0 0 0 . . . 0

0 0 0 . . . 0

0 0 0 . . . 1

0 0 0 . . . 0
...
...
...
. . .

...

0 0 0 . . . 0



















+



















0 0 0 . . . 0

0 0 0 . . . 1

0 0 0 . . . 1

0 0 0 . . . 0
...
...
...
. . .

...

0 0 0 . . . 0



















x

be polynomials in Sn[x;α, δ̄]. Then it is easy to see that f(x)g(x) = 0, but















0 1 0 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0
...
...
...
. . .

...

0 0 0 . . . 0

































0 0 0 . . . 0

0 0 0 . . . 1

0 0 0 . . . 1

0 0 0 . . . 0
...
...
...
. . .

...

0 0 0 . . . 0



















x 6= 0.

So Sn is not (α, δ̄)-skew Armendariz, but Sn is a weakened (α, δ̄)-skew Armendariz

ring by Proposition 2.9, since any subring of weakened (α, δ̄)-skew Armendariz rings

is a weakened (α, δ̄)-skew Armendariz ring.

From Proposition 2.9, one may suspect that if R is weakened (α, δ)-skew Armen-

dariz, then every n × n full matrix ring Mn(R) over R is a weakened (α, δ̄)-skew

Armendariz ring, where n > 2. But the following example erases this possibility.

E x am p l e 2.15. Let α be an endomorphism and δ an α-derivation of a ring R

and R be a weakened (α, δ)-skew Armendariz ring. Let S = M2(R). Suppose

f(x) =

(

0 1

0 0

)

+

(

1 0

0 0

)

x and g(x) =

(

1 1

0 0

)

+

(

0 0

−1 −1

)

x

be polynomials in S[x;α, δ̄]. Then it is easy to see that f(x)g(x) = 0, but

(

1 0

0 0

)

x

(

1 1

0 0

)

=

(

1 1

0 0

)

x

is not nilpotent. Thus, S is not weakened (α, δ̄)-skew Armendariz.
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Let D be a ring and C a subring of D with 1D ∈ C. With addition and multipli-

cation defined component-wise,

R = ℜ(D,C) = {(d1, . . . , dn, c, c, . . .) : di ∈ D, c ∈ C, n > 1}

is a ring (see [7]). For an endomorphism α and an α-derivation δ of D such that

α(C) ⊆ C and δ(C) ⊆ C, the natural extension α : R → R defined by

α((d1, . . . , dn, c, c, . . .)) = (α(d1), . . . , α(dn), α(c), α(c), . . .)

for (d1, . . . , dn, c, c, . . .) ∈ R is an endomorphism of R and δ̄ : R → R defined by

δ̄((d1, . . . , dn, c, c, . . .)) = (δ(d1), . . . , δ(dn), δ(c), δ(c), . . .) for (d1, . . . , dn, c, c, . . .) ∈ R

is an α-derivation of R.

Theorem 2.16. Let α be an endomorphism and δ an α-derivation of a ring D

and let C be a subring of D with 1D ∈ C, α(C) ⊆ C and δ(C) ⊆ C. Then D is

a weakened (α, δ)-skew Armendariz ring if and only if R = ℜ(D,C) is a weakened

(α, δ̄)-skew Armendariz ring.

P r o o f. Suppose that D is a weakened (α, δ)-skew Armendariz ring. Let

f(x) =
p
∑

i=0

ξix
i and g(x) =

q
∑

j=0

ηjx
j ∈ R[x;α, δ̄] and f(x)g(x) = 0. Without

loss of generality, we can assume that there exists a positive integer n such that

ξi = (a1i, . . . , ani, ci, ci, . . .), ηj = (b1j , . . . , bnj , dj , dj , . . .) ∈ R for all i, j. Let fs(x) =
p
∑

i=0

asix
i, gs(x) =

q
∑

j=0

bsjx
j with 1 6 s 6 n and f ′(x) =

p
∑

i=0

cix
i, g′(x) =

q
∑

j=0

djx
j .

