
Zpravodaj Československého sdružení uživatelů TeXu

Petr Olšák
TeX in a Nutshell

Zpravodaj Československého sdružení uživatelů TeXu, Vol. 31 (2021), No. 1-4, 9–55

Persistent URL: http://dml.cz/dmlcz/150294

Terms of use:
© Československé sdružení uživatelů TeXu, 2021

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/150294
http://dml.cz

TEX in a Nutshell
Petr Olšák

Nowadays, many users discover TEX through high-level formats that hide the com-
plexity of typesetting behind a facade of a friendly markup language. However,
all except the simplest of typesetting tasks require that the user can understand
what happens under the hood and knows how they can influence the algorithms
of TEX when needed.

In this article, the author introduces the foundations of most high-level TEX
formats, which will help the readers with their day-to-day work with TEX as
well as their more difficult typesetting tasks. The readers are first introduced
to the program TEX and its extensions. Then, they learn about the different
processors of TEX and their modes. Finally, the readers learn about the registers
and primitive commands of TEX as well as the macros of the plain TEX format.
The word of the day is brevity as the exposition spans less than forty pages: An
excellent reading material for an otherwise uneventful train ride!

The author has previously written three books about TEX, has developed
the OpTEX format, maintains a dozen package on the CTAN archive, and has
taught a university course about TEX for over twenty years.

Keywords: TEX, εTEX, pdfTEX, X ETEX, LuaTEX, microtypography, plain TEX

Pure TEX features are described here, no features provided by macro extensions.
Only the last section gives a summary of plain TEX macros.

The main goal of this document is brevity. So features are described only
roughly and sometimes inaccurately here. If you need to know more then you can
read free available books, for example TEX by topic or TEXbook naruby. Try to
type texdoc texbytopic in your system.

The OpTEX manual supposes that the user already knows the basic principles
of TEX itself. If you are converting from LATEX to OpTEX for example1 then you
may welcome a summary document that presents these basic principles because
LATEX manuals typically don’t distinguish between TEX features and features
specially implemented by LATEX macros.

I would like to express my special thanks to Barbara Beeton who read my text
very carefully and suggested hundreds of language corrections and improvements
and also discovered many of my real mistakes. Thanks to her, my text is better.
But if there are any other mistakes then they are only mine and I’ll be pleased if
you send me a bug report in such case.

This article has been republished from ctan with minor changes and the addition of the
abstract with the permission of the author. Our changes do not alter the content of the article.

1Congratulations on your decision :-)

doi: 10.5300/2021-1-4/9 9

https://www.eijkhout.net/tex/tex-by-topic.html
http://petr.olsak.net/tbn.html
http://petr.olsak.net/optex
https://ctan.org/pkg/tex-nutshell

Table of contents
1 Terminology . 10
2 Formats, engines . 11
3 Searching data . 13
4 Processing the input . 13
5 Vertical and horizontal modes . 15
6 Groups in TEX . 17
7 Box, kern, penalty, glue . 17
8 Syntactic rules . 20
9 Principles of macros . 21
10 Math modes . 23
11 Registers . 24
12 Expandable primitive commands . 29
13 Primitive commands at main processor level 33
14 Summary of plain TEX macros . 44

Index . 48

1 Terminology
The main principle of TEX is that its input files can be a mix of the material
which could be printed and control sequences which give a setting for built-in
algorithms of TEX or give a special message to TEX what to do with the inputted
material.

Each control sequence (typically a word prefixed by a backslash) has its
meaning. There are four types of meanings of control sequences:
• the control sequence can be a register ; this means it represents a variable which
is able to keep a value. There are primitive registers. Their values influence
behavior of built-in algorithms (e.g., \hsize, \parindent, \hyphenpenalty).
On the other hand declared registers are used by macros (e.g., \medskipamount
used in plain TEX or \ttindent used by OpTEX).

• the control sequence can be a primitive command, which runs a built-in
algorithm (e.g., \def declares a macro, \halign runs the algorithm for tables,
\hbox creates a box in typesetting output).

• the control sequence can be a character constant (declared by \chardef
or \mathchardef primitive command) or a font selector (declared by \font
primitive command).

• the control sequence can be a macro. When it is read, it is replaced by
its replacement text in the input queue. If there are more macros in the
replacement text, all macros are replaced. This is called the expansion process
which ends when only printable text, primitive commands (listed in section 13),
registers (section 11), character constants, or font selectors remain.

10

Example. When TEX reads:

\def\TeX{T\kern-.1667em\lower.5ex\hbox{E}\kern-.125emX}

in a macro file, then the \def primitive command saves the information that \TeX
is a control sequence with meaning “macro”, the replacement text is declared
here, and it is a mix of a material to be typeset: T, E and X and primitive
commands \kern, \lower, \hbox with their parameters in given syntax. Each
primitive command has a declared syntax; for example, \kern must be followed
by a dimension specification in the format “decimal number followed by a unit”.
More about this primitive syntax is in sections 11, 12 and 13.

When a control sequence \TeX with meaning “macro” occurs in the in-
put stream, then it is expanded to its replacement text, i.e. the sequence
of typesetting material and primitive commands. The \TeX macro expands
to T\kern-.1667em\lower.5ex\hbox{E}\kern -.125emX and the logo TEX is
printed as a result of this processing.

None of the control sequences have their definitive meaning. A control se-
quence could change its meaning by re-defining it as a new macro (using \def),
redeclaring it as an arbitrary object in TEX (using \let), etc. When you re-define
a primitive control sequence then the access to its value or built-in algorithm is
lost. This is a reason why OpTEX macros duplicate all primitive sequences (\hbox
and _hbox) with the same meaning and use only “private” control sequences
(prefixed by _). So, a user can re-define \hbox without the loss of the primitive
command _hbox.

2 Formats, engines
TEX is able to start without any macros preloaded in the so-called ini-TEX state
(the -ini option on the command line must be used). It already knows only
primitive registers and primitive commands at this state.2 When ini-TEX reads
macro files then new control sequences are declared as macros, declared registers,
character constants or font selectors. The primitive command \dump saves the
binary image of the TEX memory (with newly declared control sequences) to the
format file (.fmt extension).

The original intention of existing format files was to prepare a collection of
macro declarations and register settings, to load default fonts, and to dump this
information to a file for later use. Such a collection typically declares macros for
the markup of documents and for typesetting design. This is the reason why we

2 Roughly speaking, if you know all these primitive objects (about 300 in classical TEX,
700 in LuaTEX) and the syntax of all these primitive commands and all the built-in
algorithms, then you know all about TEX. But starting to produce ordinary documents
from this primitive level without macro support is nearly impossible.

11

call these files format files: they give a format of documents on the output side
and declare markup rules for document source files.

When TEX is started without the -ini option, it tries to load a prepared
format file into its memory and to continue with reading more macros or a real
document (or both). The starting point is at the place where \dump was processed
during the ini-TEX state. If the format file is not specified explicitly (by -fmt
option on the command line) then TEX tries to read the format file with the
same name which is used for running TEX. For example tex document runs TEX,
it loads the format tex.fmt and reads the document.tex. Or latex document
runs TEX, it loads the format latex.fmt and reads the document.tex.

The tex.fmt is the format file dumped when plain TEX macros3 were read,
and latex.fmt is the format file dumped when LATEX macros were read. This is
typically done when a TEX distribution is installed without any user intervention.
So, the user can run tex document or latex document without worry that these
typical format files exist.

From this point of view, LATEX is nothing more than a format of TEX, i.e. a
collection of macro declarations and register settings.

A typical TEX distribution has four common TEXengines, i.e. programs. They
implement classical TEX algorithms with various extensions:

• TEX – only classical TEX algorithms by Donald Knuth,
• pdfTEX – an extension supporting PDF output directly and micro-

typographical features,
• X ETEX – an extension supporting Unicode and PDF output,
• LuaTEX – an extension supporting Lua programming, Unicode, micro-

typographical features and PDF output.

Each of them is able to run in ini-TEX state or with a format file.
For example the command luatex -ini macros.ini starts LuaTEX at
ini-TEX state, reads the macros.ini file and the final \dump command is
supposed here to create a format macros.fmt. Then a user can use the
command luatex -fmt macros document to load macros.fmt and process
the document.tex. Or the command luatex document processes LuaTEX
with document.tex and with luatex.fmt which is a little extension of
plain TEX macros. Another example: lualatex document runs LuaTEX with
lualatex.fmt. It is a format with LATEX macros for LuaTEX engine. Final
example: optex document runs LuaTEX with optex.fmt which is a format with
OpTEX macros.

3 Plain TEX macros were made by Donald Knuth, the author of TEX. It is a set of basic
macros and settings which is used (more or less) as a subset of all other macro packages.

12

http://petr.olsak.net/optex

3 Searching data
If TEX needs to read something from the file system (e.g. the primitive command
\input ⟨file name⟩ or \font ⟨font selector⟩= ⟨file name⟩ is used) then the rule
“first wins” is applied. TEX looks at the current directory first or somewhere
in the TEX installation second. The behavior in the second step depends on
the used TEX distribution. For example TEXlive programs are linked with a
kpathsea library and they do the following: Search for the given file in the current
directory, then in the ~/texmf tree (data are saved by the user here), then in the
texmf-local tree (data are saved by the system administrator here; they are not
removed when the TEX distribution is upgraded), then in texmf-var tree (data
are saved automatically by programs from the TEX distribution here), and then
in the texmf-dist tree (data from the TEXlive distribution). Each directory tree
can be divided into sub-trees: first level tex, fonts, doc, etc.; the second level is
divided by TEX engines or font types, etc.; more levels are typically organized to
keep clarity. New files in the current directory or in the ~/texmf tree are found
without doing anything more, but new files in other places have to be registered
by the texhash program (TEX distributions do this automatically during their
installation).

4 Processing the input
The lines from input files are first transformed by the tokenizer. It reads input
lines and generates a sequence of tokens. These are the main goals of the tokenizer:

• It converts each control sequence to a single token characterized by its name.
• Other input material is tokenized as “one token per character”.
• A continuous sequence of multiple spaces is transformed into one space token.
• The end of the line is transformed into a space token, so that paragraph text
can continue on the next input line and one space token is added between
the last word on the previous line and the first word on the next line.

• The comment character % is ignored and all the text after it to the end of
line is ignored too. No space is generated at the end of this line.

• Spaces from the begining of each line are ignored. Thus, you can use arbitrary
indentation in your source file without changing the result.

• Each empty line (or line with only spaces) is transformed to the token \par.
This token has primitive meaning: “finalize the current paragraph”. This
implies the general rule in TEX source files: paragraphs are terminated by
empty lines.

The behavior of the tokenizer is not definitive. The tokenizer works with
a table of category codes. Any change of category codes of characters (done
by the primitive command \catcode‘\ ⟨character⟩= ⟨code⟩) influences tokenizer

13

https://www.tug.org/texlive

processing. For example, the verbatim environment is declared using setting all
characters to normal meaning.

By default, there are the following characters with special meaning. The
tokenizer converts them or sets them as special tokens used in syntactic rules in
TEX later. The corresponding category codes are mentioned here as an index of
the character.

• \0 – starts completion of a control sequence by the tokenizer.
• {1 and }2 – open and close group or have special syntactic meaning. The
main syntactic rule is: each subsequence of tokens treated by macros or
primitive commands must have these pairs of tokens balanced. There is no
exception. The tokenizer treats them as special tokens with meaning “opening
character1” and “closing character2”.

• %14 – comment character, removed by the tokenizer, along with everything
that follows it on the line.

• $3, &4, #6, ^7, _8, ~13 – tokenizer treats them as a special tokens with
meaning: “math-mode selector3”, “table separator4”, “parameter prefix for
macros6”, “superscript prefix in math7”, “subscript prefix in math8”, “active
character13” (the active character ~ is defined as no-breakable space in all
typical formats).

• Letters and other characters are tokenized as “letter character11” or “other
character12”.

If you need to print these special characters you can use \%, \&, \$, \# or _.
These five control sequences are declared as “print this character” in all typical
TEX formats. Another possibility is to use a verbatim environment (it depends
on the used format). Last alternative: you can use \csstring\ ⟨character⟩ in
LuaTEX, because it has the primitive command \csstring which converts
\ ⟨character⟩ to ⟨character⟩ 12. The “active character13” can be declared by
\catcode‘\ ⟨character⟩=13. Such a ⟨character⟩ behaves like a control sequence.
For example, you can define it by \def ⟨character⟩{...} and use this ⟨character⟩
as a macro. If the term ⟨control sequence⟩ is used in syntactical rules in this
document then it means a real control sequence or an active character. Each
control sequence is built by the tokenizer starting from \0. Its name is a continuous
sequence of letters11 finalized by the first non-letter. Note that OpTEX sets _ as
letter11, thus control sequence names can include this character. LATEX sets the @
as letter11 when reading styles and macro files. You can look to such files and you
will see many such characters inside private control sequence names declared by
LATEX macros. If the first character after \0 is a non-letter (i.e. ⟨something⟩ ≠11),
then the control sequence is finalized with only this character in its name. So
called one-character control sequence is created. Other control sequences are
multiletter control sequences. Spaces ␣10 after multi-letter control sequences are

14

ignored, so the space can be used as a terminating character of the control
sequence. Other characters used immediately after a control sequence are not
ignored. So \TeX ! and \TeX! gives the same result: the control sequence \TeX
followed immediately by !12. The tokenizer’s output (a sequence of tokens) goes
to the expand processor and its output goes to the main processor of TEX. The
expand processor performs expansions of macros or a primitive command which
is working at the expand processor level. See a summary of such commands in
section 12. The main processor performs assignment of registers, declares macros
by the \def primitive command, and runs all primitive commands at the main
processor level. Moreover, it creates the typesetting output as described in the
next section. The very important difference between TEX and other programs is
that there are no strings, only sequences of tokens. We can return to the example
\def\TeX{...} above in section 1. The token \def is a control sequence with
meaning “declare a macro”. It gets the following token \TeX and declares it as a
macro with replacement text, which is the sequence of tokens:

T
11

\kern -
12

.
12

1
12

6
12

6
12

7
12

e
11

m
11

\lower .
12

5
12

e
11

x
11

\hbox {
1
E
11

}
2
\kern

-
12

.
12

1
12

2
12

5
12

e
11

m
11

X
11

If you are thinking like TEX then you must forget the term “string” because
all texts in TEX are preprocessed by the tokenizer when input lines are read and
only sequences of tokens are manipulated inside TEX. The tokenizer converts two
^7^7 characters followed by an ASCII uppercase letter to the Ctrl-letter ASCII
code. For example ^^M is Ctrl-M (carriage return). It converts two ^7^7 followed
by two hexadecimal digits (0123456789abcdef) to a one-byte code, for example,
^^0d is Ctrl-M too because it has code 13. Moreover, the tokenizer of X ETEX or
LuaTEX converts ^7^7^7^7 followed by four hexadecimal digits or ^7^7^7^7^7^7
followed by six hexadecimal digits to one character with a given Unicode.

