
Zpravodaj Československého sdružení uživatelů TeXu

Hans Hagen
ConTeXt Performance

Zpravodaj Československého sdružení uživatelů TeXu, Vol. 28 (2018), No. 1-4, 59–78

Persistent URL: http://dml.cz/dmlcz/150107

Terms of use:
© Československé sdružení uživatelů TeXu, 2018

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/150107
http://dml.cz


ConTEXt Performance
Hans Hagen

The processing speed of a TEX engine is affected by a number of factors, such
as the format, macros, scripting, fonts, microtypographic extensions, SyncTEX,
and command-line redirection. The article discusses the individual factors from
the perspective of a ConTEXt user. The article also measures the overhead
of ConTEXt MkII and MkIV, the impact of command-line redirection on the
speed of ConTEXt MkIV, the impact of fonts on the speed of typesetting with
ConTEXt MkIV, and the speed of typesetting with ConTEXt MkII and MkIV.
Keywords: Lua, LuaTEX, LuajitTEX, ConTEXt MkII, ConTEXt MkIV

Introduction

This article is about performance. Although it concerns LuaTEX this text is
only meant for ConTEXt users. This is not because they ever complain about
performance, on the contrary, I never received a complain from them. No, it’s
because it gives them some ammunition against the occasionally occurring nagging
about the speed of LuaTEX (somewhere on the web or at some meetings). My
experience is that, in most such cases, those complaining have no clue what
they’re talking about, so effectively we could just ignore them, but let’s, for the
sake of our users, waste some words on the issue.

What performance

So, what exactly does performance refer to? If you use ConTEXt, there are
probably only two things that matter:

• How long does one run take?
• How many runs do I need?

Processing speed is reported at the end of a run in terms of seconds spent on the
run, but also in pages per second. The runtime is made up of three components:

• start-up time,
• processing pages, and
• finishing the document.
The startup time is rather constant. Let’s take my 2013 Dell Precision with

i7-3840QM as reference. A simple
\starttext
\stoptext

doi: 10.5300/2018-1-4/59 59



60

document reports 0.4 seconds but, as we wrap the run in an mtxrun management
run, we have an additional 0.3 overhead (auxiliary file handling, pdf viewer man-
agement, etc). This includes loading the Latin Modern font. With LuajitTEX,
these times are below 0.3 and 0.2 seconds. It might look like a lot of overhead,
but it feels snappy in an edit-preview runs. One can try this:
\stoptext
which bring down the time to about 0.2 seconds for both engines, but it doesn’t
do anything useful in practice.

Finishing a document is not that demanding, because most gets flushed as we
go. The more (large) fonts we use, the longer it takes to finish a document, but,
on the average, that time is not worth noticing. The main runtime contribution
comes from processing the pages.

Okay, this is not always true. For instance, if we process a 400 page book
from 2500 small xml files with multiple graphics per page, there is a little over-
head in loading the files and in constructing the xml tree as well as in inserting
the graphics, but in such cases one expects a few seconds longer runtime. The
METAFUN manual has some 450 pages with over 2500 runtime-generated META-
POST graphics. It has color, uses quite some fonts, has lots of font switches
(verbatim, too), but, still, one run takes only 18 seconds in stock LuaTEX and
less than 15 seconds with LuajitTEX. Keep these numbers in mind if a non-
ConTEXt user barks against the performance tree that his few-page mediocre
document takes 10 seconds to compile: the content, styling, quality of macros
and whatever one can come up with all play a role. Personally, I find any rate
between 10 and 30 pages per second acceptable, and, if I get the lower rate, then
I normally know pretty well that the job is demanding in all kind of aspects.

Over time, the ConTEXt--LuaTEX combination, in spite of the fact that
more functionality has been added, has not become slower. In fact, some subsys-
tems have been sped up. For instance, font handling is very sensitive to adding
functionality. However, each version so far performed a bit better. Whenever
some neat new trickery was added, at the same time improvements were made
thanks to more insight in the matter. In practice, we’re not talking of changes in
speed by large factors but more by small percentages. I’m pretty sure that most
ConTEXt users never noticed. Recently, a 15–30% speed up (in font handling)
was realized (for more complex fonts), but only when you use such complex fonts
and pages full of text will you see a positive impact on the whole run.

