
Czechoslovak Mathematical Journal

Mehrdad Nasernejad; Kazem Khashyarmanesh; Leslie G. Roberts; Jonathan Toledo
The strong persistence property and symbolic strong persistence property

Czechoslovak Mathematical Journal, Vol. 72 (2022), No. 1, 209–237

Persistent URL: http://dml.cz/dmlcz/149583

Terms of use:
© Institute of Mathematics AS CR, 2022

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/149583
http://dml.cz


Czechoslovak Mathematical Journal, 72 (147) (2022), 209–237

THE STRONG PERSISTENCE PROPERTY AND SYMBOLIC

STRONG PERSISTENCE PROPERTY

Mehrdad Nasernejad, Kazem Khashyarmanesh, Mashhad,

Leslie G. Roberts, Kingston, Jonathan Toledo, Ciudad de México

Received September 18, 2020. Published online December 14, 2021.

Abstract. Let I be an ideal in a commutative Noetherian ring R. Then the ideal I has the
strong persistence property if and only if (Ik+1 : RI) = Ik for all k, and I has the symbolic

strong persistence property if and only if (I(k+1) : RI(1)) = I(k) for all k, where I(k) denotes
the kth symbolic power of I . We study the strong persistence property for some classes of
monomial ideals. In particular, we present a family of primary monomial ideals failing the
strong persistence property. Finally, we show that every square-free monomial ideal has the
symbolic strong persistence property.

Keywords: strong persistence property; associated prime; cover ideal; symbolic strong
persistence property
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1. Introduction and preliminaries

Let R be a commutative Noetherian ring and I an ideal of R. A prime ideal p ⊂ R

is an associated prime of I if there exists an element v in R such that p = (I : Rv),

where (I : Rv) = {r ∈ R : rv ∈ I}. The set of associated primes of I, denoted by
AssR(R/I), is the set of all prime ideals associated to I. Brodmann in [1] proved that

the sequence {AssR(R/Ik)}k>1 of associated prime ideals is stationary for large k,

that is, there exists a positive integer k0 such that AssR(R/Ik) = AssR(R/Ik0) for

all integers k > k0. The minimum such k0 is called the index of stability of I and

AssR(R/Ik0) is called the stable set of associated prime ideals of I, which is denoted

by Ass∞(I). There are a few exact calculations of the stable set and the index

of stability for ideals, see [10] and [17] for more details. There have been several
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questions arising from Brodmann’s result. An ideal I of R satisfies the persistence

property if AssR(R/Ik) ⊆ AssR(R/Ik+1) for all positive integers k. In addition, an

ideal I of R has the strong persistence property if (Ik+1 : RI) = Ik for all positive

integers k; refer to [16] for more information. It is well-known that the strong

persistence property implies the persistence property, see [15], Proposition 2.9.

Assume that I is a monomial ideal in a polynomial ring R = K[x1, . . . , xn]

over a field K and x1, . . . , xn are indeterminates. Generally, finding classes of

monomial ideals which either have or fail the persistence property is complicated.

It has been shown in [9] that there exists a square-free monomial ideal which

does not satisfy the persistence property. However, Ratliff in [20] proved that

(Ik+1 : RI)= Ik for all large k. Also, it is known by [12] that all edge ideals

of finite simple graphs have the strong persistence property; this result is valid

for every finite graph with loops, see [21]. Furthermore, it has been established

in [7] that every polymatroidal ideal has the strong persistence property. More-

over, according to [3], the cover ideals of perfect graphs satisfy the persistence

property. More recently, it has been proved in [18] that the cover ideals of some

imperfect graphs have the strong persistence property, that is, cycle graphs of odd

orders, wheel graphs of even orders, and helm graphs of odd orders greater than or

equal to 5.

We know from [19] that if I and J are two ideals in a commutative Noetherian

ring R, then we say that J is a superficial ideal for I if the following conditions are

satisfied:

(i) G(J) ⊆ G(I), where G(L) denotes the unique minimal set of monomial genera-
tors of a monomial ideal L,

(ii) (Ik+1 : RJ) = Ik for all positive integers k.

It is easy to see that an ideal I has the strong persistence property if and only if I

has a superficial ideal. Besides, note that an ideal I in a commutative Noetherian

ring R is called normally torsion-free if AssR(R/Ik) ⊆ AssR(R/I) for all k ∈ N. It

has been shown in [19], Theorem 6.10, that every normally torsion-free square-free

monomial ideal has the strong persistence property.

In this direction, the notion of symbolic strong persistence property was intro-

duced in [21]. An ideal I in a commutative Noetherian ring R has the symbolic

strong persistence property if (I(k+1) : RI
(1)) = I(k) for all k, where I(k) denotes the

kth symbolic power of I. In this paper, we continue studying the symbolic strong

persistence property. Symbolic powers have many nice properties, especially if I is

a square-free monomial ideal. The symbolic strong persistence property was sug-

gested to us by analogy with the strong persistence property, with the hope that

symbolic powers would behave better than regular powers. This hope is borne out

in one of our main theorems, Theorem 5.1, where we prove that every square-free
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monomial ideal has the symbolic strong persistence property, even though normally

torsion-free monomial ideals need not have the symbolic strong persistence property.

This paper is organized as follows. In Section 2, in Lemmas 2.1 and 2.2, we

investigate the strong persistence property of the intersection, product, and sum of

two monomial ideals which are generated by two disjoint sets of variables. Next,

in Corollary 2.1, we prove that every irreducible monomial ideal has the strong

persistence property. In Theorem 2.1, we show that if one takes any graph G and

form a new graph H by adding new vertices joining each to every vertex of G,

then J(G) has the strong persistence property if and only if J(H) has the strong

persistence property. Finally, Corollary 2.2 tells us that if the cover ideal of a finite

simple graph has the strong persistence property, then the cover ideal of its whisker

graph has the strong persistence property.

In Section 3, we focus on the strong persistence property of primary monomial

ideals as a case study. In fact, in Proposition 3.1, we give a class of primary mono-

mial ideals which do not satisfy the strong persistence property.

Section 4 is devoted to the strong persistence property of the cover ideal of the

union of finite simple graphs. To do this, we first, in Lemma 4.2, explore the relation

between associated primes of powers of the cover ideal of the union of a finite simple

connected graph and a tree with the associated primes of powers of the cover ideals

of each of them. We finally give the main result of this section in Theorem 4.1.

Section 5 is concerned with the symbolic strong persistence property. In Proposi-

tion 5.2 we prove that if an ideal has the symbolic strong persistence property, then

any power of it has the symbolic strong persistence property as well. Theorem 5.1

as the main result of the section, says that every square-free monomial ideal has

the symbolic strong persistence property. Throughout this paper, we denote the

unique minimal set of monomial generators of a monomial ideal I by G(I). Also,
R = K[x1, . . . , xn] is a polynomial ring over a field K and x1, . . . , xn are indeter-

minates. The symbols N and Q, respectively, will always denote the set of positive

integers and rational numbers, respectively. A simple graph G means that G has no

loop and no multiple edge. All graphs in this paper are undirected. Moreover, if G

is a finite simple graph, then J(G) stands for the cover ideal of G.