5 Vertical and horizontal modes
When the main processor creates the typesetting output, it alternates between
vertical and horizontal mode. It starts in vertical mode: all materials are put
vertically below in this mode. For example \hbox{a}\hbox{b}\hbox{c} creates
a above b above c in vertical mode. If something is incompatible with the vertical
mode principle — a special command working only in horizontal mode or a
character itself — then the main processor switches to horizontal mode: it opens
an unlimited horizontal data row for typesetting material and puts material
next to each other. For example \hbox{a}\hbox{b}\hbox{c} creates abc in
horizontal mode. When an empty line is scanned, the tokenizer creates a \par
token here and if the main processor is in horizontal mode, the \par command

15

finalizes the paragraph. More exactly it returns to vertical mode, it breaks the
horizontal data row filled in previous horizontal mode to parts with the \hsize
width. These parts are completed as boxes and they are put one below another in
vertical mode. So, a paragraph of \hsize width is created. Repeatedly: if there
is something incompatible with the current vertical mode (typically a character),
then the horizontal mode is opened and all characters (and spaces between
them) are put to the horizontal data row. When an empty line is scanned, then
the \par command is started and the horizontal data row is broken into lines
of \hsize width and the next paragraph is completed. In vertical mode, the
material is accumulated in a vertical data column called the main vertical list. If
the height of this material is greater than \vsize then its part with maximum
\vsize height is completed as a page box and shipped to the output routine. A
programmer or designer can declare a design of pages using macros in the output
routine: header, footer, pagination, the position of the main page box, etc. The
output routine completes the main page box with other material declared in the
output routine and the result is shipped out as one page of the document. The
main processor continues in vertical mode with the rest of the unused material
in the main vertical list. Then it can switch to horizontal mode if a character
occurs, etc... The plain TEX macro \bye (or primitive command \end4) starts
the last \par command, finalizes the last paragraph (if any), completes the last
page box, sends it to the output routine, finalizes the last page in it, and TEX is
terminated. There are internal vertical mode and internal horizontal mode. They
are activated when the main processor is typesetting material inside \vbox{...}
or \hbox{...} primitive commands. More about boxes is in sections 7 and 13.
Understanding of switching between modes is very important for TEX users. There
are primitive commands which are context dependent on the current mode. For
example, the \par primitive command (generated by an empty line) does nothing
in vertical mode but it finalizes paragraph in horizontal mode and it causes an
error in math mode. Or the \kern primitive command creates a vertical space
in vertical mode or horizontal space in horizontal mode. The following primitive
commands used in vertical mode start horizontal mode: the first character of a
paragraph (most common situation) or \indent, \noindent, \hskip (and its
alternatives), \vrule and the plain TEX macro \leavevmode5. When horizontal
mode is opened, an indentation of \parindent width is included. The exception
is only if horizontal mode is started by \noindent; then the paragraph has no
indentation. The following primitive commands used in horizontal mode finalize
the paragraph and return to vertical mode: \par, \vskip (and its alternatives),
\hrule, \end and the plain TEX macro \bye.

4 LATEX format re-defines this primitive control sequence \end to another meaning which
follows the logic of LATEX’s markup rules.

5 The list is not exhaustive, but most important commands are mentioned.

16

6 Groups in TEX
Each assignment to registers, declaration macros or font selecting is local in
groups. When the current group ends then the assignments made inside the
group are forgotten and the values in effect before this group was opened are
restored. The groups can be delimited by {1 and }2 pair or by \begingroup and
\endgroup primitive commands or by \bgroup and \egroup control sequences
declared by plain TEX. For example, plain TEX declares the macros \rm (selects
roman font), \bf (selects bold font) and \it (selects italics) and it initializes by
\rm font. A user can write:

The roman font is here {\it here is italics} and the
roman font continues.

Not only fonts but all registers are set locally inside a group. The macro designer
can declare a special environment with font selection and with more special
typographical parameters in groups. The following example tests understanding
of vertical and horizontal modes.

{\hsize=5cm This is the first paragraph which should be
formatted to 5\,cm width.}

But it is not true...

Why does the example above not create the paragraph with a 5 cm width? The
empty line (\par command) is placed after the group is finished, so the \hsize
parameter has its previous value at the time when the paragraph is completed,
not the value 5 cm. The value of the \hsize register6 is used when the paragraph
is completed, not at the beginning of the paragraph. This is the reason why
macro programmers explicitly put a \par command into macros before the local
environment is finished by the end of the group. Our example should look like
this:

{\hsize=5cm This is the first ... to 5\,cm width.\par}

7 Box, kern, penalty, glue
You can look at one character, say the y. It is represented by three dimensions:
height (above baseline), depth (below baseline) and width. Suppose that there
are more characters printed in horizontal mode and completed as a line of a
paragraph. This line has its height equal to the maximum height of characters
inside it, it has the depth equal to maximum depth of all characters inside it and

6 and about twenty other registers which declare the paragraph design

17

it has its width. Such a sequence of characters encapsulated as one typesetting
element with its height, depth and width is called a box. Boxes are placed next
to each other (from left to right7) in horizontal mode or one below another in
vertical mode. The boxes can include individual characters or spaces or boxes.
The boxes can include more boxes. Paragraph lines are boxes. The page box
includes paragraph lines (boxes). The finalized page with a header, page box,
pagination, etc., is a box and it is shipped out to the PDF page. Understand-
ing boxes is necessary for macro programmers and designers. You can create
an individual box by the primitive command \hbox{ ⟨horizontal material⟩} or
\vbox{ ⟨vertical material⟩}. The ⟨horizontal material⟩ is completed in internal
horizontal mode and ⟨vertical material⟩ in internal vertical mode. Both cases
open a group, create the material in a specified mode and close the group, where
all settings are local. The ⟨horizontal material⟩ can include individual charac-
ters, boxes, horizontal glues or kerns. “Glue” is a special term for stretchable
or shrinkable and possibly breakable spaces and “kern” is a term used for fixed
nonbreakable spaces. The ⟨vertical material⟩ can include boxes, vertical glues
or kerns. No individual characters. If you put an individual character in vertical
mode (for example in a \vbox) then horizontal mode is opened. At the end of a
\vbox8 or when the \par command is invoked, the opened paragraph is finished
(with current \hsize width) and the resulting lines are vertically placed inside
the \vbox. The completed boxes are unbreakable and they are treated as a single
object in the surrounding printed material. The line boxes of a paragraph have
the fixed width \hsize, so there must be something stretchable or shrinkable
in order to get the desired fixed width of lines. Typically the spaces between
words have this feature.9 These spaces have declared their default size, their
stretchability and their shrinkability in the font metric data of the currently used
font. You can place such glue explicitly by the primitive command \hskip:

\hskip ⟨default size⟩ plus ⟨stretchability⟩ minus ⟨shrinkability⟩
for example:
\hskip 10pt plus5pt minus2.5pt

This example places the glue with 10 pt default size, stretchable to 15 pt10 and
shrinkable to 7.5 pt as its minimal size. All glues in one line are stretched or
shrunk equally but with weights given from their stretchability/shrinkability

7 There is an exception for special languages.
8 before the \vbox group is closed
9 When the microtypographical feature \pdfadjustspacing is activated, then not only

spaces are stretchable and shrinkable but individual characters are slightly deformed (by
an invisible amount) too.
10 It can be stretchable ad absurdum (more than 15 pt) but with very considerable
badness calculated by TEX whenever glues are stretched or shrunk.

18

values. You can do experiments of this feature if you say \hbox to ⟨size⟩{...}.
Then the \hbox is created with a given width. Probably, the glues inside this
\hbox must be stretched or shrunk. You can see in the log that the total bad-
ness is calculated, it represents the amount of a “force” used for all glue in-
cluded in such an \hbox. An infinitely stretchable (to an arbitrary positive
value) or shrinkable (to an arbitrary negative value) glue can exist. This glue
is stretched/shrunk and other glues with finite amounts of stretching or shrink-
ing keep their default size in such case. You can put infinitely stretchable/
shrinkable glue using the reserved unit fil in an \hskip command, for ex-
ample the command \hskip 0pt plus 1fil means zero default size but in-
finitely stretchable. There is a shortcut for such glue: \hfil. When you type
\hbox to\hsize{\hfil ⟨text⟩\hfil} then the ⟨text⟩ is centered. But if the
⟨text⟩ is wider than \hsize then TEX reports an overfull \hbox. If you
want to center a wide ⟨text⟩ too, you can use \hss instead of \hfil. The
\hss primitive command is equal to \hskip 0pt plus1fil minus1fil. The
⟨text⟩ printed by \hbox to\hsize{\hss ⟨text⟩\hss} is now centered in its ar-
bitrary size. A glue created with fill stretchability or shrinkability (double
ell) is infinitely more stretchable or shrinkable than glues with only a fil unit.
So, glues with fill are stretched or shrunk and glues with only fil in the
same box keep their default size. For example, a macro declares centering a
⟨text⟩ by \hbox to\hsize{\hss ⟨text⟩\hss} and a user can create the ⟨text⟩
in the form \hfill ⟨real text⟩ . Then ⟨real text⟩ is printed flushed right be-
cause \hfill is a shortcut to \hskip0pt plus1fill and has greater priority
than glues with only a fil unit. Common usage is \hbox to0pt{ ⟨text⟩\hss} or
\hbox to0pt{\hss ⟨text⟩}. The box with zero width is created and the text over-
laps the adjacent text to the right (first example) or to the left (second example).
Plain TEX declares macros for these cases: \rlap{ ⟨text⟩} or \llap{ ⟨text⟩}. The
last line of each paragraph is finalized by a glue of type \hfil by default. When
you write \hfill ⟨object⟩ in vertical mode (⟨object⟩ is something like a table,
image or whatever else in the box) then ⟨object⟩ is flushed right, because the
paragraph is started by the \hfill space but finalized only by \hfil space. If
you type \noindent\hfil ⟨object⟩ then the ⟨object⟩ is centered. And putting
only ⟨object⟩ places it to the left side because the common left side is the default
placement rule in vertical mode. The same principles that apply to horizontal
glues are also applicable to vertical modes where glues are created by \vskip
commands instead of \hskip commands. You can write \vbox to ⟨size⟩{...}
and do experiments. When the paragraph breaking algorithm decides about the
suitable breakpoints for creating lines with the desired width \hsize, then each
glue is a potentially breakable point. Each glue can be preceded by a penalty
value (created by the \penalty primitive) in the typical range −10000 to 10000.
The paragraph breaking algorithm gets a penalty if it decides to break line at

19

the glue preceded by the given penalty value. If no penalty is declared for a
given glue, then it is the same as a penalty equal to zero.11. The penalty value
10000 or more means “impossible to break”. A negative penalty means a bonus
for the paragraph breaking algorithm. The penalty −10000 or less means “you
must break here”. The paragraph breaking algorithm tries to find an optimum of
breakpoint positions concerning to all penalties, to all badnesses of all created
lines and to many more values not mentioned here in this brief document. The
analogous optimal breakpoint is found in vertical material when TEX breaks
it into pages. The concept “box, penalty, glue” with the optimum-fit breaking
algorithms makes TEX unique among many other typesetting software.

8 Syntactic rules
A primitive command can get its parameters written after it. These parameters
must suit syntactic rules given for each primitive command. Some parameters are
optional. E.g. \hskip ⟨dimen⟩ plus ⟨stretchability⟩ minus ⟨shrinkability⟩ means
that the parameter ⟨dimen⟩ must follow (it must suit syntactic rules for dimen-
sions, see section 11) then the optional parameter prefixed by keyword plus can
follow and then the optional parameter prefixed by minus can follow. We denote
the optional parameters by underline in this document.

Keywords (typically prefixes to some parameters) may have optional spaces
around them.

The explicit expressions of numbers (i.e. 75, ”4B, ‘K; see section 11) should
be terminated by one optional space which is not printed. This space can serve
as a termination character which says that “whole number is presented here; no
more digits are expected”.

If the syntactic rule mentions the pair {, } then these characters are not
definitive: other characters may be tokenized with this special meaning but it
is not common. The text between this pair must be balanced with respect to
this pair. For example the syntactic rule \message{ ⟨text⟩} supposes that ⟨text⟩
must not be ab{cd, but ab{c{}}d is allowed for instance.

By default, all parameters read by primitive commands are got from the
input stream, tokenized and fully expanded by the expand processor. But some-
times, when TEX reads parameters for a primitive command, the expand pro-
cessor is deactivated. We denote these parameters by red color. For example,

11 More precisely: the paragraph breaking algorithm or page breaking algorithm can
break horizontal list to lines (or vertical list to pages) at penalties (then it gets the given
penalty) or at glues (then the penalty is zero). The second case is possible only if no
penalty nor glue precedes. The item where the list is broken (penalty or glue), is discarded
and all immediatelly followed glues, penalties and kerns are discarded too. They are
called discardable items.

20

\let ⟨control sequence⟩= ⟨token⟩ means that these parameters processed by the
\let command are not expanded.

Whenever a syntactic rule mentions the = character (see the previous example
with the \let command), then this is the equal sign tokenized as a normal
character and it is optional. The syntactic rule allows to omit it. Optional spaces
are allowed around this equal sign.