There is one important factor I didn’t mention yet: the efficiency of the
console. You can best check that by making a format (context --make en).
When that is done by piping the messages to a file, it takes 3.2 seconds on my
laptop and about the same when done from the editor (SCITE), maybe because
the LuaTEX run and the log pane run on a different thread. When I use the
standard console, it takes 3.8 seconds in Windows 10 Creative update (in older
versions it took 4.3 seconds and slightly less when using a console wrapper). The



61

powershell takes 3.2 seconds, which is the same as piping to a file. Interesting is
that in Bash on Windows, it takes 2.8 seconds and 2.6 seconds when piped to a
file. Normal runs are somewhat slower, but it looks like the 64 bit Linux binary
is somewhat faster than the 64 bit mingw version.1 Anyway, it demonstrates
that when someone yells a number, you need to ask what the conditions were.

At a ConTEXt meeting, there has been a presentation about possible speed-
ups of a run by using, for instance, a separate syntax checker to prevent a useless
run. However, the use case concerned a document that took a minute on the
machine used, while the same document took a few seconds on mine. At the
same meeting, we also did a comparison of speed for a LATEX run using PdfTEX
and the same document migrated to ConTEXt MkIV using LuaTEX (Harald
Königs xml torture and compatibility test). Contrary to what one might expect,
the ConTEXt run was significantly faster; the resulting document was a few
gigabytes in size.

Bottlenecks
I will discuss a few potential bottlenecks next. A complex integrated system like
ConTEXt has lots of components and some can be quite demanding. However,
when something is not used, it has no (or hardly any) impact on performance.
Even when we spend a lot of time in Lua, that is not the reason for a slow-
down. Sometimes using Lua results in a speedup, sometimes it doesn’t matter.
Complex mechanisms like natural tables, for instance, will not suddenly become
less complex. So, let’s focus on the “aspects” that come up in those complaints:
fonts and Lua. Because I only use ConTEXt and occasionally test with the
plain TEX version that we provide, I will not explore the potential impact of
using truckloads of packages, styles, and such, which I’m sure of plays a role,
but one neglected in my discussion.

Fonts
According to the principles of LuaTEX, we process (OpenType) fonts using
Lua. That way, we have complete control over any aspect of font handling,
and can, as expected in TEX systems, provide users with what they need, now
and in the future. In fact, if we didn’t have that freedom in ConTEXt, I would
probably have already quit using TEX a decade ago and found myself some other
(programming) niche.

1Long ago, we found that LuaTEX is very sensitive to for instance the CPU cache, so maybe
there are some differences due to optimization flags and/or the fact that bash runs in one
thread, and all file IO takes place in the main Windows instance. Who knows.



62

After a font has been loaded, part of the data gets passed to the TEX en-
gine, so that it can do its work. For instance, in order to be able to typeset
a paragraph, TEX needs to know the dimensions of glyphs. Once a font has
been loaded (that is, the binary blob) it’s fetched from a cache the next time.
Initial loading (and preparation) takes some time, depending on the complexity
and the size of the font. Loading from cache is close to instantaneous. After
loading, the dimensions are passed to TEX, but all data remains accessible for
any desired usage. The OpenType feature processor, for instance, uses that
data, and ConTEXt, for sure, needs that data (quickly accessible) for different
purposes, too.

When a font is used in a so-called base mode, we let TEX do the ligaturing
and kerning. This is possible with simple fonts and features. If you have a
critical workflow, you might enable base mode, which can be done per font
instance. Processing in node mode takes some time, but how much depends on
the font and script. Normally, there is no difference between ConTEXt and
generic usage. In ConTEXt, we also have dynamic features, and the impact on
performance depends on usage. In addition to base and node, we also have plug
mode, but that is only used for testing and therefore not advertised.

Every \hbox and every paragraph goes through the font handler. Because
we support mixed modes, some analysis takes place, and because we do more in
ConTEXt, the generic analyzer is more lightweight, which again can mean that
a generic run is not slower than a similar ConTEXt one.

Interesting is that added functionality for variable and/or color fonts had no
impact on performance. Runtime-added user features can have some impact,
but, when defined well, it can be neglected. I bet that when you add additional
node list handling yourself, its impact on performance will be larger. But, in
the end, what counts is that the job gets done and the more you demand the
higher the price you pay.

Lua
The second possible bottleneck when using LuaTEX can be in using Lua code.
However, using that is laughable as an argument for slow runs. For instance,
ConTEXt MkIV can easily spend half its time in Lua, and that is not making
it any slower than MkII using PdfTEX doing equally complex things. For
instance, the embedded METAPOST library makes MkIV way faster than MkII,
and the built-in xml processing capabilities in MkIV can easily beat MkII xml
handling, apart from the fact that it can do more, like filtering by path and
expression. In fact, files that take, say, half a minute in MkIV, could as well
have taken 15 minutes or more in MkII (and imagine multiple runs then).