2. Some results on the strong persistence property

In this section, we study the strong persistence property of monomial ideals with

a suitable assumption on its support. We begin with the following lemma which

allows us to discuss the strong persistence property of the intersection and product

of two monomial ideals which are generated by two disjoint sets of variables. To see

this, we need the following definition.
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Definition 2.1 ([22], Definition 6.1.5). Let u = xa1

1 . . . xan

n be a monomial in

a polynomial ring R = K[x1, . . . , xn] over a field K. The support of u is given by

supp(u) := {xi : ai > 0}. In addition, for a monomial ideal I of R with G(I) =

{u1, . . . , um}, we define supp(I) :=
m
⋃

i=1

supp(ui).

Lemma 2.1. Suppose that I1 and I2 are two monomial ideals in a polynomial

ring R = K[x1, . . . , xn] over a field K such that supp(I1)∩ supp(I2) = ∅. If I1 and I2
have the strong persistence property, then I1∩I2 has the strong persistence property.
P r o o f. Assume that I1 and I2 have the strong persistence property. Since I1

and I2 are generated by disjoint sets of variables, Lemma 1.1 of [8] yields that

Ia1 ∩ Ib2 = Ia1 I
b
2 for any positive integers a, b. Let k > 1. By observing Lemma 2.1

of [11] one can deduce that

(Ik+1
1 Ik+1

2 : RI1) = Ik+1
2 (Ik+1

1 : RI1) and (Ik1 I
k+1
2 : RI2) = Ik1 (I

k+1
2 : RI2).

To end the proof, it is enough to consider the following equalities:

((I1 ∩ I2)
k+1 : RI1 ∩ I2) = ((I1I2)

k+1 : RI1I2) = ((Ik+1
1 Ik+1

2 : RI1) : RI2)

= (Ik+1
2 (Ik+1

1 : RI1) : RI2) = (Ik1 I
k+1
2 : RI2)

= Ik1 (I
k+1
2 : RI2) = Ik1 I

k
2 = (I1 ∩ I2)

k.

�

Lemma 2.2. Suppose that I1 and I2 are two monomial ideals in a polynomial

ring R = K[x1, . . . , xn] over a field K such that supp(I1)∩supp(I2) = ∅. Then I1+I2
has the strong persistence property if and only if I1 or I2 has the strong persistence

property.

P r o o f. The backward implication can be immediately deduced from [19], Theo-

rem 3.2. To establish the forward implication, suppose, on the contrary, that I1

and I2 do not satisfy the strong persistence property. This implies that there

exist a positive integer k1 (or k2) and a monomial m1 (or m2) such that m1 ∈
G(Ik1+1

1 : RI1) \ G(Ik1

1 ) (or m2 ∈ G(Ik2+1
2 : RI2) \ G(Ik2

2 )). Take the nonnegative

integer a1 (or a2) such that m1 ∈ Ia1

1 \ Ia1+1
1 (or m2 ∈ Ia2

2 \ Ia2+1
2 ). This gives that

a1 6 k1−1 (or a2 6 k2−1). Put I := I1+I2, m := m1m2 and b := a1+a2. Thus, one

has m ∈ Ib. Note that m /∈ Ii1∩Ij2 for either i > a1 or j > a2, so by Lemma 1.1 of [8],

m /∈ Ib+1. To conclude the proof, it is enough to show thatm ∈ (Ib+2 : RI), this con-

tradicts the assumption that I has the strong persistence property. So, take a mono-

mial u ∈ I = I1 + I2. Without loss of generality, we can assume that u ∈ I1. Thus,

um = (um1)m2 ∈ Ik1+1
1 Ia2

2 ⊆ (I1 + I2)
k1+1+a2 and since k1 > a1, we are done. �
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An application of Lemma 2.2 is the corollary below.

Corollary 2.1. Every irreducible primary monomial ideal has the strong persis-

tence property.

P r o o f. Let k > 1 be an integer, and recall that by Proposition 6.1.7 of [22],

a monomial ideal is primary irreducible ideal if and only if it has the form Q =

(xα1

i1
, . . . , xαt

it
) in a polynomial ring R = K[x1, . . . , xn] over a field K with α1, . . . , αt

being positive integers and {xi1 , . . . , xit} ⊆ {x1, . . . , xn}. Set I1 := (xα1

i1
) and I2 =

(xα2

i2
, . . . , xαt

it
). Since I1 has the strong persistence property, Lemma 2.2 implies

that Q has the strong persistence property, as desired. �

By a repeated application of Lemma 2.1 of [18], we have the following result.

Lemma 2.3. Let I and J be two monomial ideals in a polynomial ring R =

K[x1, . . . , xn] over a field K with G(I) = {u1, . . . , um}, G(J) = {v1, . . . , vs}, and h

a monomial in R such that for each i = 1, . . . ,m and j = 1, . . . , s, gcd(h, vj) = 1,

gcd(vj , ui) = 1, and h ∈ I. If I has the strong persistence property, then L := JI+hR

has the strong persistence property.

Remark 2.1. It should be noted that Lemma 2.3 may be false if we consider the

ideal L as L = JI +H with H not a principal monomial ideal. To see this, assume

that L is the Stanley-Reisner ideal that corresponds to the natural triangulation of

the projective plane, that is, L ⊂ R = K[x1, x2, x3, x4, x5, x6], one has

L = (x1x2x3, x1x2x4, x1x3x5, x1x4x6, x1x5x6, x2x3x6, x2x4x5, x2x5x6,

x3x4x5, x3x4x6).

In the sequel, put J := (x3), I := (x1x2, x1x5, x2x6, x4x5, x4x6) and H :=

(x1x2x4, x1x4x6, x1x5x6, x2x4x5, x2x5x6). It can be rapidly checked that L = JI+H ,

H ⊆ I, gcd(x3, h) = 1 for all h ∈ G(H), gcd(x3, u) = 1 for all u ∈ G(I). We prove
that I has the strong persistence property. To do this, assume that G is the cycle

graph with V (G) = {1, 2, 4, 5, 6} and E(G) = {{1, 2}, {2, 6}, {6, 4}, {4, 5}, {5, 1}}. It
is easy to detect that the edge ideal of G is I(G) = (x1x2, x1x5, x2x6, x4x5, x4x6).

This implies that I(G) = I. In addition, Theorem 7.7.14 of [22] yields that I(G) has

the strong persistence property, and thus the monomial ideal I has the strong per-

sistence property. On the other hand, by using Macaulay2 (see [5]), one can detect

that (L3 : RL) 6= L2, that is, L does not satisfy the strong persistence property.