The concept of the optional parameters of primitive commands (termi-
nated if something different from the keyword follows) may bring trouble if
a macro programmer forgets to terminate an incomplete parameter text by
the \relax command (\relax does nothing but it can terminate a list of
optional parameters of the previous command). Suppose, for example, that
\mycoolspace is defined by \def\mycoolspace{\penalty42\hskip2mm}. If
a user writes first\mycoolspace plus second then TEX reports the error
missing number, treated as zero in the position of s character and ap-
pends: <to be read again> s. A user who is unfamiliar with TEX primitive
commands and their parameters is totally lost. The correct definition is:
\def\mycoolspace{\penalty42\hskip2mm\relax}.

9 Principles of macros
Macros can be declared by the \def primitive command (or \edef, \gdef, \xdef
commands; see below). The syntax is \def ⟨control sequence⟩ ⟨parameters⟩{
⟨replacement text⟩}. Here, the ⟨parameters⟩ are a sequence of formal parameters
of the declared macro written in the form #1, #2, etc. They must be numbered
from one and incremented by one. The maximum number of declared parameters
is nine. These parameters can be used in the ⟨replacement text⟩ . This specifies
the place where the real parameter is positioned when the macro is expanded.
For example:

\def\test #1{here is ”#1”.}
\test A % expands to: here is ”A”.
\def\swap #1#2{#2#1}
\swap AB % expands to: BA
\test {param} % expands to: here is ”param”.
\swap A{param} % expands to: paramA

Note that there are two possibilities of how to write real macro parameters
when a macro is in use. The parameter is one token by default but if there is
{ ⟨something⟩} then the parameter is ⟨something⟩ . The braces here are delimiters
for the real parameter (no TEX group is opened/closed here). The example above
shows a declaration of unseparated parameters. The parameters were declared by
#1 or #1#2 with no text appended to such a declaration. But there is another

21

possibility. Each formal parameter can have a text appended in its declaration, so
the general syntax of the declaration of formal parameters is #1 ⟨text1⟩#2 ⟨text2⟩
etc. If such ⟨text⟩ is appended then we say that the parameter is separated or
delimited by text. The same delimiter must be used when the macro is in use.
For example

\def\Test #1#2.#3 {first ”#1”, second ”#2”, third ”#3”}
\Test ABC.DEF G % expands to: first ”A”, second ”BC”,

% third ”DEF”. The letter G follows
% after expansion.

In the example above the #1 parameter is unseparated (one token is read as a
real parameter if the syntax { ⟨parameter⟩} is not used). The #2 parameter is
delimited by two dots and the #3 parameter is delimited by space. There may be
a ⟨text0⟩ immediately before #1 in the parameter declaration. This means that
the declared macro must be used with the same ⟨text0⟩ immediately appended.
If not, TEX reports the error. The general rule for declaring a macro with three
parameters is: \def ⟨control sequence⟩ ⟨text0⟩#1 ⟨text1⟩#2 ⟨text2⟩#3 ⟨text3⟩{
⟨replacement text⟩}. The rule “everything must be balanced” is applied to
separated parameters too. It means that \Test AB{C.DEF G}. H from the
example above reads B{C.DEF G} to the #2 parameter and the #3 parameter is
empty because the space (the delimiter of #3 parameter) immediately follows two
dots. The separated parameter can bring a potential problem if the user forgets
the delimiter or the delimiter is specified incorrectly. Then TEX reports an error.
This error is reported when the first \par is scanned as part of the parameter
(probably generated from an empty line). If you really want to scan as part of
the parameter more paragraphs including \par between them, then you can
use the \long prefix before \def. For example \long\def\scan#1\stop{...}
reads the parameter of the \scan macro up to the \stop control sequence,
and this parameter can include more paragraphs. If the delimiter is missing
when a \long defined macro is processed, then TEX reports an error at the
end of the file. When a real parameter of a macro is scanned then the expand
processor is deactivated. When the ⟨replacement text⟩ is processed then the
expand processor works normally. This means that if parameters are used in
the ⟨replacement text⟩ , then they are expanded here. If a macro declaration is
used inside ⟨replacement text⟩ of another macro then the number of # must be
doubled for inner declaration. Example:

\def\defmacro#1#2{%
\def#1##1 ##2 {##1 says: #1 ##2.}%

}
\defmacro\hello{Hello} % \def\hello#1 #2 {#1 says: Hello #2.}
\defmacro\goodbye{Good bye}

22

\hello Jane Eric % expands to: Jane says: Hello Eric.
\goodbye Eric John % expands to: Eric says: Good bye John.

The exact implementation of the feature above: when TEX reads macro body
(during \def, \edef, \gdef, \xdef) then each double #6 is converted to single
#6 and each (unconverted yet) single #6 followed by a digit is converted to
an internal mark of future parameter. This mark is replaced by real prameter
when the defined macro is used. This rule of conversion of macro body has one
exception: \edef{...\the\toks...} keeps the toks content unexpanded and
without conversion of hashes. And there exists a reverse conversion from internal
marks to #12 ⟨number⟩ and from #6 to #12#12 when TEX writes macro body by
\meaning primitive. Note the % characters used in the \defmacro definition in
the exmample above. They mask the end of lines. If you don’t use them, then the
space tokens are included here (generated by the tokenizer at the end of each line).
The ⟨replacement text⟩ of \defmacro will be ⟨space⟩\def#1...{...} ⟨space⟩ in
such a case. Each usage of \defmacro generates two unwanted spaces. It is not
a problem if \defmacro is used in the vertical mode because spaces are ignored
in this mode. But if \defmacro is used in horizontal mode then these spaces
are printed.12 The macro declaration behaves as another assignment, so the
information about such a declaration is lost if it is used in a group and the group
is left. But you can use a \global prefix before \def or the primitive \gdef.
Then the assignment is global regardless of groups. When \def or \gdef is
processed then ⟨replacement text⟩ is read with the deactivated expand processor.
We have alternatives \edef (expanded def) and \xdef (global expanded def)
which read their ⟨replacement text⟩ expanded by the expand processor. The
summary of \def syntax is:

\def ⟨control sequence⟩ ⟨parameters⟩{ ⟨replacement text⟩}
\gdef ⟨control sequence⟩ ⟨parameters⟩{ ⟨replacement text⟩}
\edef ⟨control sequence⟩ ⟨parameters⟩{ ⟨replacement text⟩}
\xdef ⟨control sequence⟩ ⟨parameters⟩{ ⟨replacement text⟩}

If you set \tracingmacros=2, you can see in the log file how the macros are
expanded.

10 Math modes
The $3 ⟨math text⟩$3 specifies a math formula inside a line of the paragraph.
It processes the ⟨math text⟩ in a group and in internal math mode. The
$3$3 ⟨math text⟩$3$3 generates a separate line with math formula(s). It pro-
cesses the ⟨math text⟩ in a group and in display math mode. The fonts in

12 More precisely, they are transformed into horizontal glues used between words.

23

math mode are selected in a very specific manner which is independent of the
current text font. Six different math objects are automatically detected in math
mode: \mathord (normal material), \mathop (big operators), \mathbin (binary
operators), \mathrel (relations), \mathopen (open brackets), \mathclose (close
brackets), \mathpunct (punctuation). They can be processed in four styles
\displaystyle (default in the display mode), \textstyle (default in the
internal math mode), \scriptstyle (used for indexes or exponents, smaller
text) and \scriptscriptstyle (used in indexes of indexes, even smaller text).
The math typesetting algorithms were implemented in TEX by its author with
great care. All typographical traditions of math typesetting were taken into
account. There are three chapters about math typesetting in his TEXbook.
Moreover, there is the detailed appendix G containing the exact specification of
generating math formulae. This topic is unfortunately out of the scope of this
short text. There is a good a piece of news: all formats (including LATEX) take
the default TEX syntax for ⟨math text⟩ . So, LATEX manuals or LATEX documents
serve a good source if you want to get to know the rules of math typesetting by
TEX. There is only one significant difference. Fractions are constructed at the
primitive level by the \over primitive: { ⟨numerator⟩\over ⟨denominator⟩} but
LATEX uses a macro \frac in the syntax \frac{ ⟨numerator⟩}{ ⟨denominator⟩}.
Plain TEX users (including the author of TEX) prefer the syntax which follows
the principle “how a human reads the formula”. On the other hand, the \frac
syntax is derived from machine languages. You can define the \frac macro by
\def\frac#1#2{{#1\over#2}} if you want.

11 Registers
There are four types of registers used in TEX:

• Counters; their values are integer numbers. Counters are declared by
\newcount ⟨register⟩ 13 or they are primitive registers (\linepenalty for
example). TEX interprets primitive commands which represent an integer
from an internal table as counter type register too (examples: \catcode‘A,
\lccode‘A).

• Dimen type; their values are dimensions. They are declared by \newdimen
⟨register⟩ or they are primitive registers (\hsize, for example). TEX interprets
primitive commands which represent a dimension value as dimen type register
too (example: \wd0).

13 The declarators \newcount, \newdimen, \newskip and \newtoks are plain TEX
macros used in all known TEX formats. They provide ⟨address⟩ allocation and use the
\count ⟨address⟩, \dimen ⟨address⟩, \skip ⟨address⟩ and \toks ⟨address⟩ TEX registers.
The \countdef, \dimendef, \skipdef and \toksdef primitive commands are used
internally.

24

• Glue type; their values are triples like in general \hskip parameters. They
can be declared by \newskip ⟨register⟩ or they are primitive registers
(\abovedisplayskip for example).14

• Token lists; their values are sequences of tokens. They are declared by
\newtoks ⟨register⟩ or they are primitive registers (\everypar for example).

The following example shows how registers are declared, how a value is saved to
the register, and how to print the value of the register.

\newcount \mynumber
\newdimen \mydimen
\newskip \myskip
\newtoks \mytoks
\mynumber = 42
\mydimen = -13cm
\myskip = 10mm plus 12mm minus1fil
\mytoks = {abCd ef}
To print these values use the primitive command ”the”:
\the\mynumber, \the\mydimen, \the\myskip, \the\mytoks.
\bye

This example prints: To print these values use the primitive command ”the”:
42, -369.88582pt, 28.45274pt plus 34.1433pt minus 1.0fil, abCd ef. Note that
the human readable dimensions are converted to typographical points (pt). The
general syntactic rule for storing values to registers is ⟨register⟩= ⟨value⟩ where
the equal sign is optional and it can be surrounded by optional spaces. Syntactic
rules for each type of ⟨value⟩ depending on type of the register (i.e. ⟨number⟩ ,
⟨dimen⟩ , ⟨skip⟩ and ⟨toks⟩) follows.

• The ⟨number⟩ could be
1) a register of counter type;
2) a character constant declared by \chardef or \mathchardef primitive

command.
3) an integer decimal number (with optional + or - prefixed)
4) ” ⟨hexa number⟩ where ⟨hexa number⟩ can include all digits and letters

ABCDEF ;
5) ’ ⟨octal number⟩ where ⟨octal num.⟩ can include digits 01234567;
6) ‘ ⟨character⟩ (the prefix is the reverse single quote ‘). It returns the code

of the ⟨character⟩ . Examples: ‘A or one-character control sequence ‘\A).
Both examples represent the number 65. The Unicode of the character is
taken here if LuaTEX or X ETEX is used;

14 Very similar muglue type for math glues exists too but it is not described in this text.

25

7) \numexpr ⟨num. expression⟩ .15 The ⟨num. expression⟩ uses operators +,
-, * and / and brackets (,) in normal sense. The operands are ⟨number⟩ s.
It is terminated by something incompatible with the syntactic rule of
⟨num. expression⟩ or by \relax. The \relax (if it is used as a separator)
is removed. If the result is non-integer, then it is rounded (not truncated).

The rules 3)–6) can be terminated by one optional space.
• The ⟨dimen⟩ could be

1) a register of dimen type or counter type;
2) a decimal number with an optional decimal point (and optional + or -

prefixed) followed by ⟨dimen unit⟩ . The ⟨dimen unit⟩ is pt (point)16 or
mm or cm or in or bp (big point) or dd (Didot point) or pc (pica) or cc
(cicero) or sp (scaled point) or em (quad of current font) or ex (ex height
of current font) or a register of dimen type;

3) \dimexpr ⟨dimen expression⟩ . The ⟨dimen expression⟩ uses operators +,
-, * and / and brackets (,) in their normal sense. The operands of + and -
are ⟨dimen⟩ s, the operators of * or / are the pair ⟨dimen⟩ and ⟨number⟩
(in this order). The ⟨dimen expression⟩ is terminated by something incom-
patible with the syntactic rule of ⟨dimen expression⟩ or by \relax. The
\relax (if it is used as a separator) is removed.

The rule 2) can be terminated by one optional space.
• The ⟨skip⟩ could be:

- a register of glue type or dimen type or counter type;
- ⟨dimen⟩plus ⟨generalized dimen⟩ minus ⟨generalized dimen⟩ . Here, the

⟨generalized dimen⟩ is the same as ⟨dimen⟩ , but normal ⟨dimen unit⟩ or
pseudo-unit fil or fill or filll can be used.

• The ⟨toks⟩ could be
- ⟨expandafters⟩{ ⟨text⟩}. The ⟨expandafters⟩ is typically a sequence of
\expandafter primitive commands (zero or more). The ⟨text⟩ is scanned
without expansion but the exception can be given by ⟨expandafters⟩ .

The main processor reads input tokens (from the output of activated or deac-
tivated expand processor) in two contexts: do something or read parameters.
By default it is in the context do something. When a primitive which allows
parameters is read, the main processor reads the parameters in the context read
parameters. Whenever the main processor reads a register in the context do
something it assumes that an assignment of a value to the register is declared
here. The following text (equal sign and ⟨value⟩) is read in the context read

15 This is a feature of the 𝜀TEX extension. It is implemented in pdfTEX, X ETEX and
LuaTEX.
16 1 pt = 1/72.27 in ≐ 0.35 mm ; 1 pc = 12 pt ; 1 bp = 1/72 in ; 1 dd ≐ 1.07 pt ; 1 cc =
12 dd ; 1 sp = 2−16 pt = TEX accuracy.