So, for ConTEXt, using Lua to achieve its objectives is mandatory. The
combination of TEX, METAPOST and Lua is pretty powerful! Each of these



63

components is really fast. If TEX is your bottleneck, review your macros! When
Lua seems to be the bad, go over your code and make it better. Much of the Lua
code I see flying around doesn’t look that efficient, which is okay, because the
interpreter is really fast, but don’t blame Lua beforehand, blame your coding
(style) first. When METAPOST is the bottleneck, well, sometimes not much can
be done about it, but when you know that language well enough, you can often
make it perform better.

For the record: every additional mechanism that kicks in, like character
spacing (the ugly one), case treatments, special word and line trickery, marginal
stuff, graphics, line numbering, underlining, referencing, and a few dozen more
will add a bit to the processing time. In that case, in ConTEXt, the font
related runtime gets pretty well obscured by other things happening, just that
you know.

Some timing
Next, I will show some timings related to fonts. For this, I use stock LuaTEX
(second column) as well as LuajitTEX (last column), which, of course, performs
much better. The timings are rounded to three decimal places, but, as the
system load is usually only consistent in a set of test runs, the last two decimals
only matter in relative comparison. So, for comparing runs over time, round
to the first decimal. Let’s start with loading a bodyfont. This happens once
per document, and one usually only has one bodyfont active. Loading involves
definitions as well as setting up math, so a couple of fonts are actually loaded
even if they’re not used later on. A setup normally involves a serif, sans, mono
and math setup (in ConTEXt).2

bodyfont
modern 0.023 s 0.019 s
pagella 0.127 s 0.079 s
termes 0.128 s 0.087 s
cambria 0.180 s 0.123 s
dejavu 0.140 s 0.092 s
ebgaramond 0.142 s 0.093 s
lucidaot 0.146 s 0.120 s

There is a bit of a difference between the font sets, but a safe average is 150
milliseconds, and this is rather constant over runs.

2The timing for Latin Modern is so low, because that font is loaded already.



64

An actual font switch can result in loading a font, but this is a one-time
overhead. Loading four variants (regular, bold, italic and bold italic) roughly
takes the following time:

bodyfont switch and 4 style changes (first time)
modern 0.028 s 0.028 s
pagella 0.035 s 0.031 s
termes 0.036 s 0.069 s
cambria 0.052 s 0.047 s
dejavu 0.091 s 0.069 s
ebgaramond 0.022 s 0.016 s
lucidaot 0.017 s 0.031 s

Using them again later on takes no time:

bodyfont switch and 4 style changes (follow-up)
modern 0.000 s 0.000 s
pagella 0.001 s 0.000 s
termes 0.000 s 0.001 s
cambria 0.000 s 0.000 s
dejavu 0.001 s 0.000 s
ebgaramond 0.000 s 0.000 s
lucidaot 0.000 s 0.000 s

Before we start timing the font handler, a few baseline benchmarks are shown.
When no font is applied and nothing else is done with the node list, we get:

100 hboxes with 4 texts and no font handling
baseline 0.142 s 2.343 s

A simple monospaced no-features-applied run takes a bit more:

100 hboxes with 4 texts and no features
baseline 0.275 s 0.220 s

Now, we show a one-font typesetting run. As with the two benchmarks
before, we just typeset a text in a \hbox, so no par builder interference happens.
We use the sapolsky sample text and typeset it 100 times 4, first without font
switches.



65

100 hboxes with 4 texts using one font
modern 0.933 s 0.591 s
pagella 1.027 s 0.660 s
termes 1.032 s 0.604 s
cambria 1.483 s 0.862 s
dejavu 1.009 s 0.581 s
ebgaramond 3.240 s 1.774 s
lucidaot 0.699 s 0.444 s

Much more runtime is needed when we typeset with four font switches. Ebgara-
mond is the most demanding. Actually, we’re not doing 4 fonts there because
ebgaramond has no bold, so the numbers are a bit lower than expected for this
example. One reason for it being demanding is that it has lots of (contextual)
lookups. Combining lookups saves space and time, so complexity of a font is not
always a good predictor for performance hits.