As an application of Lemma 2.1 of [18], we present Theorem 2.1. To understand the

importance of this theorem, we first review some background. Recall the following

definitions and theorem.
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Let G = (V (G), E(G)) be a finite simple graph on the vertex set V (G) :=

{1, . . . , n}. Then the edge ideal associated to G is the monomial ideal

I(G) = (xixj : {i, j} ∈ E(G)) ⊂ R = K[x1, . . . , xn],

and the cover ideal associated to G is the monomial ideal

J(G) =
⋂

{i,j}∈E(G)

(xi, xj) ⊂ R = K[x1, . . . , xn].

Definition 2.2 ([22], Definition 10.5.4). The cone C(G) over the graph G is

obtained by adding a new vertex t to G and joining every vertex of G to t.

More generally, we can take any graph G and form a new graph H by adding new

vertices, joining each to every vertex of G. Then J(G) has the strong persistence

property if and only if J(H) has the strong persistence property. Explicitly:

Theorem 2.1. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two finite sim-

ple graphs such that V (H) = V (G)∪{w1, . . . , wr} with wi /∈ V (G) for all i = 1, . . . , r,

and

E(H) = E(G) ∪ {{v, wi} : for all v ∈ V (G) and for all i = 1, . . . , r}.

Then J(G) has the strong persistence property if and only if J(H) has the strong

persistence property.

P r o o f. We give a sketch of the proof. Assume that V (G) = [n] and V (H) =

V (G) ∪ {n+ 1, . . . , n+ r}. In addition, let R = K[x1, . . . , xn+r ] be the polynomial

ring over a field K. Put L := J(H), I := J(G), h :=
n
∏

i=1

xi and g :=
n+r
∏

i=n+1

xi. It

follows from Exercise 6.1.23 of [22] that

n
⋂

i=1

n+r
⋂

j=n+1

(xi, xj) =

( n
∏

i=1

xi,

n+r
∏

j=n+1

xj

)

.

Also, it is easy to see that L = gIR+hR. Suppose that I has the strong persistence

property. Now, Lemma 2.1 of [18] yields that L has the strong persistence property,

as claimed. Conversely, let J(H) have the strong persistence property. Put p :=

(x1, . . . , xn). Since I = L(p), where L(p) denotes the monomial localization of L

with respect to p, the claim follows at once from Theorem 4.7 of [19]. �

Here, we concentrate on the notion of a whisker graph. Our aim is to explore the

strong persistence property of the cover ideal of a whisker graph. To do this, we

state the subsequent definition.
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Definition 2.3 ([22], Definition 7.3.10). Let G0 be a graph on the vertex set

Y = {y1, . . . , yn} and take a new set of variables X = {x1, . . . , xn}. The whisker
graph or suspension of G0, denoted by G0∪W (Y ), is the graph obtained from G0 by

attaching to each vertex yi a new vertex xi and the edge {xi, yi}. The edge {xi, yi}
is called a whisker.

Theorem 2.7 of [18] says that if we take any graph G whose cover ideal has the

strong persistence property, and if we then add a leaf to G, then the cover ideal of

the new graph satisfies the strong persistence property as well.

Corollary 2.2. With the notation of Definition 2.3, if the cover ideal of a finite

simple graph G0 has the strong persistence property, then the cover ideal of the

whisker graph of G0 has the strong persistence property.

P r o o f. Proceed by using Theorem 2.7 of [18] repeatedly, n times. �

3. Case study: strong persistence property

of primary monomial ideals

Several questions may be asked along our argument. In this section, we investigate

the strong persistence property of primary monomial ideals as a case study. To

accomplish this, we start with the following main question.

Question 3.1. Which classes of monomial ideals have the strong persistence prop-

erty?

We present a class of primary monomial ideals which do not satisfy the strong

persistence property. To do this, consider the monomial ideals

In = (xn, xn−1y, xyn−1, yn)

in the polynomial ring R = K[x, y], n > 4 over a field K. The idea is to describe

the monomials in (Idn)nd+i for i > 0, where subscripts denote the degree in R. We

list all the monomials in (Idn)nd+i in lexicographic order with respect to x < y, i.e.,

xnd+i, xnd+i−1y, . . . , ynd+i. In order to simplify the notation, we will often describe

a monomial in (Idn)nd+i with its power of y because we can identify such a monomial

with its power of y.

It is clear that (Idn)j = 0 for j < nd and that the monomials in (Idn)nd are ex-

actly the products of d generators of In (with repetition). First of all, we consider

the monomials {(xn)α(yn)β}α+β=d,α>0, β>0 which we will refer to as “subdivision
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points”. Start with the subdivision point (xn)α(yn)β . If α > 1, then some of the xn

can be replaced by xn−1y, and if β > 1, then some of the yn can be replaced by xyn−1.

This leads to an “interval” of consecutive monomials {xnα−jynβ+j}−β6j6α about the

subdivision point (xn)α(yn)β . The first monomial in this interval is {xnα+βynβ−β}
and the last is {xnα−αynβ+α}. Describing this interval with the powers of y, we have
an increasing sequence of consecutive powers of y, {yj}nβ−β6j6nβ+α. The number

of monomials in this interval is (nβ + α) − (nβ − β) + 1 = α+ β + 1 = d + 1. The

previous subdivision point (if β > 1) is xn(α+1)yn(β−1) and so to avoid overlap of

intervals we require that n(β − 1) + (α + 1) < nβ − β or equivalently d+ 1 < n, so

that we have 1 6 d 6 n− 2.

If d = n−2, then there is no overlap of intervals, but also no gap. If 1 6 d 6 n−3,

between adjacent intervals

{xn(α+1)−jyn(β−1)+j}−(β−1)6j6(α+1) and {xnα−jynβ+j}−β6j6α

there is a gap. For the left-hand side interval, the largest exponent of y is n(β− 1)+

(α+ 1) and the smallest exponent of y on the right-hand side interval is nβ − β, so

the powers of y in the gap are {yj}n(β−1)+(α+1)<j<nβ−β , there being

(nβ − β)− (n(β − 1) + (α+ 1))− 1 = n− d− 2

monomials in the gap. As a simple check for consistency, we have d + 1 intervals

each containing d+ 1 monomials, and d gaps each containing n− d+ 2 monomials,

and (d+ 1)2 + d(n− d− 2) = nd+ 1, the total number of monomials in Rnd.

Now consider the monomials in (Idn)nd+i, i > 0. Then the interval

{xn(α+1)−jyn(β−1)+j}−(β−1)6j6(α+1)

(of cardinality α+ β + 1 = d+ 1) expands to include

{xn(α+1)−j+ryn(β−1)+j+s}−(β−1)6j6(α+1), r>0, s>0, r+s=i

(of cardinality α+β+1+ i = d+ i+1) and {xnα−jynβ+j}−β6j6α expands to include

{xnα−j+rynβ+j+s}−β6j6α, r>0, s>0, r+s=i (again of cardinalities, respectively, d + 1

and d+ i+ 1). As above we will describe the gap between these intervals by giving

the exponents of y in the monomials in this gap.