26

parameters. If the following text isn’t compliant to the appropriate syntactic
rule, TEX reports an error. Examples of register manipulations:

\newcount\mynumber \newdimen\mydimen \newdimen\myskip
\hsize = .7\hsize % see the rule for <dimen>, unit

% could be a register
\hoffset = \dimexpr 10mm - (\parindent + 1in) \relax

% usage of \dimexpr
\myskip = 10pt plus15pt minus 3pt
\mydimen = \myskip % the information

% ”plus15pt minus 3pt” is lost
\mynumber = \mydimen % \mynumber = 10*2^16 because

% \mydimen = 10*2^16 sp

Each dimension is saved internally as an integer multiple of the sp unit in TEX.
When we need a conversion ⟨dimen⟩ → ⟨number⟩ , then simply the internal unit
sp is omitted. The summary of most commonly used primitive registers including
their default value given by plain TEX follows.

• \hsize=6.5in, \vsize=8.9in are paragraph width and page height.
• \hoffset=0pt, \voffset=0pt give left margin and top margin of the page.
They are calculated from the page origin which is defined by coordinates
\pdfvorigin=1in and \pdfhorigin=1in measured from left upper corner of
the page.

• \parindent=20pt is the indentation of the first line of each paragraph.
• \parfillskip=0pt plus 1fil is horizontal glue added to the last line of the

paragraph.
• \leftskip=0pt, \rightskip=0pt. Glues added to each line in the paragraph

from the left and the right side. If the stretchability is declared here, then the
paragraph is ragged left/right.

• \parskip=0pt plus 1pt is the vertical space between paragraphs.
• \baselineskip=12pt, \lineskiplimit=0pt, \lineskip=1pt.
The \baselineskip rule says: Two consecutive lines in the vertical list have
the baseline distance given by \baselineskip by default. The appropriate
real glue is inserted between the lines. But if this real glue (between boxes)
is less than \lineskiplimit then \lineskip is inserted between the boxes
instead.

• \topskip=10pt is the distance between the top of the page box and the
baseline of the first line.

• \linepenalty=10, \hyphenpenalty=50, \exhyphenpenalty=50,
\binoppenalty=700, \relpenalty=500, \clubpenalty=150,
\widowpenalty=150, \displaywidowpenalty=50, \brokenpenalty=100,

27

\predisplaypenalty=10000, \postdisplaypenalty=0,
\interlinepenalty=0, \floatingpenalty=0, \outputpenalty=0.
These penalties apply to various places in the vertical or horizontal list. Most
important are \clubpenalty (inserted below the first line of a paragraph) and
\widowpenalty (inserted before the last line of a paragraph). Typographical
rules often demand us to set these registers to 10000 (no page break is allowed
here).

• \looseness=0 allows us to create of a “suboptimal” paragraph. The
paragraph-building algorithm tries to build the paragraph with \looseness
lines more than the optimal solution. If the \tolerance does not have a
sufficiently large value then this setting is simply ignored. It is reset to zero
after each paragraph is completed.

• \spaceskip=0pt, \xspaceskip=0pt. If non-negative they are used as glues
between words. Default values are read from the font metric data of the
current font.

• \pretolerance=100, \tolerance=200, \emergencystretch=0pt
\doublehyphendemerits=10000, \finalhyphendemerits=5000,
\adjdemerits=10000, \hfuzz=0.1pt, \vfuzz=0.1pt are parameters for the
paragraph building algorithm (not described here in detail).

• \hbadness=1000, \vbadness=1000. TEX reports a warning about badness on
the terminal and to the log file if it is greater than these values. The warning
has the form underfull \hbox or underfull \vbox. The value 100 means
that the plus limit for glues is reached.

• \tracingonline=0, \tracingmacros=0, \tracingstats=0,
\tracingparagraphs=0, \tracingpages=0, \tracingoutput=0,
\tracinglostchars=1, \tracingcommands=0, \tracingrestores=0,
\tracingscantokens=0, \tracingifs=0, \tracinggroups=0,
\tracingassigns=0.
If these registers have positive values then TEX reports details about the
processing of built-in algorithms to the log file. If \tracingonline>0 then
the same output is shown on the terminal.

• \showboxbreadth=5, \showboxdepth=3, \errorcontextlines=5. The
amount of information shown when boxes are traced to the log file or an error
is reported.

• \language=0. TEX is able to load more hyphenation patterns for more lan-
guages. This register points to the index of currently used hyphenation
patterns. Zero means English.

• \lefthyphenmin=2, \righthyphenmin=3. Maximum letters left or right in
hyphenated words.

• \defaulthyphenchar=‘\-. This character is used when words are hyphenated.
• \globaldefs=0. If it is positive then all settings are global.

28

• \hangafter=1, \hangindent=0pt. If \hangindent is positive, then after
\hangafter lines all following lines are indented. Negative/positive values of
\hangindent or \hangafter applies indentation from left or right and from
the top or bottom of the paragraph. The \hangindent is set to 0 after each
paragraph.

• \mag=1000. Magnification factor of all used dimensions. The value 1000 means
1:1.

• \escapechar=‘\\ use this character in the \string primitive.
• \newlinechar=-1. If positive, this character is interpreted as the end of the

line when printing to the log or by the \write primitive command.
• \endlinechar=‘^^M. This character is appended to the end of each input line.
The tokenizer converts it (the Ctrl-M character) to the space token.

• \time=now, \day=now, \month=now, \year=now. The values about current
time/date are set here when TEX starts to process the document. The \time
counts minutes after midnight.

• \prevdepth=* includes the depth of the last box in vertical mode.
• \prevgraph=* includes the number of lines of the paragraph when \par

finishes.
• \overfullrule=5pt. A rectangle to this width is appended after each overfull
\hbox.

• \mathsurround=0pt is the space inserted around a formula in internal math
mode.

• \abovedisplayskip=12pt plus3pt minus9pt,
\abovedisplayshortskip=0pt plus3pt,
\belowdisplayskip=12pt plus3pt minus9pt,
\belowdisplayshortskip=7pt plus3pt minus 4pt.
These spaces are inserted above and below a formula generated in math
display mode.

• \tabskip=0pt is used by the \halign primitive command for creating tables.
• \output={\plainoutput}, \everypar={}, \everymath={}
\everydisplay={}, \everyhbox={} \everyvbox={} \everycr={},
*\everyeof={}, \everyjob={}.
These token lists are processed when an algorithm of TEX reaches a corre-
sponding situations respectively: opens output routine, paragraph, internal
math mode, display math mode, \vbox, \hbox, is at the end of a line in a
table, at the end of an input file, or starts the job.

12 Expandable primitive commands
These commands are processed like macros, i.e. they expand to another sequence
of tokens. Notes about notation are in this and the following sections. If the

29

documented command is from the 𝜀TEX extension (i.e. implemented in pdfTEX,
X ETEX and LuaTEX) then one * is prefixed. If it is from the pdfTEX exten-
sion (implemented in X ETEX and LuaTEX too) then two ** are prefixed. If it
is a LuaTEX only command then three *** are prefixed.

• \string ⟨control sequence⟩ expands to “the \escapechar” followed by the
name of the control sequence. “The \escapechar” means a character with
code equal to \escapechar or nothing if its value is out of range of character
codes. All characters of the output are “other characters12”, only spaces (if
any exist) are kept as space tokens ␣10.

• ***\csstring ⟨control sequence⟩ works similarly to \string but without
\escapechar.

• *\detokenize ⟨expandafters⟩{ ⟨text⟩} re-tokenizes all tokens in the text. Con-
trol sequences used in ⟨text⟩ are re-tokenized like the \string primitive,
spaces are tokens ␣10, and all other tokens are set as “other characters12”.

• \the ⟨register⟩ expands to the value of the register. Examples appear in the
previous section. The output is tokenized like of \detokenize. The exception is
\the ⟨tokens register⟩ : the output is the value of the ⟨tokens register⟩ without
re-tokenizing and the expand processor does not expand this output in \edef,
\write, \message, etc., arguments.

• \scantokens ⟨expandafters⟩{ ⟨text⟩} re-tokenizes ⟨text⟩ using the actual tok-
enizer setting. The behavior is the same as when writing ⟨text⟩ to a virtual
file and reading this file immediately.

• ***\scantextokens ⟨expandafters⟩{ ⟨text⟩} resembles \scantokens but re-
moves problems with end-of-virtual-file.

• \meaning ⟨token⟩ expands to the meaning of the ⟨token⟩ . The text is tokenized
like the \detokenize output.

• \csname ⟨text⟩\endcsname creates a control sequence with name ⟨text⟩ . If
it is not already defined, then it gets the \relax meaning. For example
\csname TeX\endcsname is the same as \TeX. The ⟨text⟩ must be expandable
to characters only. Non-expandable control sequences (a primitive command
at the main processor level, a register, a character constant, a font selector) are
disallowed here. TEX reports the error missing \endcsname when this rule
isn’t compliant. Example: \csname foo:\the\mynumber\endcsname expands
to control sequence \foo:42 if the \mynumber is a register with the value
42. Another example: a macro programmer should implement a key/value
dictionary using this primitive:

\def\keyval #1 #2 {\expandafter\def\csname
dict:#1\endcsname{#2}}

\def\value #1 {\csname dict:#1\endcsname}
\keyval Peter 21 % key=Peter, value=21, saved to

30

% the dictionary, it does
% \def\dict:Peter{21}

\value Peter % expands to \dict:Peter and then 21

• \expandafter ⟨token1⟩ ⟨token 2⟩does the following transformation: ⟨token 1⟩
⟨expanded token 2⟩ . The token processor will expand ⟨token 1⟩ after such a
transformation. The ⟨expanded token 2⟩ is only the first level of expansion.
For example, a macro is transformed to its ⟨replacement text⟩ but without
expansion of ⟨replacement text⟩ at this time. Or the \csname...\endcsname
pair creates a control sequence but does not expand it at this time. If
⟨token 2⟩ is not expandable then \expandafter silently does nothing. The
example above (the \keyval macro) shows the usage of \expandafter. We
need not define \csname by \def; we want to define a \dict:key. The
\expandafter helps here. The ⟨token 2⟩ can be another \expandafter.
We can see \expandafter chains in many macro files. For example,
\expandafter\A\expandafter\B\expandafter\C\D is processed as follows:
\A \B \C ⟨expanded⟩\D. The ⟨expandafters⟩{ ⟨text⟩} syntax rule enables us
to prepare ⟨text⟩ by \expandafter(s). For example \detokenize{\macro}
expands to \12m12a12c12r12o12. But if you need to detokenize the ⟨repl. text⟩
of the \macro then use \detokenize\expandafter{\macro}. Not only
\expandafters should be here. The expand processor does full expansion
here until an opening brace {1 is found.

• The general rule for all \if* commands is ⟨if condition⟩ ⟨true text⟩
\else ⟨false text⟩\fi. The ⟨if condition⟩ evaluates and ⟨true text⟩ or
⟨false text⟩ is skipped or processed depending on the result of ⟨if condition⟩ .
When the expand processor is skipping the text due to an \if* command, it
expands nothing in the skipped text. But it is noticing all control sequences
with meaning \if*, \else and \fi during skipping in order to skip correctly
all nested \if*...\else...\fi constructions. The following ⟨if condition⟩ s
are possible:

∘ \if ⟨token 1⟩ ⟨token 2⟩ is true if
a) both tokens are characters with the same Unicode (or ASCII code in

classical TEX) or
b) both tokens are control sequences (with arbitrary meaning but not “the

character”) or
c) one token is a character, second is a control sequence equal to the character

(by \let) or
d) both tokens are control sequences, their meaning (set by \let) is the same

character code.
Example: you can say \let\test=a then \if\test a returns true.

∘ \ifx ⟨token 1⟩ ⟨token 2⟩ is true if the meanings of ⟨token 1⟩ and ⟨token 2⟩
are the same.

31

∘ \ifnum ⟨number 1⟩ ⟨relation⟩ ⟨number 2⟩ . The ⟨relation⟩ could be < or = or
>. It returns true if the comparison of the two numbers is true.

∘ \ifodd ⟨number⟩ returns true if the ⟨number⟩ is odd.
∘ \ifdim ⟨dimen⟩ ⟨relation⟩ ⟨dimen⟩ The ⟨relation⟩ could be < or = or >. It
returns true if the comparison of the two dimensions is true.

∘ \iftrue returns constantly true, \iffalse returns constantly false.
∘ \ifhmode, \ifvmode, \ifmmode – true if the current mode is horizontal,
vertical, math.

∘ \ifinner returns true if the current mode is internal vertical, internal hori-
zontal or internal math mode.

∘ \ifhbox ⟨box number⟩ , \ifvbox ⟨box number⟩ , \ifvoid ⟨box num.⟩ returns
true if the specified ⟨box num.⟩ represents \hbox, \vbox, void box respectively.

∘ \ifcat ⟨token 1⟩ ⟨token 2⟩ is true if the category codes of ⟨token 1⟩ and
⟨token 2⟩ are equal.

∘ \ifeof ⟨file number⟩ is true if the file attached to the ⟨file number⟩ by the
\openin primitive does not exist, or the end of file was reached by the \read
primitive.

• *\unless ⟨if condition⟩ negates the result of ⟨if condition⟩ before skipping
or processing the following text.

• \ifcase ⟨num.⟩⟨case 0⟩\or ⟨case 1⟩...\or ⟨case n⟩\else ⟨else text⟩\fi. This
processes the branch given by ⟨number⟩ . It processes ⟨else text⟩ (or nothing
if no ⟨else text⟩ is declared) when a branch with a given ⟨number⟩ does not
exist.

• *\pdfstrcmp{ ⟨string A⟩}{ ⟨string B⟩} is −1 if ⟨string A⟩ < ⟨string B⟩ , 0 if
they are equal or 1 otherwise. It is not implemented in LuaTEX.

• \noexpand ⟨token⟩ . The expand processor does not expand the ⟨token⟩ if it
is expanding the text in \edef, \write, \message or similar lists.