100 hbox with 4 texts using 4 font switches
modern 1.611 s 0.946 s
pagella 1.697 s 0.975 s
termes 1.727 s 1.038 s
cambria 2.815 s 1.626 s
dejavu 1.946 s 1.087 s
ebgaramond 5.445 s 2.899 s
lucidaot 1.288 s 0.746 s

If we typeset paragraphs, we get the following:

100 times 4 texts on pages (Figure 1)
modern 1.377 s 0.904 s
pagella 1.523 s 0.961 s
termes 1.453 s 0.898 s
cambria 1.901 s 1.138 s
dejavu 1.437 s 0.917 s
ebgaramond 3.714 s 2.133 s
lucidaot 1.117 s 0.767 s

We’re talking of some 275 pages here.



66

100 times 4 texts on pages using 4 styles (Figure 2)
modern 2.074 s 1.307 s
pagella 2.155 s 1.338 s
termes 2.153 s 1.373 s
cambria 3.349 s 2.012 s
dejavu 2.408 s 1.453 s
ebgaramond 4.368 s 2.512 s
lucidaot 1.682 s 1.056 s

There is, of course, overhead in handling paragraphs and pages:

100 times 4 texts on pages with no features (Figure 3)
baseline 0.825 s 0.559 s

Before I discuss these numbers in more detail, two more benchmarks are
shown. The next table concerns a paragraph with only a few (bold) words.

100 times 1 text on pages with bold font switches (Figure 4)
modern 0.409 s 0.263 s
pagella 0.445 s 0.281 s
termes 0.432 s 0.300 s
cambria 0.606 s 0.368 s
dejavu 0.465 s 0.295 s
ebgaramond 0.922 s 0.530 s
lucidaot 0.345 s 0.220 s

The next table concerns a paragraph with a few monospaced words using \type.

100 times 1 text on pages with word verbatim switches (Figure 5)
modern 0.380 s 0.255 s
pagella 0.396 s 0.266 s
termes 0.384 s 0.278 s
cambria 0.535 s 0.355 s
dejavu 0.366 s 0.247 s
ebgaramond 0.939 s 0.533 s
lucidaot 0.322 s 0.216 s



67

Figure 1 100 times 4 texts on pages

Figure 2 100 times 4 texts on pages using 4 styles



68

Figure 3 100 times 4 texts on pages with no features

Figure 4 100 times 1 text on pages with bold switches



69

Figure 5 100 times 1 text on pages with word verbatim switches

When a node list (hbox or paragraph) is processed, each glyph is looked at. One
important property of LuaTEX (compared to PdfTEX) is that it hyphenates
the whole text, not only the most feasible spots. For the sapolsky snippet,
this results in 200 potential breakpoints registered in an equal number of dis-
cretionary nodes. The snippet has 688 characters grouped into 125 words and,
because it’s an English quote, we’re not hampered with composed characters
or complex script handling. And, when we mention 100 runs, then we actually
mean 400 ones when font switching and bodyfonts are compared.

Agriculture is a fairly recen
-0.280

t h
-0.280

uman in
-0.280

v
-0.280

en
-0.280

tion, and in man
-0.280

y w
-0.280

a
-0.280

ys it
w

-0.280

as one of the great stupid mo
-0.280

v
-0.280

es of all time. Hun
-0.280

ter-gatherers ha
-0.280

v
-0.280

e
thousands of wild sources of fo

0.280

o
0.280

d to subsist on. Agriculture c
-0.280

hanged that
all, generating an o

-0.280

v
-0.280

erwhelming reliance on a few dozen domesticated
fo

0.280

o
0.280

d sources, making y
-0.280

ou extremely vulnerable to the next famine, the
next lo

0.280

cust infestation, the next p
0.280

otato bligh
-0.280

t. Agriculture allo
-0.280

w
-0.280

ed for
sto

0.280

c
-0.280

kpiling of surplus resources and th
-0.280

us, inevitably
-0.830

, the unequal sto
0.280

c
-0.280

k-
piling of them — stratification of so

0.280

ciet
-0.280

y and the in
-0.280

v
-0.280

en
-0.280

tion of classes.
Th

-0.280

us, it allo
-0.280

w
-0.280

ed for the in
-0.280

v
-0.280

en
-0.280

tion of p
0.280

o
-0.280

v
-0.280

ert
-0.280

y
-0.830

. I think that the punc
-0.280

h line
of the primate-h

-0.280

uman difference is that when h
-0.280

umans in
-0.280

v
-0.280

en
-0.280

ted p
0.280

o
-0.280

v
-0.280

ert
-0.280

y
-0.830

,
they came up with a w

-0.280

a
-0.280

y of sub
0.280

jugating the lo
-0.280

w-ranking lik
-0.280

e nothing ev
-0.280

er
seen b

0.280

efore in the primate w
-0.280

orld. Rob
0.280

ert M. Sap
0.280

olsky



70

In order to get substitutions and positioning right, we need not only to consult
streams of glyphs but also combinations with preceding pre or replace, or trailing
post and replace texts. When a font has a bit more complex substitutions, as
ebgaramond has, multiple (sometimes hundreds of) passes over the list are made.
This is why the more complex a font is, the more runtime is involved.