Lemma 3.1 (Gap Lemma).

(1) If i > n− d− 2, then (Idn)nd+i = Rnd+i.

(2) If 0 6 i 6 n−d− 2, then (Idn)nd+i has d+1 subdivision intervals each of whose

cardinality is d+ i+ 1, which is i more than that for (Idn)nd.
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(3) If 0 6 i < n − d − 2, then the list of y-exponents of monomials in the gap

between consecutive intervals

{xn(α+1)−j+ryn(β−1)+j+s}−(β−1)6j6(α+1), r>0, s>0, r+s=i

and

{xnα−j+rynβ+j+s}−β6j6α, r>0, s>0, r+s=i

of (Idn)nd+i, i > 0 contains n− d− 2− i consecutive values (that is, i less than

for (Idn)nd). Also the largest y-exponent in the gap is nβ − β − 1.

P r o o f. Part (2) was observed in the paragraph before the statement of the

lemma. The largest exponent of y of a monomial in the first interval is n(β − 1) +

α + 1 + i (coming from j = α + 1 and s = i) and the smallest exponent of y in the

right most interval is nβ − β (coming from j = −β and s = 0). If

(nβ − β)− (n(β − 1) + α+ 1 + i)− 1 = n− d− 2− i 6 0,

there are no gaps and part (1) follows. Otherwise we have (3). �

Thus, we start with gap size n − d − 2 previously obtained for i = 0, and drop

one exponent from the beginning of the list of exponents for each increase of 1 in the

value of i, until (Idn)nd+i consists of all Rnd+i for i = n− d− 2.

To make the notation more manageable we will refer to

{xnα−j+rynβ+j+s}−β6j6α, r>0, s>0, r+s=i

as the (α, β) subdivision interval of (Idn)nd+i (0 6 β 6 d, α + β = d). With this

notation, Lemma 3.1 (3) takes on the simpler appearance:

Lemma 3.2 (simplified Gap Lemma). For 1 6 β 6 d, the list of y-exponents

of monomials in the gap between consecutive subdivision intervals (α + 1, β − 1)

and (α, β) of (Idn)nd+i with 0 6 i < n−d−2 contains n−d−2− i consecutive values,

with the largest equal to nβ − β − 1.

Now, we calculate Id+1
n : In for a fixed d > 1. Note that Id+1

n : In is a monomial

ideal and Idn ⊆ (Id+1
n : In), so we seek monomials in Id+1

n : In but not in Idn. If

d > n − 2, then both Idn and Id+1
n are all of Rj in all degrees j for which they are

nonzero (namely j > nd for Idn and j > n(d+ 1) for Id+1
n ) by Lemma 3.1 (1). From

this, it follows that (Id+1
n : In) = Idn for d > n− 2.

Now, consider 1 6 d 6 n − 3. Let i = n − d − 3. Then by Lemma 3.1 (3),

(Idn)nd+i has gaps of size 1 and (I
d+1
n )n(d+1)+i is equal to Rn(d+1)+i. The monomials
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in these gaps of size 1 are mapped into (Id+1
n )n(d+1)+i = Rn(d+1)+i when multi-

plied by any minimal generator of In (and indeed, by any element of Rn), hence

lie in (Id+1
n : In) \ Idn. These monomials are {xnd+n−d−3−nβ+β+1ynβ−β−1}16β6d =

{xnd−d−1yn−2, xnd−n−dy2n−3, . . . , xn−2ynd−d−1}.
If 0 6 i < n − d − 3, then (Idn)nd+i has gaps of size t > 1, which are again

mapped into Rn(d+1)+i when multiplied by any minimal generator of In, in which

(Id+1
n )n(d+1)+i has gaps of size t − 1 > 0. Suppose that one of our gaps of (Idn)nd+i

lies between subdivision intervals (α + 1, β − 1) and (α, β). Then by Lemma 3.2,

the monomials in the gap (described by giving only their exponent of y) consist of t

consecutive powers of y with the largest being nβ− β− 1. There is not a one-to-one

correspondence between the gaps of (Id+1
n )n(d+1)+i and (Idn)nd+i, the former having

d+1 gaps, and the latter having d gaps, so we have to make a choice. Choose the gap

of (Id+1
n )n(d+1)+i between subdivision intervals (α + 2, β − 1) and (α + 1, β). Then

the monomials in the gap between these intervals consist of t− 1 consecutive powers

of y with the largest again being nβ− β− 1. The monomials in our gap for (Idn)nd+i

are then represented by {ynβ−β−t, ynβ−β−(t−1), . . . , ynβ−β−1} and the monomi-
als in our gap for (Id+1

n )n(d+1)+i are represented by {ynβ−β−(t−1), . . . , ynβ−β−1}.
Recall that xn and xn−1y are minimal generators of In and multiplication by

them raises the degree by n. Thus, if we multiply a monomial represented

by ya of the gap sequence for (Idn)nd+i by xn, we get a monomial of the gap

sequence for (Id+1
n )n(d+1)+i that is also represented by ya, except for the first

power ynβ−β−t, where we can multiply by xn−1y instead and get the monomial

represented by ynβ−β−(t−1), which is in the gap sequence for (Id+1
n )n(d+1)+i. This

shows that if 0 6 i < n − d − 3, then the monomials in the gaps of (Idn)nd+i do

not lie in Id+1
n : In. Therefore, (I

d+1
n : In) \ Id+1

n consists only of the monomials

{xnd−d−1yn−2, xnd−n−dy2n−3, . . . , xn−2ynd−d−1} of degree nd+i, where i = n−d−3

found in the previous paragraph.

In the expression {xnd+n−d−3−nβ+β+1ynβ−β−1}16β6d there is an annoying ap-

parent lack of symmetry between x and y and between α and β. This can be

removed by setting i = β − 1, j = α, a = d − 1 so that this expression becomes

{xn−2yn−2(xn−1)j(yn−1)i} and our result becomes:

Proposition 3.1. Let In = (xn, xn−1y, xyn−1, yn) in the polynomial ring R =

Q[x, y], n > 4. Then Ia+2
n : In ) Ia+1

n for 0 6 a 6 n − 4 and Ia+2
n : In = Ia+1

n for

a > n − 3. More precisely, if 0 6 a 6 n − 4, then (Ia+2
n : In)/I

a+1
n is an (a + 1)-

dimensional vector space with basis {xn−2yn−2(xn−1)j(yn−1)i}i>0, j>0, i+j=a.

It should be noted that, in particular, if a = 0, then Proposition 3.1 yields the

result that xn−2yn−2 is the only monomial in I2n : In but not in In.

To clarify our discussion, we provide the following example.
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Example 3.1. Let us now look at I26 and (I36 : I6) \ I26 . This will illustrate the
ideas in Lemma 3.1 and Proposition 3.1 and help ensure that we have gotten the

notation straight. By direct computation one has

I26 = (x12, x11y, x10y2, x7y5, x6y6, x5y7, x2y10, xy11, y12).