• *\unexpanded ⟨expandafters⟩{ ⟨text⟩} returns ⟨text⟩ and applies \noexpand
to all tokens in the ⟨text⟩ .

• **\expanded{ ⟨tokens⟩} expands ⟨tokens⟩ and reads these expanded ⟨tokens⟩
again.

• *\numexpr ⟨num. expression⟩ , *\dimexpr ⟨dimen expression⟩ . Documented
in the ⟨dimen⟩ and ⟨number⟩ syntax rules in section 11.

• \number ⟨number⟩ , \romannumeral ⟨number⟩ prints ⟨number⟩ in decimal dig-
its or as a roman numeral (with lowercase letters).

• \topmark (last from previous page), \firstmark (first on current page),
\botmark (last on current page). They expand to the corresponding \mark
included in the current or previous page-box. Usable for implementing running
headers in the output routine.

32

• \fontname ⟨font selector⟩ expands to the file name ***(or font name) of the
font given by its ⟨font selector⟩ . The \fontname\font expands to the file
name of the current font.

• \jobname expands to the name of the main file of this document (without
extension .tex).

• \input ⟨file name⟩ ⟨space⟩ (classical TEX), \input” ⟨file name⟩” or \input{
⟨file name⟩} opens the given ⟨file name⟩ and starts to read input from it. If
the ⟨file name⟩ doesn’t exist then TEX tries again to open ⟨file name⟩.tex.
If that doesn’t exist, TEX reports an error. The alternative syntax with ”...”
or {...} allows having spaces in the file names.

• \endinput. The current line is the last line of the file being input. The file
is closed and reading continues from the place where \input of this file was
started. \endinput done in the main file causes future reading from the
terminal and a headache for the user.

• ***\directlua { ⟨text⟩} runs a Lua script given in ⟨text⟩ .

13 Primitive commands at main processor level
Commands used for declaration of control sequences

• \def, \edef, \gdef, and \xdef were documented in section 9.
• \long is a prefix; it can be used before \def, \edef, \gdef, \xdef. The

declared macro accepts the control sequence \par in its parameters.
• *\protected is a prefix; it can be used before \def, \edef, \gdef, \xdef.
The declared macro is not expanded by the expand processor in \write,
\message, \edef, etc., parameters.

• \outer is a prefix; it can be used before \def, \edef, \gdef, \xdef. The
declared macro must be used only when the main processor is in the context
do something or TEX reports an error.

• \global is a prefix; it can be used before any assignment (commands from
this subsection and ⟨register⟩= ⟨value⟩ settings). The assignment is global
regardless of the current group.

• \chardef ⟨cont. seq.⟩= ⟨num.⟩ , \mathchardef ⟨cont. seq.⟩= ⟨num.⟩ declares
a constant ⟨number⟩ . When the main processor is in the context do some-
thing and it gets a \chardef-ed control sequence, it prints the character
with Unicode (ASCII code) ⟨number⟩ to the typesetting output. If it gets a
\mathchardef-ed control sequence, it prints a math object (it works only in
math mode, not documented here).

• \countdef ⟨control seq.⟩= ⟨number⟩ declares ⟨control sequence⟩ as an equiv-
alent to the \count ⟨number⟩ which is a register of counter type. The
⟨number⟩ here means an address in the array of registers of counter type.

33

The \count0 is reserved for the page number. Macro programmers rarely
use direct addresses (1 to 9), more common is using the allocation macro
\newcount ⟨control sequence⟩ .

• \dimendef, \skipdef, \muskipdef, \toksdef when they are followed by
⟨control sequence⟩= ⟨num.⟩ declare analogical equivalents to \dimen ⟨num.⟩ ,
\skip ⟨number⟩ , \muskip ⟨number⟩ and \toks ⟨number⟩ . Usage of allocation
macros \newdimen, \newskip, \newmuskip, \newtoks are preferred.

• \font ⟨font selector⟩= ⟨file name⟩ ⟨space⟩ ⟨size specification⟩ declares the
⟨font sel.⟩ of a font implemented in the ⟨file name⟩.tfm. The ⟨size spec.⟩
can be at ⟨dimen⟩ or scaled ⟨factor⟩ . The ⟨factor⟩ equal to 1000 means 1:1.
A new syntax (supported by Unicode engines) is

\font ⟨font sel.⟩=” ⟨font name⟩: ⟨font features⟩” ⟨size specification⟩
\font ⟨font sel.⟩=”[⟨font file⟩]: ⟨font features⟩” ⟨size specification⟩

The ⟨font file⟩ is a file name without an .otf or .ttf extension. The
⟨font features⟩ are font features prefixed by + or - and separated by a semi-
colon. The otfinfo -f ⟨file name⟩.otf command (on command line) can
list them. LuaTEX supports alternative syntax: {...} instead of ”...”. For
example \font\test= {[texgyretermes-regular]:+onum;-liga} at12pt.

• \let ⟨control sequence⟩= ⟨token⟩ sets to the ⟨control sequence⟩ the same
meaning as ⟨token⟩ has. The ⟨token⟩ can be whatever, a character or a
control sequence.

• \futurelet ⟨control sequence⟩ ⟨token 1⟩ ⟨token 2⟩ works in two steps. In the
first step it does \let ⟨control sequence⟩= ⟨token 2⟩ and in the second step
⟨token 1⟩ ⟨token 2⟩ is processed with activated token processor. Typically
⟨token 1⟩ is a macro that needs to know the next token.

Commands for box manipulation

• \hbox{ ⟨cmds⟩} or \hbox to ⟨dimen⟩{ ⟨cmds⟩} or \hbox spread ⟨dimen⟩{
⟨cmds⟩} creates a box. The material inside this box is a ⟨horizontal list⟩
generated by ⟨cmds⟩ in horizontal mode in a group. The width of the box is
the natural width of the ⟨horizontal list⟩ or ⟨dimen⟩ given by the to ⟨dimen⟩
parameter or it is spread by the ⟨dimen⟩ given by the spread ⟨dimen⟩ pa-
rameter. The height of the box is the maximum of heights of all elements in
the ⟨horizontal list⟩ . The depth of the box is the maximum of depths of all
such elements. These elements are set on the common baseline (exceptions
can be given by \lower or \raise commands).

• \vbox{ ⟨cmds⟩} or \vbox to ⟨dimen⟩{ ⟨cmds⟩} or \vbox spread ⟨dimen⟩{
⟨cmds⟩} creates a box. The material inside this box is a ⟨vertical list⟩ gen-
erated by ⟨cmds⟩ in vertical mode in a group. The height of the box is the
natural height of the ⟨vertical list⟩ (eventually modified by values from to

34

or spread parameters) without the depth of the last element. The depth of
the last element is set as the depth of the box. The width of the box is the
maximum of widths of elemens in the ⟨vertical list⟩ . All elements are placed
at the common left margin of the box (exceptions can be given by \moveleft
or \moveright commands).

• \vtop{ ⟨cmds⟩} (with optional to or spread parameters) is the same as
\vbox, but the baseline of the resulting box goes through the baseline of the
first element in the ⟨vertical list⟩ (note that \vbox has its baseline equal to
the baseline of the last element inside).

• \vcenter{ ⟨cmds⟩} (with optional to or spread parameters) is equal to
\vbox, but its math axis17 is exactly in the middle of the box. So its baseline
is appropriately shifted. The \vcenter can be used only in math modes but
given ⟨cmds⟩ are processed in vertical mode.

• \lower ⟨dimen⟩ ⟨box⟩ , \raise ⟨dimen⟩ ⟨box⟩ move the ⟨box⟩ up or down
by the ⟨dimen⟩ in horizontal mode. \moveleft ⟨dimen⟩ ⟨box⟩ , \moveright
⟨dimen⟩ ⟨box⟩ move the ⟨box⟩ by the ⟨dimen⟩ in vertical mode.

• \setbox ⟨box number⟩= ⟨box⟩ . TEX has a set of box registers addressed by
⟨box number⟩ and accessed via \box ⟨box number⟩ or alternatives described
below. The \setbox command saves the given ⟨box⟩ to the register addressed
by ⟨box number⟩ . Macro programmers use only 0 to 9 ⟨box numbers⟩
directly. Other addresses to box registers should be allocated by the
\newbox ⟨control sequence⟩ macro. The ⟨control sequence⟩ is equivalent to a
⟨box number⟩ , not to the box register itself. The \setbox command does an
assignment, so the \global prefix is needed if you want to use the saved box
outside the current group.

• \box ⟨box number⟩ returns the box from ⟨box number⟩ box register. Example:
you can do \setbox0=\hbox{abc}. This \hbox isn’t printed but saved to the
register 0. At a different place you use \box0, which prints \hbox{abc}, or you
can do \setbox0= \hbox{cde\box0} which saves the \hbox{cde\hbox{abc}}
to the register 0.

• \copy ⟨box number⟩ returns the box from ⟨box number⟩ box register and
keeps the same box in this box register. Note that the \box ⟨box number⟩
returns the box and empties the register ⟨box number⟩ immediately. If you
don’t want to empty the register, use \copy.

• \wd ⟨box number⟩ , \ht ⟨box number⟩ , \dp ⟨box number⟩ . You can measure or
use the width, height and depth of a box saved in a register addressed by
⟨box number⟩ . Examples \mydimen=\ht0, \hbox to\wd0{...}. You can reset
the dimensions of a box saved in a register addressed by ⟨box number⟩ . For

17 The math axis is a horizontal line which goes through centers of + and − symbols.
Its distance from the baseline is declared in the math font metrics.

35

example \setbox0=\hbox{abc} \wd0=0pt \box0 gives the same result as
\hbox to0pt{abc} but without the warning about overfull \hbox.

• \unhbox ⟨box number⟩ , \unvbox ⟨box num.⟩ , \unhcopy ⟨box num.⟩ , \unvcopy
⟨box num.⟩ do the same work as \box or \copy but they don’t return the whole
box but only its contents, i.e. the horizontal or vertical material. Example:
try to do \setbox0=\hbox{abc} and later \setbox0=\hbox{cde\unhbox0}
saves the \hbox{cdeabc} to the box register 0. The \unhbox and \unhcopy
commands return the \hbox contents and \unvbox, \unvcopy commands
return the \vbox contents. If incompatible contents are saved, then TEX
reports an error. You can test the type of saved contents by \ifhbox or
\ifvbox.

• \vsplit ⟨box number⟩ to ⟨dimen⟩ breaks a column. The ⟨vertical material⟩
saved in the box ⟨box number⟩ is broken into a first part of ⟨dimen⟩ height
and the rest remains in the box ⟨box number⟩ . The broken part is saved
as a \vbox which is the result of this operation. For example, you can say
\newbox\col \setbox\col=\vbox{...} and later \setbox0=\vsplit\col
to5cm. The \box0 is a \vbox containing the first 5cm of saved material.

• \lastbox returns the last box in the current vertical or horizontal material
and removes it.

Commands for rules (lines in the typesetting output) and patterns

• \hrule creates a horizontal line in the current vertical list. If it is used in hor-
izontal mode, it finishes the paragraph by \par first. \hrule width ⟨dimen⟩
height ⟨dimen⟩ depth ⟨dimen⟩ creates (in general, with given parameters)
a full rectangle (something like a box, but it isn’t treated as the box)
with given dimensions. Default values are: “width” = width of outer \vbox,
“height” = 0.4 pt, “depth” = 0pt.

• \vrule creates a vertical line in the current horizontal list. If it is used in verti-
cal mode, it opens the horizontal mode first. \vrule width ⟨dimen⟩ height
⟨dimen⟩ depth ⟨dimen⟩ creates (in general, with given parameters) a full
rectangle with given dimensions. Default values are: “width” = 0.4 pt,
“height” = height of outer \hbox, “depth” = depth of outer \hbox.

The optional parameters of \hrule and \vrule can be specified in arbitrary
order and they can be specified more than once. In such a case, the rule “last
wins” is applied.

• \leaders ⟨rule⟩ ⟨glue⟩ creates a glue (maybe shrinkable or stretchable) filled
by a full rectangle. The ⟨rule⟩ is \vrule or \hrule (maybe with its optional
parameters). If the ⟨glue⟩ is specified by an \hskip command (maybe with
its optional parameters) or by its alternatives \hss, \hfil, \hfill, then
the resulting glue is horizontal (can be used only in horizontal mode) and
its dimensions are: width derived from ⟨glue⟩ , height plus depth derived

36

from ⟨rule⟩ . If the ⟨glue⟩ is specified by a \vskip command (maybe with
its optional parameters) or by its alternatives \vss, \vfil, \vfill, then the
resulting glue is vertical (can be used only in vertical mode) and its dimensions
are: height derived from ⟨glue⟩ , width derived from ⟨rule⟩ , depth is zero.

• \leaders ⟨box⟩ ⟨glue⟩ creates a vertical or horizontal glue filled by a pattern
of repeated ⟨box⟩ . The positions of boxes are calculated from the boundaries
of the outer box. It is used for the dots patterns in the table of contents.
\cleaders ⟨box⟩ ⟨glue⟩ does the same, but the pattern of boxes is centered
in the space derived by the ⟨glue⟩ . Spaces between boxes are not inserted.
\xleaders ⟨box⟩ ⟨glue⟩ does the same, but the spaces between boxes are
inserted equally.

More commands for creating something in typesetting output

• \par closes horizontal mode and finalizes a paragraph.
• \indent, \noindent. They leave vertical mode and open a paragraph
with/without paragraph indentation. If horizontal mode is current then
\indent inserts an empty box of \parindent width; \noindent does nothing.

• \hskip, \vskip. They insert a horizontal/vertical glue. Documented in sec-
tion 7.

• \hfil, \hfill, \hss, \vfil, \vfill, \vss are alternatives of \hskip, \vskip,
see section 7.

• \hfilneg, \vfilneg are shortcuts for \hskip 0pt plus-1fil and \vskip
0pt plus-1fil.

• \kern ⟨dimen⟩ puts unbreakable horizontal/vertical space depending on the
current mode.

• \penalty ⟨number⟩ puts the penalty ⟨number⟩ on the current horizontal/ver-
tical list.