Another factor, one you could easily deduce from the benchmarks, is interme-
diate font switches. Even a few such switches (in the last benchmarks) already
result in a runtime penalty. The four switch benchmarks show an impressive
increase of runtime, but it’s good to know that such a situation seldom happens.
It’s also important not to confuse, for instance, a verbatim snippet with a bold
one. The bold one is indeed leading to a pass over the list, but verbatim is nor-
mally skipped, because it uses a font that needs no processing. That verbatim
or bold have the same penalty is mainly due to the fact that verbatim itself is
costly: the text is picked up using a different catcode regime and travels through
TEX and Lua before it finally gets typeset. This relates to special treatments of
spacing, syntax highlighting, and such.

Also, keep in mind that the page examples are quite unreal. We use a layout
with no margins, just text from edge to edge.

So, what is a realistic example? That is hard to say. Unfortunately, no one
has ever asked us to typeset novels. They are rather brain dead-products for a
machinery, so they process fast. On the mentioned laptop, 350 word pages in
Dejavu fonts can be processed at a rate of 75 pages per second with LuaTEX
and over 100 pages per second with LuajitTEX. On a more modern laptop or
a professional server, the performance is of course better. And, for automated
flows, batch mode is your friend. The rate is not much worse for a document in a
language with a bit more complex character handling, take accents or ligatures.
Of course, PdfTEX is faster on such a dumb document, but kick in some more
functionality, and the advantage quickly disappears. So, if someone complains
that LuaTEX needs 10 or more seconds for a simple few page document . . . you
can bet that when the fonts are seen as reason, then the setup is pretty bad.
Personally I would not waste time on such a complaint.

Valid questions
Here are some reasonable questions that you can ask when someone complains
to you about the slowness of LuaTEX:

What engines do you compare?
If you come from PdfTEX, you come from an 8-bit world: input and font
handling are based on bytes, and hyphenation is integrated into the par builder.



71

If you use UTF-8 in PdfTEX, the input is decoded by TEX macros, which carries
a speed penalty. Because in the wide engines macro names can also be UTF
sequences, construction of macro names is less efficient too.

When you try to use wide fonts, there is, again, a penalty. Now, if you use
XƎTEX or LuaTEX, your input is UTF-8, which becomes something 32-bit inter-
nally. Fonts are wide, so more resources are needed, apart from these fonts being
larger and in need of more processing due to feature handling. Where XƎTEX
uses a library, LuaTEX uses its own handler. Does that have a consequence for
performance? Yes and no. First of all, it depends on how much time is spent on
fonts at all, but even then, the difference is not that large. Sometimes XƎTEX
wins, sometimes it’s LuaTEX. One thing is clear: LuaTEX is more flexible as we
can roll out our own solutions and therefore do more advanced font magic. For
ConTEXt, it doesn’t matter as we use LuaTEX exclusively, and we rely on the
flexible font handler, also for future extensions. If really needed, you can kick
in a library-based handler but it’s (currently) not distributed as we lose other
functionality, which would, in turn, result in complaints about that fact (apart
from conflicting with the strive for independence).

There is no doubt that PdfTEX is faster, but, for ConTEXt, it’s an obsolete
engine. The hard-coded-solutions engine XƎTEX is not feasible for ConTEXt
either. So, in practice, ConTEXt users have no choice: LuaTEX is used, but
users of other macro packages can use the alternatives if they are not satisfied
with performance. The fact that ConTEXt users don’t complain about speed is
a clear signal that this is a no-issue. And, if you want more speed, you can always
use LuajitTEX.3 In the last section, the different engines will be compared in
more detail.

Just that you know, when we do the four-switches example in plain TEX on
my laptop, I get a rate of 40 pages per second, and, for one font, 180 pages per
second. There is, of course, a bit more going on in ConTEXt in page building
and so, but the difference between plain and ConTEXt is not that large.