The monomials in (I26 )12 are just the 9 minimal generators of I
2
6 and (I26 )j = 0 for

j < 12. Furthermore, the set of all monomials in (I26 )13 is

{x13, x12y, x11y2, x10y3, x8y5, x7y6, x6y7, x5y8, x3y10, x2y11, xy12, y13},

and the set of all monomials in (I26 )14 is

{x14, x13y, x12y2, x11y3, x10y4, x9y5, x8y6, x7y7, x6y8, x5y9, x4y10,

x3y11, x2y12, xy13, y14},

that is, all monomials of degree 14. Obviously, (I26 )j = Rj for j > 14. In the notation

of Lemma 3.1, we have n = 6 and d = 2. Part (1) of this Lemma says that (I26 )nd+i =

(I26 )12+i = R12+i for i > 6 − 2 − 2 = 2, or (I26 )j = Rj for j > 14, which is what we

have observed. Furthermore, the d+1 = 3 subdivision intervals of (I26 )12 are each of

cardinality d+ i+ 1 = 2+ 0+ 1 = 3 and the subdivision intervals of (I26 )13 are each

of cardinality d+ i+1 = 2+1+1 = 4, both in agreement with Lemma 3.1 part (2),

increasing by 1 each time we increase i by 1. There are d = 2 gaps in (I26 )12, namely

{x9y3, x8y4} and {x4y8, x3y9}, are each of cardinality n−d−2− i = 6−2−2−0 = 2

and the largest exponent of y in these gaps is nβ − β − 1 = 4, 9 for β = 1, 2, all in

agreement with Lemma 3.1 part (3). The gaps in (I26 )13, namely {x9y4} and {x4y9},
are each of cardinality n − d − 2 − i = 6 − 2 − 2 − 1 = 1 and the largest exponent

of y in these gaps is again nβ − β − 1 = 4, 9 for β = 1, 2, also in agreement with

Lemma 3.1 part (3). We are interested in I36 : I6. This contains I
2
6 and potentially

the gaps of (I26 )12 and (I26 )13. The minimal generators of I6 are all of degree 6, and

multiplication by one of these maps (I26 )13 into R19. But by Lemma 3.1 part (1),

(I36 )19 = R19, so the gaps of (I
2
6 )13 are in (I36 : I6) \ (I6)

2. But the gaps of (I26 )12

are not mapped into I36 by all the minimal generators of I6. The gaps of (I
3
6 )18

are {x14y4}, {x9y9} and {x4y14}, and for example x6(x8y4) = x14y4 /∈ (I6)
3, so

x8y4 /∈ I36 : I6. Similarly, x
5y(x9y3) = x14y4 /∈ (I6)

3 so x9y3 /∈ I36 : I6 either. Instead

of the gap {x14y4} we can use {x9y9}. Thus y6(x9y3) = x9y9 /∈ (I6)
3, again yielding

that x9y3 /∈ I36 : I6. We thus conclude that (I
3
6 : I6) \ (I6)2 = {x9y4, x4y9}. (In the

language of Proposition 3.1, a = 1.)
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We are ready to present the second question.

Let R = K[x1, . . . , xn] be a polynomial ring over a field K and let I be a monomial

ideal in R that has the strong persistence property. Also, let Q be an irreducible

primary monomial ideal of R. Does the monomial ideal I + Q satisfy the strong

persistence property?

We provide a counterexample. For this purpose, assume that R = K[x, y] is the

polynomial ring over a field K, and put I := (x4, x3y, xy3, y5), and Q = (y4). We

thus have I +Q = (x4, x3y, xy3, y4). It follows from Proposition 3.1 that I +Q does

not satisfy the strong persistence property. To conclude our argument, it remains to

verify that the ideal I has the strong persistence property. To see this, fix k > 1. Since

Ik ⊆ (Ik+1 : RI) ⊆ (Ik+1 : Rxy
3), it is enough for us to show that (Ik+1 : Rxy

3)⊆ Ik.

It is well-known that

Ik+1 =
∑

λ1+λ2+λ3+λ4=k+1

(x4)λ1(x3y)λ2(y5)λ3(xy3)λ4R.

If λ4 > 1, then we have

((x4)λ1 (x3y)λ2(y5)λ3(xy3)λ4 : Rxy
3) = ((x4)λ1(x3y)λ2(y5)λ3(xy3)λ4−1) ⊆ Ik.

Thus, let λ4 = 0. If λ2 > 3, then one obtains that

((x4)λ1(x3y)λ2(y5)λ3 : Rxy
3) = ((x4)λ1(x3y)λ2−3(y5)λ3x8)

= ((x4)λ1+2(x3y)λ2−3(y5)λ3) ⊆ Ik.

Hence, let λ4 = 0 and 0 6 λ2 6 2. Accordingly, one may consider the following

cases:

Case 1 : λ4 = 0 and λ2 = 0. If λ1 = 0, then λ3 = k + 1. This leads to ((y5)λ3 :

Rxy
3) = ((y5)λ3−1y2) ⊆ Ik. Let λ1 > 1. If λ3 = 0, then λ1 = k + 1, and thus

((x4)λ1 : Rxy
3) = ((x4)λ1−1x3) ⊆ Ik. Hence, let λ3 > 1. Due to λ1 > 1 and λ3 > 1,

we have ((x4)λ1(y5)λ3 : Rxy
3) = ((x4)λ1−1(y5)λ3−1(x3y)y) ⊆ Ik.

Case 2 : λ4 = 0 and λ2 = 1. Let λ1 = 0. Hence, λ3 = k > 1, and so

((x3y)(y5)λ3 : Rxy
3) = (x(xy3)(y5)λ3−1) ⊆ Ik.

Therefore, let λ1 > 1. If λ3 = 0, then λ1 = k, and thus

((x4)λ1(x3y) : Rxy
3) = ((x4)λ1x2) ⊆ Ik.

Hence, let λ3 > 1. Thanks to λ1 > 1 and λ3 > 1, one derives that

((x4)λ1(x3y)(y5)λ3 : Rxy
3) = ((x4)λ1−1(x3y)2(y5)λ3−1y) ⊆ Ik.
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Case 3 : λ4 = 0 and λ2 = 2. If λ3 > 1, then

((x4)λ1 (x3y)2(y5)λ3 : Rxy
3) = ((x4)λ1(x5y2)(y5)λ3−1y2)

= ((x4)λ1(x3y)(y5)λ3−1(xy3)x) ⊆ Ik.

Therefore, let λ3 = 0. This gives that λ1 = k − 1. Hence, we gain

((x4)λ1(x3y)2 : Rxy
3) = ((x4)λ1x5) = ((x4)λ1+1x) ⊆ Ik.

This terminates our argument.