• \char ⟨number⟩ prints the character with code ⟨number⟩. The “character itself”
does the same.

• \accent ⟨number⟩ ⟨character⟩ places an accent with code ⟨number⟩ above
the ⟨character⟩ .

• \␣ is the control space. In horizontal mode, it inserts the space glue (like
normal space but without modification by the \spacefactor). In vertical
mode, it opens horizontal mode and puts the space. Note that normal space
does nothing in vertical mode.

• \discretionary{ ⟨pre break⟩}{ ⟨post break⟩}{ ⟨no break⟩} works in hor-
izontal mode. It prints ⟨no break⟩ in normal cases but if there is a
line break then ⟨pre break⟩ is used before and ⟨post break⟩ after the
breaking point. German Zucker/Zuk-ker (sugar) can be implemented by
Zu\discretionary{k-}{k}{ck}er.

37

• \- is equal to \discretionary{\char\hyphenchar ⟨font⟩}{}{}. The
\hyphenchar ⟨font⟩ is used as a hyphenation character. It is set to
\defaulthyphenchar value when the font is loaded, but it can be changed.

• \/ does an italic correction. It puts a little space if the last character is slanted.
• \unpenalty, \unskip removes the last penalty/last glue from the current

horizontal/vertical list.
• \vadjust{ ⟨cmds⟩}. This works in horizontal mode. The ⟨cmds⟩ must create
a ⟨vertical list⟩ and \vadjust saves a pointer to this list into the current
horizontal list. When \par creates lines of the paragraph and distributes
them to a vertical list, each line with the pointer from \vadjust has the
corresponding ⟨vertical list⟩ immediately appended after this line.

• \insert ⟨number⟩{ ⟨cmds⟩}. The ⟨cmds⟩ create a ⟨vertical list⟩ and \insert
saves a pointer to such a ⟨vertical list⟩ into the current list. The output routine
can work with such ⟨vertical list⟩s. The footnotes or floating objects (tables,
figures) are implemented by the \insert primitive.

• \halign{ ⟨decl.⟩\cr ⟨row 1⟩\cr ⟨row 2⟩\cr...\cr ⟨row n⟩\cr} creates a ta-
ble of boxes in vertical mode. The ⟨declaration⟩ declares one or more column
patterns separated by &4. The rows use the same character to separate the
items of the table in each row. The \halign works in two passes. First it
saves all items to boxes and the second pass performs \hbox to 𝑤 for each
saved item, where 𝑤 is the maximum width of items in each actual column.
Detailed documentation of \halign is out of scope of this manual. Only one
example follows: the macro \putabove puts #1 above #2 centered. The width
of the resulting box is equal to the maximum of widths of these two parame-
ters. The ⟨declaration⟩ \hfil##\hfil means that the items will be centered:
\def\putabove#1#2{\vbox{\halign{ \hfil##\hfil\cr#1\cr#2\cr}}}.

• \valign does the same as \halign but rows ↔ columns. It is not commonly
used.

• \cr, \crcr, \span, \omit, \noalign{ ⟨cmds⟩} are primitives used by \halign
and \valign.

Commands for register calculations

• \advance ⟨register⟩by ⟨value⟩ does (formally) ⟨register⟩= ⟨register⟩+ ⟨value⟩ .
The ⟨register⟩ is counter type or dimen type. The ⟨value⟩ is ⟨number⟩ or
⟨dimen⟩ (depending on the type of ⟨register⟩).

• \multiply ⟨register⟩by ⟨number⟩ does ⟨register⟩= ⟨register⟩* ⟨number⟩ .
• \divide ⟨register⟩by ⟨number⟩ does ⟨register⟩= ⟨register⟩/ ⟨number⟩ . If the

⟨register⟩ is number type then the result is truncated.
• See *\numexpr and *\dimexpr, expandable primitives documented in sec-

tions 11 and 12.

38

Internal codes

• \catcode ⟨number⟩ is category code of the character with ⟨number⟩ code.
Used by tokenizer.

• \lccode ⟨number⟩ is the lowercase alternative to \char ⟨number⟩ . If it is zero
then a lowercase alternative doesn’t exist (for example for punctuation). Used
by the \lowercase primitive and when breaking points are calculated from
hyphenation patterns.

• \uccode ⟨number⟩ is the uppercase alternative to \char ⟨number⟩ . If it is
zero, then the uppercase alternative doesn’t exist. Used by the \uppercase
primitive.

• \lowercase ⟨expandafters⟩{ ⟨text⟩} and \uppercase ⟨expandafters⟩{ ⟨text⟩}
transform ⟨text⟩ to lowercase/uppercase using the current \lccode or
\uccode values. Returns transformed ⟨text⟩ where catcodes of tokens and
tokens of type ⟨control sequence⟩ are unchanged.

• \sfcode ⟨number⟩ is the spacefactor code of the \char ⟨number⟩ . The
\spacefactor register keeps (roughly speking) the \sfcode of the last
printed character. The glue between words is modified (roughly speaking)
by this \spacefactor. The value 1000 means factor 1:1 (no modification is
done). It is used for enlarging spaces after periods and other punctuation in
English texts.18

Commands for reading or writing text files

• Note that the main input stream is controlled by \input and \endinput
expandable primitive commands documented in section 12.

• \openin ⟨file number⟩ = ⟨file name⟩ ⟨space⟩ (or \openin ⟨file number⟩ = {
⟨file name⟩}) opens the file named ⟨file name⟩ for reading and creates a file
descriptor connected to the ⟨file number⟩ .19 If the file doesn’t exist nothing
happens but a macro programmer can test this case by \ifeof ⟨file number⟩ .

• \read ⟨file number⟩to ⟨control seq.⟩ does \def ⟨control seq.⟩ { ⟨repl. text⟩}
where the ⟨replacement text⟩ is the tokenized next line from the file declared
by \openin as ⟨file number⟩ .

• \openout ⟨file number⟩= ⟨file name⟩ ⟨space⟩ (or \openout ⟨file number⟩ =
” ⟨file name⟩”) opens the ⟨file name⟩ for writing and creates a file descriptor
connected to ⟨file number⟩ . If the file already exists, then its contents are
removed.

18 This does not comply with other typographical traditions, so the \frenchspacing
macro which sets all \sfcodes to 1000 is used very often.
19 Note that ⟨file number⟩ is an address to the file descriptor. Macro program-
mers don’t use these addresses directly but by the \newread ⟨control sequence⟩ and
\newwrite ⟨control sequence⟩ allocation macros.

39

• \write ⟨file number⟩{ ⟨text⟩} writes a line of ⟨text⟩ to the file declared by
\openout as ⟨file number⟩ . But this isn’t done immediately. TEX does not
know the value of the current page when the \write command is processed
because the paragraph building and page building algorithms are processed
asynchronously. But a macro programmer typically needs to save current
page to the file in order to read it again and to create a Table of contents or
an Index. \write ⟨file number⟩{ ⟨text⟩} saves ⟨text⟩ into memory and puts a
pointer to this memory into the typesetting output. When the page is shipped
out (by output routine), then all such pointers from this page are processed:
the ⟨text⟩ is expanded at this time and its expansion is saved to the file. If
(for example) the ⟨text⟩ includes \the\pageno then it is expanded to the
correct page number of this page.

• \closein ⟨file number⟩ , \closeout ⟨file number⟩ closes the open file. It is
done automatically when TEX terminates its job.

• \immediate is a prefix. It can be used before \openout, \write and
\closeout in order to do the desired action immediately (without waiting for
the output routine).

Others primitive commands

• \relax does nothing. Used for terminating incomplete optional parameters,
for example.

• \begingroup opens group, \endgroup closes group. The {1 and }2 do the
same but moreover, they are syntactic constructors for primitive commands
and math lists (in math mode). These two types of groups (declared by
mentioned commands or by mentioned characters) cannot be mixed, i.e.
\begingroup...} gives an error. Plain TEX declares \bgroup and \egroup
control sequences as equivalents to {1 and }2. They can be used instead of {1
and }2 when we need to open/close a group, to create a math list, or when a
box is constructed. For example, \hbox\bgroup ⟨text⟩\egroup is syntactically
correct.

• \aftergroup ⟨token⟩ saves the ⟨token⟩ and puts it back in the input queue
immediately after the current group is closed. Then the expand processor
expands it (if it is expandable). More \aftergroups in one group create a
queue of ⟨token⟩ s used after the group is closed.

• \afterassignment ⟨token⟩ saves the ⟨token⟩ and puts it back immediately
after a following assignment (⟨register⟩= ⟨value⟩ , \def, etc.) is done.

• \lastskip, \lastpenalty return the value of the last element in the current
horizontal or vertical list if it is a glue/penalty. It returns zero if the element
found is not the last.

• \ignorespaces ignores spaces in horizontal mode until the next primitive
command occurs.

40

• \mark{ ⟨text⟩} saves ⟨text⟩ to memory and puts a pointer to it in the typeset-
ting output. The ⟨text⟩ is used as expansion output of \firstmark, \topmark
and \botmark expansion primitives in the output routine.

• \parshape ⟨number⟩ ⟨𝐼1⟩ ⟨𝑊1⟩ ⟨𝐼2⟩ ⟨𝑊2⟩ ... ⟨𝐼𝑛⟩ ⟨𝑊𝑛⟩ enables to set ar-
bitrary shape of the paragraph. The ⟨𝑛𝑢𝑚𝑏𝑒𝑟⟩ declares the amount of data:
the ⟨𝑛𝑢𝑚𝑏𝑒𝑟⟩ pairs of ⟨𝑑𝑖𝑚𝑒𝑛⟩ s follow. The 𝑖-th line of the paragraph is
shifted by ⟨𝐼𝑖⟩ to the right and its width is ⟨𝑊𝑖⟩ . The \parshape data are
reset after each paragraph to zero values (normal paragraph).

• \special{ ⟨text⟩} puts the message ⟨text⟩ into the typesetting output. It
behaves as a zero-dimension pointer to ⟨text⟩ and it can be read by printer
drivers. It is recommended to not use this old technology when PDF output
is created directly.

• \shipout ⟨box⟩ outputs the ⟨box⟩ as one page. Used in the output routine.
• \end completes the last page and terminates the job.
• \dump dumps the memory image to a file named \jobname.fmt and terminates

the job.
• \patterns{ ⟨data⟩} reads hyphenation patterns for the current \language.
• \hyphenation{ ⟨data⟩} reads hyphenation exceptions for current \language.
• \message{ ⟨text⟩} prints ⟨text⟩ on the terminal and to the log file.
• \errmessage{ ⟨text⟩} behaves like \message{ ⟨text⟩} but TEX treats it as an

error.
• Job processing modes can be set by \scrollmode (don’t pause at er-
rors), \nonstopmode (don’t pause at errors or missing files), \batchmode
(\nonstopmode plus no output to the terminal). Default is \errorstopmode
(stop at errors).

• \inputlineno includes the number of the current line from current file being
input.

• \show ⟨control seq.⟩ , \showbox ⟨box num.⟩ , \showlists, \showthe ⟨register⟩
are tracing commands. TEX prints desired result on the terminal and to the
log file and pauses.

Commands specific for PDF output (available in pdfTEX, X ETEX and
LuaTEX)

• \pdfliteral{ ⟨text⟩} puts the ⟨text⟩ interpreted in a low level PDF language
to the typesetting output. All PDF constructs defined in the PDF specification
are allowed. The dimensions of the \pdfliteral object in the output are
considered zero. So, if ⟨text⟩ moves the current typesetting point then the
notion about its position from the TEX point of view differs from the real
position. A good practice is to close ⟨text⟩ to q...Q PDF commands. The
command \pdfliteral is typically used for generating graphics and for linear
transformation.

41

• \pdfcolorstack ⟨number⟩ ⟨op⟩{ ⟨text⟩} (where ⟨op⟩ is push or pop or set)
behaves like \pdfliteral{ ⟨text⟩} and it is used for color switchers. For
example when ⟨text⟩ is 1 0 0 rg then the red color is selected. TEX sets the
color stack at the top of each page to the color stack opened at the bottom of
the previous page.

• \pdfximage height ⟨dimen⟩ depth ⟨dimen⟩ width ⟨dimen⟩ page ⟨number⟩{
⟨file name⟩} loads the image from ⟨file name⟩ to the PDF output and returns
the number of such a data object in the \pdflastximage register. Allowed
formats are PDF, JPG, PNG. The image is not drawn at this moment. A
macro programmer can save \mypic=\pdflastximage and draw the image
by \pdfrefximage\mypic (maybe repeatedly). Data of the image are loaded
to the PDF output only once. The \pdfximage allows more parameters; see
pdfTEX documentation.

• \pdfsetmatrix { ⟨𝑎⟩ ⟨𝑏⟩ ⟨𝑐⟩ ⟨𝑑⟩ } multiplies the current transformation ma-
trix (for linear transformations) by \matrix{ ⟨𝑎⟩ & ⟨𝑐⟩ \cr ⟨𝑏⟩ & ⟨𝑑⟩ }.

• \pdfdest name{ ⟨label⟩} ⟨type⟩\relax declares a destination of a hyper-
link. The ⟨label⟩ must match with the ⟨label⟩ used in \pdfoutline or
\pdfstartlink. The ⟨type⟩ declares the behavior of the pdf viewer when the
hyperlink is used. For example, xyz means without changes of the current
zoom (if not specified). Other types should be fit, fith, fitv, fitb.

• \pdfstartlink height ⟨dimen⟩ depth ⟨dimen⟩ ⟨attributes⟩ goto name{
⟨label⟩} declares the beginning of a hyperlink. A text (will be sensitive on
mouse click) immediately follows and it is terminated by \pdfendlink. The
height and depth of the sensitive area and the ⟨label⟩ used in \pdfdest are
declared here. More parameters are allowed; see the pdfTEX documentation.

• \pdfoutline goto name{ ⟨label⟩} count ⟨number⟩ { ⟨text⟩} creates one
item with ⟨text⟩ in PDF outlines. ⟨label⟩ must be used somewhere by
\pdfdest name{ ⟨label⟩}. The ⟨number⟩ is the number of direct descentants
in the outlines tree.