What macro package is used?
When plain TEX is used, a follow up question is: what variant? The ConTEXt
distribution ships with luatex-plain, and that is our benchmark. If there
really is a bottleneck, it is worth exploring, but keep in mind that, in order to
be plain, not that much can be done. The LuaTEX part is just an example of an
implementation. We already discussed ConTEXt, and for LATEX, I don’t want to

3In plug mode, we can actually test a library and experiments have shown that performance
on the average is much worse, but it can be a bit better for complex scripts, although a
gain gets unnoticed in normal documents. So, one can decide to use a library but at the
cost of much other functionality that ConTEXt offers, so we don’t support it.



72

speculate where performance hits might come from. When we’re talking fonts,
ConTEXt can actually be a bit slower than the generic (or LATEX) variant,
because we can kick in more functionality. Also, when you compare macro
packages, keep in mind that, when node list processing code is added in that
package, the impact depends on interaction with other functionality and depends
on the efficiency of the code. You can’t compare mechanisms or draw general
conclusions when you don’t know what else is done!

What do you load?
Most ConTEXt modules are small and load fast. Of course, there can be
exceptions when we rely on third party code; for instance, loading tikz takes a
bit of time. It makes no sense to look for ways to speed that system up, because
it is maintained elsewhere. There can probably be gained a bit, but, again, no
user has complained so far.

If ConTEXt is not used, one probably also uses a large TEX installation.
File lookup in ConTEXt is done differently, and can be faster. Even loading
can be more efficient in ConTEXt, but it’s hard to generalize that conclusion.
If one complains about loading fonts being an issue, just try to measure how
much time is spent on loading other code.

Did you patch macros?
Not everyone is a TEXpert. So, coming up with macros that are expanded many
times and/or have inefficient user interfacing, can have some impact. If someone
complains about one subsystem being slow, then honesty demands to complain
about other subsystems as well. You get what you ask for.

How efficient is the code that you use?
Writing super-efficient code only makes sense when it’s used frequently. In
ConTEXt, most code is reasonably efficient. It can be that in one document,
fonts are responsible for most runtime, but in another document, table con-
struction can be more demanding while yet another document puts some stress
on interactive features. When hz or protrusion is enabled, then you run sub-
stantially slower anyway, so when you are willing to sacrifice 10% or more of
runtime, don’t complain about other components. The same is true for enabling
SyncTEX: if you are willing to add more than 10% of runtime for that, don’t
wither about the same amount for font handling.4

4In ConTEXt, we use a SyncTEX alternative that is somewhat faster, but it remains a
fact that enabling more and more functionality will make the penalty of, for instance, font
processing relatively small.



73

How efficient is the styling that you use?
Probably the most easily overlooked optimization is in switching fonts and colors.
Although in ConTEXt, font switching is fast, I have no clue about it in other
macro packages. But in a style, you can decide to use inefficient (massive) font
switches. The effects can easily be tested by commenting out bits and pieces.
For instance, sometimes you need to do a full bodyfont switch when changing a
style, like assigning \small\bf to the style key in \setuphead, but often using
e.g. \tfd is much more efficient and works quite as well. Just try it.

Are fonts really the bottleneck?
We already mentioned that one can look in the wrong direction. Maybe, once
someone is convinced that fonts are the culprit, it gets hard to look at the real
issue. If a similar job in different macro packages has a significantly different
runtime, one can wonder what happens indeed.

It is good to keep in mind that the amount of text is often not as large as
you think. It’s easy to do a test with hundreds of paragraphs of text, but, in
practice, we have whitespace, section titles, half empty pages, floats, itemize
and similar constructs, etc. Often, we don’t mix many fonts in the running text
either. So, in the end, a real document is your best test.

If you use Lua, is that code any good?
You can gain from the faster virtual machine of LuajitTEX. Don’t expect won-
ders from the jitting as that only pays off in long runs with the same code used
over and over again. If the gain is high, you can even wonder how well-written
your Lua code is anyway.

What if they don’t believe you?
So, say that someone finds LuaTEX slow, what can be done about it? Just
advice them to stick to their previously-used tool. Then, if arguments come
that one also wants to use UTF-8, OpenType fonts, a bit of METAPOST, and
is looking forward to using Lua runtime, the only answer is: take it or leave
it. You pay a price for progress, but, if you do your job well, the price is not
that high. Tell them to spend time on learning and maybe adapting and to bark
against their own tree before barking against those who took that step a decade
ago. Most ConTEXt users took that step and someone still using LuaTEX after
a decade can’t be that stupid. It’s always best to first wonder what one actually
asks from LuaTEX, and if the benefit of having Lua on board has an advantage.
If not, one can just use another engine.