From f(x)g(x) = 0 we obtain fs(x)gs(x) = 0 and f ′(x)g′(x) = 0 in D[x;α, δ]

for all s. Thus, asix
ibsjx

j ∈ nil(D[x;α, δ]) and cix
idjx

j ∈ nil(D[x;α, δ]) for all

i, j, s since D is weakened (α, δ)-skew Armendariz. Hence, there exist tsij , t
′
ij ∈ N

such that (asix
ibsjx

j)tsij = 0 and (cix
idjx

j)t
′

ij = 0 for 1 6 s 6 n. Let tij =

max{t1ij , . . . , tnij , t
′
ij}. Then we have (ξix

iηjx
j)tij = 0 for all i, j. Therefore R is

weakened (α, δ̄)-skew Armendariz. Conversely, since D is an invariant subring of R,

the assertion holds. �
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3. weakly 2-primal (α, δ)-compatible rings and weakened (α, δ)-skew

Armendariz rings

A ring R is semicommutative if the right annihilator of each element ofR is an ideal

(equivalently, if for all a, b ∈ R we have ab = 0 ⇒ aRb = 0). A ring R is symmetric

if for all a, b, c ∈ R we have abc = 0 ⇒ bac = 0. A ring R is called reversible if

for all a, b ∈ R we have ab = 0 ⇒ ba = 0. Recall that a ring R is 2-primal if

nil(R) = Nil∗(R), where Nil∗(R) denotes the prime radical of R. Hong et al. (see [12])

called a ring R to be locally 2-primal if each finite subset generates a 2-primal ring.

Chen and Cui (see [8]) called a ring R weakly 2-primal if the set of nilpotent elements

in R coincides with its locally nipotent radical. Note that every reduced ring is

symmetric by [3], Theorem 1.3, every symmetric ring is reversible, every reversible

ring is semicommutative by [19], Proposition 1.3, every semicommutative ring is 2-

primal by [23], Theorem 1.5, every 2-primal ring is locally 2-primal and every locally

2-primal ring is weakly 2-primal.

The following example shows that there exists a semicommutative ring with an en-

domorphism α and an α-derivation δ which is not weakened (α, δ)-skew Armendariz.

E x am p l e 3.1. Let S be a reduced ring and R = S[x] a polynomial ring over S.

Then R is reduced and so semicommutative. Consider the endomorphism α : R → R

given by α(f(x)) = f(0) and α-derivation δ : R → R by δ(f(x)) = xf(x) − f(0)x.

Take p(y) = x− y and q(y) = x+ xy ∈ R[y;α, δ]. Then p(y)q(y) = 0. But x2 is not

nilpotent and hence R is not weakened (α, δ)-skew Armendariz.

The following example shows that weakened (α, δ)-skew Armendariz rings may

not be semicommutative.

E x am p l e 3.2. Let α be an endomorphism and δ an α-derivation of a division

ring F andR =

(

F F

0 F

)

be the 2-by-2 upper triangular matrix ring over F . ThenR

is not semicommutative by [14], Example 5. But by Corollary 2.10, R is a weakened

(α, δ̄)-skew Armendariz ring.

Habibi and Moussavi (see [9]) called a ring R nil (α, δ)-skew Armendariz if when-

ever polynomials f(x) = a0+a1x+. . .+amxm, g(x) = b0+b1x+. . .+bnx
n ∈ R[x;α, δ]

satisfy f(x)g(x) ∈ nil(R)[x;α, δ], then aix
ibjx

j ∈ nil(R)[x;α, δ] for each i and j.

Proposition 3.3. Let R be an α-compatible ring such that nil(R[x;α, δ]) =

nil(R)[x;α, δ]. Then R is a weakened (α, δ)-skew Armendariz ring.