• \pdfinfo { ⟨key⟩(⟨text⟩)} saves to PDF the information which can be listed
by the command pdfinfo ⟨file⟩.pdf on the command line for example. More
⟨key⟩(⟨text⟩) should be here. The ⟨key⟩ can be /Author, /Title, /Subject,
/Keywords, /Creator, /Producer, /CreationDate, /ModDate. The last two
keywords need a special format of the ⟨text⟩ value. All ⟨text⟩ values (including
⟨text⟩ used in the \pdfoutline) must be ASCII encoded or they can use a
very special PDFunicode encoding.

• \pdfcatalog enables us to set of a default behavior of the PDF viewer when
it starts.

• \pdfsavepos saves an internal invisible point to the typesetting output. These
points are processed when the page is shipped out: the numeric registers
\pdflastxpos and \pdflastypos get values for the absolute position of this

42

invisible point (measured from the left upper corner of the page in sp units).
The macro programmer can follow \pdfsavepos by the \write command
and save these absolute positions to a text file which can be read in the next
run of TEX in order to get these absolute positions by macros.

Microtypographical extensions (available in pdfTEX, LuaTEX and not all of
them in X ETEX)
• \pdffontexpand ⟨font selector⟩ ⟨stretching⟩ ⟨shrinking⟩ ⟨step⟩ declares a
possibility to deform the characters from the font given by ⟨font selector⟩ .
This deformation is used when stretching or shrinking paragraph lines or doing
\hbox to{...} in general. I.e. not only glues are stretchable and shrinkable.
The numeric parameters are given in 1/1000 of the font size. ⟨stretching⟩ and
⟨shrinking⟩ are the maximum allowed values. The stretching or shrinking are
not applied continuously but by the given ⟨step⟩ . To activate this feature you
must set the \pdfadjustspacing numeric register to a positive value.

• \efcode ⟨font selector⟩ ⟨char. code⟩= ⟨number⟩ sets the degree of willigness
of given character to be deformed when \pdffontexpand is used. Default
value for all characters is 1000 and ⟨number⟩/1000 gives the proportion
coefficient for stretching or shrinking of the character with respect to the
“normal” deformation of characters with default value 1000.

• \rpcode ⟨font sel.⟩ ⟨char. code⟩= ⟨number⟩ , \lpcode ⟨font sel.⟩ ⟨char. code⟩=
⟨number⟩ allows the declaration of hanging punctuation. Such punctuation is
slightly moved to the right margin (if \rpcode is declared and the character
is at the right margin) or to the left margin (for \lpcode by analogy). The
⟨number⟩ gives the amount of such movement in 1/1000 of the font size. To
activate this feature you must set \pdfprotrudechars to a positive value (2
or more means a better algorithm).

• \letterspacefont ⟨control seq.⟩ ⟨font selector⟩ ⟨number⟩ declares a new
font selector ⟨control seq.⟩ as a font given by the ⟨font selector⟩ . Additional
space declared by ⟨number⟩ is added between each two characters when the
font is used. The ⟨number⟩ is 1/1000 of the font size. Unicode fonts support
an analogous letterspace= ⟨number⟩ font feature.

• The following commands have the same syntax as \rpcode: \knbscode (added
space after the character), \stbscode (added stretchability of the glue after the
character), \shbscode (added shrinkability after the character), \knbccode
(added kern before the character), \knaccode (added kern after the character).
To activate this feature you must to set \pdfadjustinterwordglue to a
positive value. This feature is supported by pdfTEX only.

Commands used in math mode
• \displaystyle, \textstyle, \scriptstyle, \scriptscriptstyle switch

to the specified style.

43

• \mathord, \mathop, \mathbin, \mathrel, \mathopen, \mathclose, and
\mathpunct followed by { ⟨math list⟩} create a math object of the given type.

• { ⟨numerator⟩\over ⟨denominator⟩} creates a fraction. The primitive com-
mands \atop (without fraction rule), \above ⟨dimen⟩ (fraction rule with
given thickness) should be used in the same manner. The commands
\atopwithdelims, \overwithdelims, \abovewithdelims allow us to specify
brackets around the generalized fraction.

• \left ⟨delimiter⟩ ⟨formula⟩\right ⟨delimiter⟩ creates a ⟨formula⟩ and gives
⟨delimiter⟩ s around it with an appropriate size (compatible with the size of
the formula). The ⟨delimiter⟩ s are typically brackets.

• *\middle ⟨delimiter⟩ can be used inside the ⟨formula⟩ surronded by \left,
\right. The given ⟨delimiter⟩ gets the same size as delimiters declared by
appropriate \left, \right.

• Exponents and scripts are typically at the right side of the preceding math
object. But if this object is a “big operator” (summation, integral) then expo-
nents and scripts are printed above and below this operator. The commands
\limits, \nolimits, \displaylimits used before exponents and scripts
constructors (^7 and _8) declare an exception from this rule.

• $$ ⟨formula⟩\eqno ⟨mark⟩$$ puts the ⟨mark⟩ to the right margin as
\llap{$ ⟨mark⟩$}. Analogously, $$ ⟨formula⟩\leqno ⟨mark⟩$$ puts it to the
left margin.

14 Summary of plain TEX macros
Allocators

• \newcount, \newdimen, \newskip, \newmuskip, \newtoks followed by a
⟨control seq.⟩ allocate a new register of the given type and set it as the
⟨control seq.⟩ . \newbox, \newread, \newwrite followed by a ⟨control seq.⟩
allocate a new address to given data (to a box register or to a file descriptor)
and set it as the ⟨control seq.⟩ . All these allocation macros are declared as
\outer in plain TEX, unfortunately. This brings problems when you need to
use them in skipped text or in macros (in ⟨replacement text⟩ for example).
Use \csname newdimen\endcsname \yoursequence in such cases.

• \newif ⟨control seq.⟩ sets the ⟨control seq.⟩ as a boolean variable. It must
begin with if; for example \newif\ifsomething. Then you can set values
by \somethingtrue or \somethingfalse and you can use this variable by
\ifsoemthing which behaves like other \if* primitive commands.

44

Vertical skips

• \bigskip does \vskip by one line, \medskip does \vskip by one half of a line
and \smallskip does the vertical skip by one quarter of a line. The registers
\bigskipamount, \medskipamount and \smallskipamount are allocated for
this purpose.

• \nointerlineskip ignores the \baselineskip rule for the following box in
the current vertical list. This box is appended immediately after the previous
box. \offinterlineskip ignores the \baselineskip rule for all following
boxes until the current group is closed.

• All vertical glues at the top of the page inserted by \vskip are ignored. Macro
\vglue behaves like the \vskip primitive command but its glue is not ignored
at the top of the page.

• Sometimes we must switch off the \baselineskip rule (for example by the
\offinterlineskip macro). This is common in tables. But we need to keep
the baseline distances equal. Then the \strut can be inserted on each line. It
is an invisible box with zero width and with height+depth=\baselineskip.

• \normalbaselines sets the registers \baselineskip, \lineskip and
\lineskiplimit for vertical placement to default values given by the format.
The user can set other values for a while and then he/she can restore
\normalbaselines.

Penalties

• \break puts penalty −10000, so a line/page break is forced here. \nobreak
puts penalty 10000, so a line/page break is disabled here. It should be
specified before a glue, which is “protected” by this penalty. \allowbreak
puts penalty 0; it allows breaking similar to a normal space.

• \goodbreak puts penalty −500 in vertical mode, this is a “recommended”
point for a page break.

• \filbreak breaks the page only if it is “almost full” or if a big object (that
doesn’t fit the current page) follows. The bottom of such a page is filled by a
vertical glue, i.e. the default typographical rule about equal positions of all
bottoms of common pages is broken here.

• \eject puts penalty −10000 in the vertical list, i.e. it breaks the page.

Miscellaneous macros

• \magstep ⟨number⟩ expands to a magnification factor 1.2𝑥 where 𝑥 is the
given ⟨number⟩ . This follows old typographical traditions that all sizes (of
fonts) are distinguished by factors 1, 1.2, 1.44, etc. For example, \magstep2
expands to 1440, because 1.22 = 1.44 and 1000 is factor 1:1 in TEX. The
\magstephalf macro expands to 1095 which corresponds to 1.2(1/2).

45

• \nonfrenchspacing sets special space factor codes (bigger spaces after peri-
ods, commas, semicolons, etc.). This follows English typographical traditions.
\frenchspacing sets all space factors as 1:1 (usable for non-English texts).

• \endgraf is equivalent to \par; \bgroup and \egroup are equivalents to {1
and }2.

• \space expands to space, \empty is an empty macro and \null is an empty
\hbox{}.

• \quad is horizontal space 1 em (size of the font), \qquad is double \quad,
\enspace is kern 0.5 em, \thinspace is kern 1/6 em, and \negthinspace
makes kern −1/6 em.

• \loop ⟨body 1⟩ ⟨if condition⟩ ⟨body 2⟩\repeat repeats ⟨body 1⟩ and ⟨body 2⟩
in a loop until the ⟨if condition⟩ returns false. Then ⟨body 2⟩ is not processed
and the loop is finished.

• \leavevmode opens a paragraph like \indent but it does nothing if the
horizontal mode is already in effect.

• \line{ ⟨text⟩} creates a box of line width (which is \hsize). \leftline,
\rightline, \centerline do the same as \line but ⟨text⟩ is shifted left /
right / is centered.

• \rlap{ ⟨text⟩} makes a box of zero size, the ⟨text⟩ is stuck out to the right.
\llap{ ⟨text⟩} does the same and the ⟨text⟩ is pushed left.

• \ialign is equal to \halign but the values of the registers used by \halign
are set to default.

• \hang starts the paragraph where all lines (except for the first) are indented
by \parindent.

• \texindent{ ⟨mark⟩} starts a paragraph with \llap{ ⟨mark⟩}.
• \item{ ⟨mark⟩} starts paragraph with \hang and \llap{ ⟨mark⟩}. Usable

for item lists. \itemitem{ ⟨mark⟩} can be used for the second level of items.
• \narrower sets wider margins for paragraphs (\parindent is appended to

both sides); i.e. the paragraphs are narrower.
• \raggedright sets the paragraph shape with the ragged right margin.
\raggedbottom sets the page-setting shape with the ragged bottoms.

Floating objects

• \footnote{ ⟨mark⟩}{ ⟨text⟩} creates a footnote with given ⟨mark⟩ and
⟨text⟩ .

• \topinsert ⟨object⟩\endinsert creates the ⟨object⟩ as a floating ob-
ject. It is printed at the top of the current page or on the next page.
\midinsert ⟨object⟩\endinsert does the same as \topinsert but it tries if
the ⟨object⟩ fits on the current page. If it is true then it is printed to its
current position; no floating object is created.

46

Controlling of input, output

• \obeyspaces sets the space as normal, i.e. it deactivates special treatment of
spaces by the tokenizer: more spaces will be more spaces and spaces at the
beginning of the line are not ignored.

• \obeylines sets the end of each line as \par. Each line in the input is one
paragraph in the output.

• \bye finalizes the last page (or last pages if more floating objects must be
printed) and terminates TEX job. The \end primitive command does the
same but without worrying about floating objects.

Macros used in math modes

• Spaces in math mode are \, (thin space), \> (medium space) \; (thick space,
but still small), \! (negative thin space).

• { ⟨above⟩\choose ⟨below⟩} creates a combination number with brackets
around it.

• \sqrt{ ⟨math list⟩} creates the square root symbol with the ⟨math list⟩ under
it.

• \root ⟨n⟩\of{ ⟨math list⟩} creates a general root symbol with the order of
the root ⟨n⟩ .

• \cases{ ⟨case 1⟩& ⟨cond. 1⟩\cr...\cr ⟨case n⟩& ⟨cond. n⟩} creates a list of
variants (preceded by a brace {) in math mode.

• \matrix{ ⟨a⟩& ⟨b⟩...& ⟨e⟩\cr...\cr ⟨u⟩& ⟨v⟩...& ⟨z⟩} creates a matrix of
given values in math mode (without brackets around it). \pmatrix{ ⟨data⟩}
does the same but with ().

• $$\displaylines{ ⟨formula 1⟩\cr...\cr ⟨formula n⟩}$$
prints multiple (centered) formulae in display mode.

• $$\eqalign{ ⟨formula 1 left⟩& ⟨formula 1 right⟩\cr...\cr ⟨formula n left⟩&
⟨formula n right⟩}$$ prints multiple formulae aligned by & character in
display mode.

• \eqalignno behaves like \eqalign but a second & followed by a ⟨mark⟩
can be in some lines. These lines place the ⟨mark⟩ in the right margin.
\leqalignno does the same as \eqalignno but ⟨mark⟩ is put to the left
margin.