Also think of this: when a job is slow, for me it’s no problem to identify
where the problem is. The question then is: can something be done about it?



74

Well, I happily keep the answer for myself. After all, some people always need
room to complain, if only to hide their ignorance or incompetence. Who knows.

Comparing engines
The next comparison is to be taken with a grain of salt and concerns the state
of affairs mid-2017. First of all, you cannot really compare MkII with MkIV:
the latter has more functionality (or a more advanced implementation of func-
tionality). And, as mentioned, you can also not really compare PdfTEX and
the wide engines. Anyway, here are some (useless) tests. First, a bunch of loads.
Keep in mind that different engines also deal differently with reading files. For
instance, MkIV uses LuaTEX callbacks to normalize the input and has its own
readers. There is a bit more overhead in starting up a LuaTEX run, and some
functionality is enabled that is not present in MkII. The format is also larger,
if only because we preload a lot of useful font, character and script related data.
\starttext

\dorecurse {#1} {
\input knuth
\par

}
\stoptext
When looking at the numbers, one should realize that the times include startup
and job management by the runner scripts. We also run in batchmode to avoid
logging to influence runtime. The average is calculated from 5 runs.

engine #1 = 50 #1 = 500 #1 = 2500
pdftex 0.43 s 0.77 s 2.33 s
xetex 0.85 s 2.66 s 10.79 s
luatex 0.94 s 2.50 s 9.44 s
luajittex 0.68 s 1.69 s 6.34 s

The second example does a few switches in a paragraph:
\starttext

\dorecurse {#1} {
\tf \input knuth
\bf \input knuth
\it \input knuth
\bs \input knuth
\par

}
\stoptext



75

engine #1 = 50 #1 = 500 #1 = 2500
pdftex 0.58 s 2.10 s 8.97 s
xetex 1.47 s 8.66 s 42.50 s
luatex 1.59 s 8.26 s 38.11 s
luajittex 1.12 s 5.57 s 25.48 s

The third example does more, resulting in multiple subranges per style:
\starttext

\dorecurse {#1} {
\tf \input knuth \it knuth
\bf \input knuth \bs knuth
\it \input knuth \tf knuth
\bs \input knuth \bf knuth
\par

}
\stoptext

engine #1 = 50 #1 = 500 #1 = 2500
pdftex 0.59 s 2.20 s 9.52 s
xetex 1.49 s 8.88 s 43.85 s
luatex 1.64 s 8.91 s 41.26 s
luajittex 1.15 s 5.91 s 27.15 s

The last example adds some color. Enabling more functionality can have an
impact on performance. In fact, as MkIV uses a lot of Lua and is also more
advanced that MkII, one can expect a performance hit, but, in practice, the
opposite happens, which can also be due to some fundamental differences deep
down at the macro level.
\setupcolors[state=start] % default in MkIV
\starttext

\dorecurse {#1} {
{\red \tf \input knuth \green \it knuth}
{\red \bf \input knuth \green \bs knuth}
{\red \it \input knuth \green \tf knuth}
{\red \bs \input knuth \green \bf knuth}
\par

}
\stoptext



76

engine #1 = 50 #1 = 500 #1 = 2500
pdftex 0.61 s 2.36 s 10.33 s
xetex 1.53 s 9.25 s 45.59 s
luatex 1.65 s 8.91 s 41.32 s
luajittex 1.15 s 5.93 s 27.34 s

In these measurements, the accuracy is a few decimals, but a pattern is
visible. As expected, PdfTEX wins on simple documents but starts losing when
things get more complex. For these tests, I used 64-bit binaries. A 32-bit XƎTEX
with MkII performs the same as LuajitTEX with MkIV, but a 64-bit XƎTEX
is actually quite a bit slower. In that case, the mingw cross-compiled LuaTEX
version does pretty well. A 64-bit PdfTEX is also slower (it looks) than a 32-bit
version. So, in the end, there are more factors that play a role. Choosing between
LuaTEX and LuajitTEX depends on how well the memory-limited LuajitTEX
variant can handle your documents and fonts.

Because in most of our recent styles we use OpenType fonts and (structural)
features as well as recent METAFUN extensions only present in MkIV, we cannot
compare engines using such documents. The mentioned performance of LuaTEX
(or LuajitTEX) and MkIV on the METAFUN manual illustrate that, in most
cases, this combination is a clear winner.
\starttext

\dorecurse {#1} {
\null \page

}
\stoptext
This gives:

engine #1 = 50 #1 = 500 #1 = 2500
pdftex 0.46 s 1.05 s 3.72 s
xetex 0.73 s 1.80 s 6.56 s
luatex 0.84 s 1.44 s 4.07 s
luajittex 0.61 s 1.10 s 3.33 s

That leaves the zero run:
\starttext

\dorecurse {#1} {
% nothing

}
\stoptext
This gives the following numbers. In longer runs, the difference in overhead is
negligible.