4. Strong persistence property of the cover ideals

In this section, we focus on the strong persistence property of the cover ideals

of simple finite graphs. For this purpose, we consider the following lemma which

examines the relation between associated primes of powers of the cover ideal of the

union of a finite simple connected graph and a tree with the associated primes of

powers of the cover ideals of each of them, under the condition that they have only

one common vertex.

It should be noted that throughout this section, all trees are nontrivial, that is,

they have at least two vertices.

A repeated application of Theorem 2.5 of [18] yields the following lemma:

Lemma 4.1. Let G = (V (G), E(G)) be a finite simple connected graph and T

be a tree such that |V (G) ∩ V (T )| = 1. Let L = (V (L), E(L)) be the finite simple

graph such that V (L) := V (G) ∪ V (T ) and E(L) := E(G) ∪ E(T ). Then

AssR(R/J(L)s) = AssR1
(R1/J(G)s) ∪AssR2

(R2/J(T )
s)

for all s, where R1 = K[xα : α ∈ V (G)], R2 = K[xα : α ∈ V (T )] and R = K[xα :

α ∈ V (L)] over a field K.

The next lemma explores the relation between associated primes of powers of

the cover ideal of the union of a finite simple connected graph and a tree with the

associated primes of powers of the cover ideals of each of them, under the condition

that they have only a path in common. In fact, a repeated application of Lemma 4.1

gives the following lemma:

Lemma 4.2. LetG = (V (G), E(G)) be a finite simple connected graph, T1, . . . , Tr

be some trees with V (G) ∩ V (Ti) = {vi} for each i = 1, . . . , r, V (Ti)∩ V (Tj) = ∅ for
i 6= j, and P = (V (P ), E(P )) be a path of G with

V (P ) = {v1, . . . , vr, vr+1, . . . , vm} ⊆ V (G)
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and

E(P ) = {{vi, vi+1} : for i = 1, . . . ,m− 1} ⊆ E(G).

Let T = (V (T ), E(T )) be the tree with

V (T ) =

( r
⋃

i=1

V (Ti)

)

∪ V (P ) and E(T ) =

( r
⋃

i=1

E(Ti)

)

∪ E(P ).

Also, let L = (V (L), E(L)) be the finite simple graph such that

V (L) := V (G) ∪ V (T ) and E(L) := E(G) ∪ E(T ).

Then

AssR(R/J(L)s) = AssR′(R′/J(G)s) ∪ AssR′′ (R′′/J(T )s)

for all s, where R′ = K[xα : α ∈ V (G)], R′′ = K[xα : α ∈ V (T )] and R = K[xα :

α ∈ V (L)] over a field K.

To establish Theorem 4.1, one needs to know the following auxiliary propositions.

Indeed, by considering the fact that localizing at a minimal prime inverts everything

outside of it, one can deduce the following proposition:

Proposition 4.1. Let I be an ideal in a commutative Noetherian ring R. Also,

let I = Q1 ∩ . . . ∩ Qt ∩ Qt+1 ∩ . . . ∩ Qr be a minimal primary decomposition of I

with pi =
√
Qi for i = 1, . . . , r and Min(I) = {p1, . . . , pt}. Then Ipi

= (Qi)pi
for

i = 1, . . . , t.

Proposition 4.2. Let I be a monomial ideal in R = K[x1, . . . , xn] over a field K

with G(I) = {u1, . . . , um} and AssR(R/I) = {p1, . . . , ps}. Then the following state-
ments hold.

(i) If xi | ut for some i with 1 6 i 6 n and for some t with 1 6 t 6 m, then there

exists j with 1 6 j 6 s such that xi ∈ pj.

(ii) If xi ∈ pj for some i with 1 6 i 6 n and for some j with 1 6 j 6 s, then there

exists t with 1 6 t 6 m such that xi | ut.

Especially,
s
⋃

j=1

supp(pj) =
m
⋃

t=1
supp(ut).

P r o o f. (i) Suppose that I = Q1 ∩ . . . ∩Qs is a minimal primary decomposition

of I such that
√
Qz = pz for all z = 1, . . . , s. Also, let xi | ut for some 1 6 i 6 n

and 1 6 t 6 m. Since ut ∈ G(I), one has ut ∈ Qz for all z = 1, . . . , s, and so ut ∈ pz

for all z = 1, . . . , s. It follows also from xi | ut that there exists a monomial v in R

such that ut = xiv. Suppose on the contrary, that xi /∈ pz for all z = 1, . . . , s. Then
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one can conclude that v ∈ Qz for all z = 1, . . . , s because xiv ∈ Qz, xi /∈ pz, and Qz

is primary. Therefore, v ∈
s
⋂

z=1
Qz, that is, v ∈ I. This contradicts the minimality

of ut. We thus have, there exists some 1 6 j 6 s such that xi ∈ pj .

(ii) Let xi ∈ pj for some 1 6 i 6 n and 1 6 j 6 s. Since pj ∈ AssR(R/I), there

exists a monomial v in R such that pj = (I : Rv). In addition, the assumption G(I) =
{u1, . . . , um} yields that I =

m
∑

r=1
urR. By virtue of pj = (I : Rv) =

m
∑

r=1
(urR : Rv) and

xi ∈ pj, one can conclude that there exists some 1 6 t 6 m such that xi ∈ (utR : Rv).

We thus have uth = xiv for a monomial h in R. If xi | h, then v ∈ I, which is

a contradiction. Therefore, one can derive that xi | ut, as claimed.

The last assertion is an immediate consequence of parts (i) and (ii). �

In the next theorem, we turn our attention to study the strong persistence property

of the cover ideal of the union of two finite simple connected graphs.

Theorem 4.1. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two finite

simple connected graphs such that J(G) and J(H) have the strong persistence prop-

erty. Also, let L = (V (L), E(L)) be the finite simple graph such that V (L) :=

V (G) ∪ V (H), E(L) := E(G) ∪ E(H). Assume that

AssR(R/J(L)s) = AssR1
(R1/J(G)s) ∪ AssR2

(R2/J(H)s)

for all s, where R1 = K[xα : α ∈ V (G)], R2 = K[xα : α ∈ V (H)], and R = K[xα :

α ∈ V (L)] over a field K. Then under each of the following cases, J(L) has the

strong persistence property:

(i) V (G) ∩ V (H) = {v},
(ii) V (G) ∩ V (H) = {v, w} and E(G) ∩ E(H) = {{v, w}},
(iii) V (G) ∩ V (H) = {v, w, z} and E(G) ∩ E(H) = {{v, w}, {w, z}}.

P r o o f. To simplify our notation, set I1 := J(G), I2 := J(H), and I := J(L).