47

Index
\& 14
\; 47
\, 47
\$ 14
\! 47
\> 47
\# 14
\- 38
\/ 38
\% 14
\␣ 37
\above 44
⟨above⟩ 47
\abovedisplayshortskip 29
\abovedisplayskip 25, 29
\abovewithdelims 44
\accent 37
active character 14
⟨address⟩ 24
\adjdemerits 28
\advance 38
\afterassignment 40
\aftergroup 40
\allowbreak 45
\atop 44
\atopwithdelims 44
⟨attributes⟩ 42
badness 18–19, 28
balanced text 20
\baselineskip 27, 45
\baselineskip rule 27
\batchmode 41
\begingroup 17, 40
⟨below⟩ 47
\belowdisplayshortskip 29
\belowdisplayskip 29
\bf 17
\bgroup 17, 40, 46
\bigskip 45

\bigskipamount 45
\binoppenalty 27
\botmark 32, 41
box 16, 18
⟨box⟩ 35, 37, 41
\box 35
box register 35
⟨box number⟩ 32, 35–36, 41
bp 26
\break 45
\brokenpenalty 27
\bye 16, 47
⟨case n⟩ 32
⟨case 0⟩ 32
⟨case 1⟩ 32
\cases 47
\catcode 13–14, 24, 39
cc 26
\centerline 46
\char 37
⟨char. code⟩ 43
⟨character⟩ 13–14, 25, 37
character constant 10
\chardef 10, 25, 33
\choose 47
\cleaders 37
\closein 40
\closeout 40
\clubpenalty 27–28
cm 26
⟨cmds⟩ 34–35, 38
⟨code⟩ 13
context do something 26
— read parameters 26
control space 37
control sequence 10
⟨control sequence⟩ 14, 21, 23, 30,

33–35, 39, 41, 43–44
\copy 35

48

\countdef 24, 33
counter type register 24
\cr 38
\crcr 38
\csname 30
\csstring 14, 30
⟨data⟩ 41, 47
\day 29
dd 26
⟨declaration⟩ 38
declared register 10
\def 10, 14–15, 21–23, 33
default size of space 18
⟨default size⟩ 18
\defaulthyphenchar 28, 38
delimited parameter 22
⟨delimiter⟩ 44
⟨denominator⟩ 24, 44
depth 17
\detokenize 30–31
⟨dimen⟩ 20, 25–27, 32, 34–38, 42, 44
\dimen 34
dimen type register 24
⟨dimen expression⟩ 26, 32
⟨dimen unit⟩ 26
\dimendef 24, 34
\dimexpr 26, 32
\directlua 33
discardable item 20
\discretionary 37
display math mode 23
\displaylimits 44
\displaylines 47
\displaystyle 24, 43
\displaywidowpenalty 27
\divide 38
do something context 26
\doublehyphendemerits 28
\dump 11–12, 41
\edef 23, 32–33
\efcode 43

\egroup 17, 40, 46
\eject 45
\else 31
⟨else text⟩ 32
em 26
\emergencystretch 28
\empty 46
\end 16, 41, 47
\endcsname 30
\endgraf 46
\endgroup 17, 40
\endinput 33
\endinsert 46
\endlinechar 29
\enspace 46
\eqalign 47
\eqalignno 47
\eqno 44
equal sign 21
\errmessage 41
\errorcontextlines 28
\errorstopmode 41
\escapechar 29–30
\everycr 29
\everydisplay 29
\everyeof 29
\everyhbox 29
\everyjob 29
\everymath 29
\everypar 25, 29
\everyvbox 29
ex 26
\exhyphenpenalty 27
expand processor 15
\expandafter 31
⟨expandafters⟩ 26, 30–32, 39
\expanded 32
expansion 11
— process 10
⟨factor⟩ 34
⟨false text⟩ 31

49

\fi 31
fil 19
\filbreak 45
⟨file⟩ 42
⟨file name⟩ 13, 33–34, 39, 42
⟨file number⟩ 32, 39–40
fill 19
\finalhyphendemerits 28
\firstmark 32, 41
floating object 38, 46
\floatingpenalty 28
\font 10, 13, 34
⟨font⟩ 38
⟨font features⟩ 34
⟨font file⟩ 34
⟨font name⟩ 34
⟨font selector⟩ 13, 33–34, 43
\fontname 33
\footnote 46
format 11
— file 11
⟨formula⟩ 44
\frac 24
\frenchspacing 46
\futurelet 34
\gdef 23, 33
⟨generalized dimen⟩ 26
\global 23, 33, 35
\globaldefs 28
glue 18–19
⟨glue⟩ 36–37
glue type register 25
\goodbreak 45
\halign 10, 38
\hang 46
\hangafter 29
\hangindent 29
\hbadness 28
\hbox 10–11, 15–16, 18–19, 29, 32, 34,

36, 46
height 17

⟨hexa number⟩ 25
\hfil 19, 36–37
\hfill 19, 36–37
\hfilneg 37
\hfuzz 28
\hoffset 27
horizontal mode 15
⟨horizontal list⟩ 34
⟨horizontal material⟩ 18
\hrule 16, 36
\hsize 10, 16–19, 24, 27, 46
\hskip 16, 19–20, 25, 36–37
\hss 19, 36–37
\hyphenation 41
\hyphenchar 38
\hyphenpenalty 10, 27
\ialign 46
\if 31
⟨if condition⟩ 31–32, 46
\ifcase 32
\ifcat 32
\ifdim 32
\ifeof 32
\iffalse 32
\ifhbox 32, 36
\ifhmode 32
\ifinner 32
\ifmmode 32
\ifnum 32
\ifodd 32
\iftrue 32
\ifvbox 32, 36
\ifvmode 32
\ifvoid 32
\ifx 31
\ignorespaces 40
\immediate 40
in 26
\indent 16, 37
ini-TeX state 11
\input 13, 33

50

\inputlineno 41
\interlinepenalty 28
internal horizontal mode 16
— math mode 23
— vertical mode 16
\it 17
italic correction 38
\item 46
\itemitem 46
\jobname 33
\kern 11, 16, 37
kern 18
⟨key⟩ 42
keyword 20
\knaccode 43
\knbccode 43
\knbscode 43
Knuth, Donald 12
kpathsea 13
⟨label⟩ 42
\language 28, 41
\lastbox 36
\lastpenalty 40
\lastskip 40
LATEX macros 12
\lccode 24, 39
\leaders 36–37
\leavevmode 16, 46
\left 44
\lefthyphenmin 28
\leftline 46
\leftskip 27
\leqalignno 47
\leqno 44
\let 11, 21, 34
\letterspacefont 43
\limits 44
\line 46
\linepenalty 24, 27
\lineskip 27, 45
\lineskiplimit 27, 45

\llap 19, 46
\long 22, 33
\loop 46
\looseness 28
\lower 11, 34–35
\lowercase 39
\lpcode 43
LuaTEX 12
macro 10
\mag 29
\magstep 45
\magstephalf 45
main processor 15
— vertical list 16
\mark 32, 41
⟨mark⟩ 44, 46–47
math axis 35
— mode display 23
— — internal 23
— — selector 14
⟨math list⟩ 44, 47
⟨math text⟩ 23–24
\mathbin 24, 44
\mathchardef 10, 25, 33
\mathclose 24, 44
\mathop 24, 44
\mathopen 24, 44
\mathord 24, 44
\mathpunct 24, 44
\mathrel 24, 44
\mathsurround 29
\matrix 47
\meaning 23, 30
meaning of control sequence 10
\medskip 45
\medskipamount 10, 45
\message 20, 32–33, 41
\middle 44
\midinsert 46
minus 20
mm 26

51

mode horizontal 15
— vertical 15
\month 29
\moveleft 35
\moveright 35
multiletter control sequence 14
\multiply 38
\muskip 34
\muskipdef 34
⟨n⟩ 47
\narrower 46
\negthinspace 46
\newbox 35, 44
\newcount 24, 44
\newdimen 24, 34, 44
\newif 44
\newlinechar 29
\newmuskip 34, 44
\newread 39, 44
\newskip 24–25, 34, 44
\newtoks 24–25, 34, 44
\newwrite 39, 44
⟨no break⟩ 37
\noalign 38
\nobreak 45
\noexpand 32
\noindent 16, 19, 37
\nointerlineskip 45
\nolimits 44
\nonfrenchspacing 46
\nonstopmode 41
\normalbaselines 45
\null 46
⟨num. expression⟩ 26, 32
⟨number⟩ 23, 25–27, 32–34, 37–39,

41–43, 45
\number 32
⟨number 1⟩ 32
⟨number 2⟩ 32
⟨numerator⟩ 24, 44
\numexpr 26, 32

\obeylines 47
\obeyspaces 47
⟨object⟩ 19, 46
⟨octal number⟩ 25
\offinterlineskip 45
\omit 38
one character control sequence 14
⟨op⟩ 42
\openin 32, 39
\openout 39
OpTEX 9–12
\outer 33
\output 29
output routine 16, 41
\outputpenalty 28
\over 24, 44
overfull box 19, 29, 36
\overfullrule 29
\overwithdelims 44
page box 16
— origin 27
\par 13, 15–18, 22, 36–37, 46
parameter delimited 22
— prefix 14
— separated 22
— unseparated 21
⟨parameters⟩ 21, 23
\parfillskip 27
\parindent 10, 16, 27
\parshape 41
\parskip 27
\patterns 41
pc 26
\pdfadjustinterwordglue 43
\pdfadjustspacing 18, 43
\pdfcatalog 42
\pdfcolorstack 42
\pdfdest 42
\pdfendlink 42
\pdffontexpand 43
\pdfhorigin 27

52

\pdfinfo 42
\pdflastximage 42
\pdflastxpos 42
\pdflastypos 42
\pdfliteral 41
\pdfoutline 42
\pdfprotrudechars 43
\pdfrefximage 42
\pdfsavepos 42
\pdfsetmatrix 42
\pdfstartlink 42
\pdfstrcmp 32
pdfTEX 12
\pdfvorigin 27
\pdfximage 42
penalty 19
\penalty 19, 37
plain TEX 19
— macros 12
plus 20
⟨post break⟩ 37
\postdisplaypenalty 28
⟨pre break⟩ 37
\predisplaypenalty 28
\pretolerance 28
\prevdepth 29
\prevgraph 29
primitive command 10
— register 10
\protected 33
pt 26
\qquad 46
\quad 46
\raggedbottom 46
\raggedright 46
\raise 34–35
\read 32, 39
read parameters context 26
register 10, 24
⟨register⟩ 24–25, 30, 33, 38, 40–41
⟨relation⟩ 32

\relax 21, 40
\relpenalty 27
\repeat 46
⟨repl. text⟩ 31, 39
replacement text 10
⟨replacement text⟩ 21–23, 31, 39, 44
\right 44
\righthyphenmin 28
\rightline 46
\rightskip 27
\rlap 19, 46
\rm 17
\romannumeral 32
\root 47
⟨row n⟩ 38
\rpcode 43
⟨rule⟩ 36–37
\scantextokens 30
\scantoken 30
\scriptscriptstyle 24, 43
\scriptstyle 24, 43
\scrollmode 41
separated parameter 22
\setbox 35–36
\sfcode 39
\shbscode 43
\shipout 41
\show 41
\showbox 41
\showboxbreadth 28
\showboxdepth 28
\showlists 41
\showthe 41
shrinkability 18
⟨shrinkability⟩ 18, 20
⟨shrinking⟩ 43
⟨size⟩ 19
⟨size specification⟩ 34
⟨skip⟩ 25–26
\skip 34
\skipdef 24, 34

53

\smallskip 45
\smallskipamount 45
⟨something⟩ 14, 21
sp 26
⟨space⟩ 23, 33–34, 39
\space 46
\spacefactor 37
\spaceskip 28
\span 38
\special 41
spread 34–35
\sqrt 47
\stbscode 43
⟨step⟩ 43
stretchability 18
⟨stretchability⟩ 18, 20
⟨stretching⟩ 43
\string 30
⟨string A⟩ 32
⟨string B⟩ 32
\strut 45
subscript prefix 14
superscript prefix 14
table separator 14
\tabskip 29
\TeX 11, 15
TEX engines 12
TEXlive 13
texmf tree 13
⟨text⟩ 39
\textindent 46
\textstyle 24, 43
\the 30
\thinspace 46
\time 29
to 34
⟨token⟩ 21, 30, 32, 34, 40
token type register 25
tokenizer 13
⟨tokens⟩ 32
⟨tokens register⟩ 30

⟨toks⟩ 25–26
\toks 34
\toksdef 24, 34
\tolerance 28
\topinsert 46
\topmark 32, 41
\topskip 27
\tracingassigns 28
\tracingcommands 28
\tracinggroups 28
\tracingifs 28
\tracinglostchars 28
\tracingmacros 23, 28
\tracingonline 28
\tracingoutput 28
\tracingpages 28
\tracingparagraphs 28
\tracingrestores 28
\tracingscantokens 28
\tracingstats 28
⟨true text⟩ 31
\ttindent 10
⟨type⟩ 42
\uccode 39
underfull box 28
\unexpanded 32
\unhbox 36
\unhcopy 36
\unless 32
\unpenalty 38
unseparated parameter 21
\unskip 38
\unvbox 36
\unvcopy 36
\uppercase 39
\vadjust 38
\valign 38
⟨value⟩ 25–26, 33, 38, 40
\vbadness 28
\vbox 16, 18–19, 29, 32, 34, 36
\vcenter 35

54

vertical mode 15
⟨vertical list⟩ 34–35, 38
⟨vertical material⟩ 18, 36
\vfil 37
\vfill 37
\vfilneg 37
\vfuzz 28
\vglue 45
\voffset 27
\vrule 16, 36
\vsize 16, 27
\vskip 16, 19, 37, 45

\vsplit 36
\vss 37
\vtop 35
\wd 24, 35
\widowpenalty 27–28
width 17
\write 29, 32–33, 40
\xdef 23, 33
X ETEX 12
\xleaders 37
\xspaceskip 28
\year 29

55

Petr Olšák, Czech Technical University in Prague
petr@olsak.net

TEX v kostce

Uživatelé dnes objevují TEX přes vysokoúrovňové formáty, které pečlivě skrývají
složitost počítačové sazby za fasádou přívětivých značkovacích jazyků. Nicméně
jakékoliv složitější sazečské úkoly vyžadují, aby uživatelé věděli, co se skrývá pod
kapotou a jak mohou algoritmy TEXu ovlivnit, pokud je to zrovna potřeba.

Autor ve svém článku představuje základy, na kterých stojí většina dnešních
TEXových formátů a které čtenářům pomohou s každodenní prací v TEXu i se
záludnějšími sazečskými úkony. Čtenáři se nejprve seznámi s programem TEX a
s jeho rozšířeními. Následně se dozví o procesorech TEXu a jejich režimech. Na
závěr zjistí, jaké existují registry a primitivy TEXu a jaká makra nabízí formát
plain TEX. Heslem dne je stručnost a autorův výklad zabírá pouze necelých 40
stran textu. Díky tomu se TEXovým mágem nebo mágyní můžete stát během
jedné cesty vlakem!

Autor v minulosti napsal již tři knihy o TEXu, vyvinul formát OpTEX, udržuje
množství balíčků na archivu ctan a již více než dvacet let vyučuje vysokoškolský
předmět o digitální sazbě a TEXu.

Klíčová slova: TEX, εTEX, pdfTEX, X ETEX, LuaTEX, mikrotypografie, plain TEX