77

engine #1 = 50 #1 = 500 #1 = 2500
pdftex 0.36 s 0.36 s 0.36 s
xetex 0.57 s 0.57 s 0.59 s
luatex 0.74 s 0.74 s 0.74 s
luajittex 0.53 s 0.53 s 0.54 s

It will be clear that when we use different fonts, the numbers will also be
different. And, if you use a lot of runtime METAPOST graphics (for instance for
backgrounds), the MkIV runs end up at the top. And, when we process xml,
it will be clear that going back to MkII is no longer a realistic option. It must
be noted that I occasionally manage to improve performance, but we’ve now
reached a state where there is not that much to gain. Some functionality is hard
to compare. For instance, in ConTEXt, we don’t use much of the pdf backend
features because we implement them all in Lua. In fact, even in MkII (already
done in TEX), so in the end, the speed difference there is not large and often in
favour of MkIV.

For the record, I mention that shipping out the about 1250 pages has some
overhead too: about 2 seconds. Here, LuajitTEX is 20% more efficient, which
is an indication of quite some Lua involvement. Loading the input files has an
overhead of about half a second. Starting up LuaTEX takes more time than
PdfTEX and XƎTEX, but that disadvantage disappears with more pages. So,
in the end, there are quite some factors that blur the measurements. In practice,
what matters is convenience: does the runtime feel reasonable and, in most cases,
it does.

If I would replace my laptop with a reasonable comparable alternative, then
that one would be some 35% faster (single threads on processors don’t gain
much per year). I guess that this is about the same increase in performance
that ConTEXt MkIV got in that period. I don’t expect such a gain in the
upcoming years, so, at some point, we’re stuck with what we have.

Summary
So, how “slow” is LuaTEX really compared to the other engines? If we go back
in time to when the first wide engines showed up, Omega was considered to
be slow, although I never tested that myself. Then, when XƎTEX showed up,
there was not much talk about speed, just about the fact that we could use
OpenType fonts and native UTF input. If you look at the numbers, for sure
you can say that it was much slower than PdfTEX. So, how come that some
people complain about LuaTEX being so slow, especially when we take into
account that it’s not that much slower than XƎTEX, and that LuajitTEX is
often faster than XƎTEX? Also, computers have become faster. With the wide



78

engines, you get more functionality and that comes at a price. This was accepted
for XƎTEX and is also acceptable for LuaTEX. But the price is not that high if
you take into account that hardware performs better: you just need to compare
LuaTEX (and XƎTEX) runtime with PdfTEX runtime 15 years ago.

As a comparison, look at games and video. Resolution became much higher
as did color depth. Higher frame rates were in demand. Therefore, the hardware
had to become faster, and it did, and, as a result, the user experience kept up.
No user will say that a modern game is slower than an old one, because the
old one does 500 frames per second compared to some 50 for the new game on
the modern hardware. In a similar fashion, the demands for typesetting became
higher: Unicode, OpenType, graphics, xml, advanced pdf, more complex
(niche) typesetting, etc. This happened more or less in parallel with computers
becoming more powerful. So, as with games, the user experience didn’t degrade
with demands. Comparing LuaTEX with PdfTEX is like comparing a low-res,
low-framerate, low-color game with a modern one. You need to have up-to-date
hardware and even then, the writer of such programs needs to make sure that
they run efficiently, simply because hardware no longer scales like it did decades
ago. You need to look at the bigger picture.

Rychlost ConTEXtu

Rychlost TEXového stroje je ovlivněna množstvím faktorů, jako je formát, makra,
skripty, písma, mikrotypografická rozšíření, SyncTEX a přesměrování standard-
ního chybového výstupu. Článek diskutuje jednotlivé faktory z pohledu uživatele
ConTEXtu. Článek dále měří režii formátů ConTEXt MkII a MkIV, dopad
přesměrování výstupu na rychlost ConTEXtu MkIV, dopad písem na rychlost
sazby v ConTEXtu MkIV a rychlost sazby v ConTEXtu MkII a MkIV.

Klíčová slova: Lua, LuaTEX, LuajitTEX, ConTEXt MkII, ConTEXt MkIV

Hans Hagen, pragma@wxs.nl