P r o o f. Let f(x) =
m
∑

i=0

aix
i and g(x) =

n
∑

j=0

bjx
j ∈ R[x;α, δ] such that

f(x)g(x) = 0. Since R is an α-compatible and nil(R[x;α, δ]) = nil(R)[x;α, δ], R is
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nil (α, δ)-skew Armendariz by [9], Proposition 2.9. Then aix
ibjx

j ∈ nil(R)[x;α, δ]

for each i, j. Hence aix
ibjx

j ∈ nil(R[x;α, δ]) for each i, j. Therefore R is a weakened

(α, δ)-skew Armendariz ring. �

Wang et al. in [24], Corollary 2.1 proved that if R is a weakly 2-primal (α, δ)-

compatible ring, then nil(R[x;α, δ]) = nil(R)[x;α, δ]. So we have the following result.

Proposition 3.4. Every weakly 2-primal (α, δ)-compatible ring is weakened

(α, δ)-skew Armendariz.

Corollary 3.5. α-rigid rings are weakened (α, δ)-skew Armendariz rings.

The following example shows that the converse of Corollary 3.5 is not true in

general.

E x am p l e 3.6. Let δ be an α-derivation of a ring R and R be an α-rigid ring.

Then by Corollary 3.5, R is a weakened (α, δ)-skew Armendariz ring. Consider the

following subring of T3(R):

R3 =











a b c

0 a d

0 0 a



 : a, b, c, d ∈ R







.

The endomorphism α of R is extended to the endomorphism α : R3 → R3 defined

by α((aij)) = (α(aij)) and the α-derivation δ of R is also extended to δ̄ : R3 → R3

defined by δ̄((aij)) = (δ(aij)). By Proposition 2.9, R3 is weakened (α, δ̄)-skew Ar-

mendariz. But it is not α-rigid, by [10], Example 1.2.

Lemma 3.7. Let α be an endomorphism and δ an α-derivation of a ring R.

Then R is (α, δ)-compatible and reduced if and only if R[x] is (α, δ)-compatible and

reduced.

P r o o f. We know, R is reduced if and only if R[x] is reduced. Let R be (α, δ)-

compatible and reduced. Let f(x) =
m
∑

i=0

aix
i and g(x) =

n
∑

j=0

bjx
j ∈ R[x] with

f(x)g(x) = 0. Since R is Armendariz, aibj = 0 for all 0 6 i 6 m and 0 6 j 6 n.

Then aiα(bj) = 0, aiδ(bj) = 0 because R is (α, δ)-compatible. Thus

f(x)α(g(x)) =
m
∑

i=0

aix
i

n
∑

j=0

α(bj)x
j =

m+n
∑

k=0

(

∑

i+j=k

aiα(bj)

)

xk = 0

and

f(x)δ(g(x)) =

m
∑

i=0

aix
i

n
∑

j=0

δ(bj)x
j =

m+n
∑

k=0

(

∑

i+j=k

aiδ(bj)

)

xk = 0.
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Now assume that f(x)α(g(x)) = 0. Then we have

f(x)α(g(x)) =
m
∑

i=0

aix
i

n
∑

j=0

α(bj)x
j = 0.

Since R is Armendariz, aiα(bj) = 0 for all 0 6 i 6 m and 0 6 j 6 n. So aibj = 0

because R is (α, δ)-compatible. Hence

f(x)g(x) =
m
∑

i=0

aix
i

n
∑

j=0

bjx
j =

m+n
∑

k=0

(

∑

i+j=k

aibjx
k

)

= 0.

Therefore R[x] is an (α, δ)-compatible ring. Conversely, it is clear. �

Proposition 3.8. Let R be an (α, δ)-compatible and reduced ring. Then R[x] is

a weakened (α, δ)-skew Armendariz ring.

P r o o f. Let R be an (α, δ)-compatible and reduced ring. Then R[x] is (α, δ)-

compatible and reduced, by Lemma 3.7. But every reduced ring is weakly 2-primal.

Thus, R[x] is a weakly 2-primal (α, δ)-compatible ring. Therefore R[x] is a weakened

(α, δ)-skew Armendariz ring, by Proposition 3.4. �
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