Note that I = I1 ∩ I2. We require to show that (I
k+1 : RI) = Ik for all k > 1. To

achieve this, fix k > 1. In view of Exercise 6.4 of [13], it is sufficient to prove that

(Ik+1
p : Rp

Ip) = Ikp for every p ∈ AssR(R/Ik). For this purpose, pick an arbitrary

element p ∈ AssR(R/Ik). We therefore can consider the following two cases:

Case 1 : p ∈ Min(Ik). Because Min(Ik) = Min(I), one has p ∈ Min(I). Now,

Proposition 4.1 yields that Ip = pp and we thus have I
k
p = pkp and Ik+1

p = p
k+1
p . On

the other hand, Corollary 2.1 implies that (pk+1 : Rp) = pk. Hence, one derives that

(pk+1
p : Rp

pp) = pkp and so (I
k+1
p : Rp

Ip) = Ikp , as required.
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Case 2 : p ∈ AssR(R/Ik)\Min(Ik). By considering the assumption, one can deduce

that p ∈ AssR1
(R1/I

k
1 ) or p ∈ AssR2

(R2/I
k
2 ). In view of the fact that Min(Ik) =

Min(I) = Min(I1) ∪Min(I2), we get

p ∈ AssR(R/Ik1 ) \Min(I1) or p ∈ AssR(R/Ik2 ) \Min(I2).

We only demonstrate the case p ∈ AssR(R/Ik1 )\Min(I1), while another case is proved

similarly. To finish the argument, we show that Ip = (I1)p. Thanks to Ip ⊆ (I1)p,

it remains to establish that (I1)p ⊆ Ip. To do this, take an arbitrary element r/s

in (I1)p. This gives that r/s = α/β for some α ∈ I1 and β /∈ p. We now have to

consider the following cases:

Case 2.1 : V (G) ∩ V (H) = {v}. One can easily see that

α
∏

l∈V (H)\{v}

xl ∈ I1 ∩ I2.

Furthermore, Proposition 4.2 implies that xl /∈ p for any l ∈ V (H) \ {v}, and thus

β
∏

l∈V (H)\{v}

xl /∈ p.

Due to the equality

α

β
=

α
∏

l∈V (H)\{v} xl

β
∏

l∈V (H)\{v} xl

,

we obtain r/s ∈ Ip.

Case 2.2 : V (G)∩ V (H) = {v, w} and E(G)∩E(H) = {{v, w}}. Since α ∈ I1, we

get α ∈ (xv, xw), and so xv | α or xw | α. Hence, one can readily deduce that

xv | α
∏

l∈V (H)\{v,w}

xl or xw | α
∏

l∈V (H)\{v,w}

xl.

This leads to α
∏

l∈V (H)\{v,w}

xl ∈ I2, and so α
∏

l∈V (H)\{v,w}

xl ∈ I1 ∩ I2. Based on

Proposition 4.2, we derive that xl /∈ p for any l ∈ V (H) \ {v, w}, and hence
β

∏

l∈V (H)\{v,w}

xl /∈ p. In the light of the equality

α

β
=

α
∏

l∈V (H)\{v,w} xl

β
∏

l∈V (H)\{v,w} xl

,

one can conclude that r/s ∈ Ip.
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Case 2.3 : V (G) ∩ V (H) = {v, w, z} and E(G) ∩ E(H) = {{v, w}, {w, z}}. On
account of α ∈ I1, one has α ∈ (xv, xw) ∩ (xw , xz). If xw | α, then we obtain

immediately that xw | α ∏

l∈V (H)\{v,w,z}

xl, and so α
∏

l∈V (H)\{v,w,z}

xl ∈ I2. Let xw ∤ α.

Because I1 is the cover ideal of the graph G, one must have xv | α and xz | α. This
gives rise to α

∏

l∈V (H)\{v,w,z}

xl ∈ I2. It follows also from Proposition 4.2 that xl /∈ p

for any l ∈ V (H) \ {v, w, z}, and thus β ∏

l∈V (H)\{v,w,z}

xl /∈ p. Now, by observing the

equality
α

β
=

α
∏

l∈V (H)\{v,w,z} xl

β
∏

l∈V (H)\{v,w,z} xl

,

one derives that r/s ∈ Ip.

As the ideal I1 has the strong persistence property, one gains (I
k+1
1 : RI1) = Ik1 ,

and hence ((I1)
k+1
p : Rp

(I1)p) = (I1)
k
p. We thus have (Ik+1

p : Rp
Ip) = Ikp . This

completes the proof. �

Corollary 4.1. Let G = (V (G), E(G)) be a finite simple connected graph such

that J(G) has the strong persistence property and T be a tree. Also, let L =

(V (L), E(L)) be the finite simple graph such that V (L) := V (G)∪V (T ) and E(L) :=

E(G)∪E(T ). Then, under each of the following cases, J(L) has the strong persistence

property:

(i) V (G) ∩ V (T ) = {v},
(ii) V (G) ∩ V (T ) = {v, w} and E(G) ∩ E(T ) = {{v, w}},
(iii) V (G) ∩ V (T ) = {v, w, z} and E(G) ∩ E(T ) = {{v, w}, {w, z}}.
P r o o f. Since T is a tree, Corollary 2.6 of [4] yields that J(T ) is a normally

torsion-free square-free monomial ideal. It follows now from Theorem 6.10 of [19],

that J(T ) has the strong persistence property. Hence, this claim is a direct conse-

quence of Lemmas 4.1, 4.2, and Theorem 4.1. �

The following remark says that with the notation of Theorem 4.1, it is possible

that J(G), J(H) and J(L) have the strong persistence property, while for some s we

have

AssR(R/J(L)s) 6= AssR1
(R1/J(G)s) ∪ AssR2

(R2/J(H)s).

Remark 4.1. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two finite sim-

ple connected graphs such that J(G) and J(H) have the strong persistence property,

|V (G)∩V (H)| > 2 and |E(G)∩E(H)| > 1. Also, let L = (V (L), E(L)) be the finite

simple graph such that V (L) := V (G) ∪ V (H) and E(L) := E(G) ∪ E(H). Then it

is possible that J(L) has the strong persistence property, while for some s we have

AssR1
(R1/J(G)s) ∪ AssR2

(R2/J(H)s) ( AssR(R/J(L)s),
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where R1 = K[xα : α ∈ V (G)], R2 = K[xα : α ∈ V (H)] and R = K[xα : α ∈ V (L)]

are polynomial rings over a field K. As an example, consider the graph G =

(V (G), E(G)) with V (G) = {1, 2, 3, 4, 5} and

E(G) = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}, {5, 2}},

and also the graph H = (V (H), E(H)) with V (H) = {1, 4, 5, 6} and

E(H) = {{1, 5}, {4, 5}, {1, 6}, {5, 6}, {4, 6}}.

Hence, as shown in the figure below, we have V (L) = {1, 2, 3, 4, 5, 6} and

V (L) = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}, {5, 2}, {1, 6}, {5, 6}, {4, 6}}.

It is easy to compute that

I1 := J(G) = (x1, x2) ∩ (x2, x3) ∩ (x3, x4) ∩ (x4, x5) ∩ (x5, x1) ∩ (x5, x2)

= (x2x4x5, x2x3x5, x1x3x5, x1x2x4),

and
I2 := J(H) = (x1, x5) ∩ (x4, x5) ∩ (x1, x6) ∩ (x5, x6) ∩ (x4, x6)

= (x5x6, x1x4x6, x1x4x5),

and

I := J(L) = (x1, x2) ∩ (x2, x3) ∩ (x3, x4) ∩ (x5, x1) ∩ (x5, x2)

∩ (x4, x5) ∩ (x1, x6) ∩ (x5, x6) ∩ (x4, x6)

= (x2x4x5x6, x2x3x5x6, x1x3x5x6, x1x2x4x6, x1x3x4x5, x1x2x4x5).

1

2

3

4

5

6

H

L

G

In the first step, we verify that I1 and I2 have the strong persistence prop-

erty. To accomplish this, one can immediately write I1 = x5(x2x4, x2x3, x1x3) +

x1x2x4R1 and I2 = x1x4(x5, x6) + x5x6R2. Let P be the path graph with V (P ) =

{1, 2, 3, 4} and E(P ) = {{1, 3}, {3, 2}, {2, 4}}. Since the edge ideal of P is I(P ) =
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(x2x4, x2x3, x1x3), by virtue of Theorem 7.7.14 of [22], we gain that the monomial

ideal (x2x4, x2x3, x1x3) has the strong persistence property. Moreover, it follows

from Corollary 2.1 that the prime ideal (x5, x6) has the strong persistence prop-

erty. Consequently, Lemma 2.3 gives that I1 and I2 have the strong persistence

property. In the second step, we demonstrate that I has the strong persistence prop-

erty. For this purpose, set u1 := x1x3x4, u2 := x1x3x6, u3 := x2x3x6, u4 := x2x4x6,

u5 := x1x2x4 and F := (u1, u2, u3, u4, u5)R. This gives rise to I = x5F+x1x2x4x6R.

Our strategy is to show that F has the strong persistence property. For this purpose,

let G = (V (G), E(G)) be the graph with the vertex set V (G) = {1, 2, 3, 4, 6} and the
edge set E(G) = {{1, 2}, {2, 3}, {3, 4}, {4, 6}, {6, 1}}. It is routine to check that G
is the odd cycle graph of order 5. By using Macaulay2 (see [5]), we can deduce

that F is the cover ideal of G. Also, by virtue of Corollary 2.6 of [4], F is normally

torsion-free; thus, Theorem 6.10 of [19] implies that F has the strong persistence

property. It follows now from Lemma 2.3 that I has the strong persistence property.

Ultimately, by using Macaulay2 (see [5]), we note that

(x1, x2, x3, x4, x5, x6) ∈ AssR(R/I3) \ (AssR1
(R1/I

3
1 ) ∪AssR2

(R2/I
3
2 )).

This completes our discussion.

We terminate this section with the following result, which examines the relation

between associated primes of powers of cover ideal of a finite simple connected graph

and the associated primes of powers of the cover ideals of each connected subgraph

of that graph. In fact, by using Lemma 2.11 of [3], we can conclude the following

proposition:

Proposition 4.3. Let G = (V (G), E(G)) be a finite simple connected graph and

H = (V (H), E(H)) be a connected subgraph of G. Then

AssR1
(R1/J(H)s) ⊆ AssR(R/J(G)s),

where R = K[xα : α ∈ V (G)] and R1 = K[xα : α ∈ V (H)] over a field K.

5. Some results on the symbolic strong persistence property

In this section, our aim is to prove that any square-free monomial ideal satisfies the

symbolic strong persistence property. To achieve this, we start with the definition of

symbolic strong persistence property of ideals.
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Definition 5.1 ([21], Definition 13). Let I be an ideal in a commutative Noethe-

rian ring R. Then we say that I has the symbolic strong persistence property if

(I(i+1) : RI
(1)) = I(i) for each i.

The proposition below investigates the symbolic strong persistence property for

powers of ideals.

Proposition 5.1. Let R be a commutative Noetherian ring and I be an ideal

of R such that I has a nonzero divisor element. Then there exists a positive integer s

such that Is has the symbolic strong persistence property.

P r o o f. According to [19], Proposition 2.5, one can conclude that there exists

a positive integer s such that Is is a superficial ideal for Is, that is, Is has the strong

persistence property. Now, the claim follows readily from Theorem 11 of [21]. �

To demonstrate the subsequent results, we should state the definition of symbolic

powers of an ideal.

Definition 5.2 ([22], Definition 4.3.22). Let I be an ideal of a ring R and

p1, . . . , pr the minimal primes of I. Given an integer n > 1, the nth symbolic power

of I is defined to be the ideal

I(n) = q1 ∩ . . . ∩ qr,

where qi is the primary component of I
n corresponding to pi.

Remark 5.1. In much literature on symbolic powers a different definition is

used based on all the primary decomposition, not just the minimal primes. See

for example [2], page 1. If all associated primes of I are minimal (as is the case

with square-free monomial ideals), then the two definitions of I(n) are the same.

Otherwise, they are different.

The following proposition says that if an ideal has the symbolic strong persistence

property, then any power of it has the symbolic strong persistence property as well.

Proposition 5.2. Let I be an ideal in a commutative Noetherian ring R such

that I has the symbolic strong persistence property. Then Is has the symbolic strong

persistence property for all positive integers s.

P r o o f. Fix s, k > 1. It suffices to prove that ((Is)(k+1) : R(I
s)(1)) = (Is)(k). Let

Min(I) = {p1, . . . , pr}. Set S := R \
r
⋃

i=1

pi. It follows from [22], Proposition 4.3.23,

that I(n) = S−1In ∩ R for all n > 1. Since Min(In) = Min(I) for all n > 1, this

implies the following equalities:

(Is)(n) = S−1(Is)n ∩R = S−1Isn ∩R = I(sn).
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Accordingly, one obtains (Is)(k+1) = I(sk+s), (Is)(k) = I(sk) and (Is)(1) = I(s).

Therefore, we get ((Is)(k+1) : R(I
s)(1)) = (I(sk+s) : RI

(s)). Because the ideal I

has the symbolic strong persistence property, it follows from [21], Proposition 12

that (I(sk+s) : RI
(s)) = I(sk), and so ((Is)(k+1) : R(I

s)(1)) = (Is)(k), as claimed. �

Here, we turn our attention to study the symbolic strong persistence property of

monomial ideals. In fact, one may ask the following question:

Does every monomial ideal satisfy the symbolic strong persistence property?

The answer is negative. To see this, we come back to Proposition 3.1. In-

deed, we proved that for the monomial ideal In = (xn, xn−1y, xyn−1, yn) in the

polynomial ring R = Q[x, y], n > 4, one has (Ia+2
n : In) ) Ia+1

n for 0 6 a 6

n − 4. On the other hand, since In is a (x, y)-primary monomial ideal, we have

I
(k)
n = Ikn for all k > 1. Therefore, we get (I

(a+2)
n : I

(1)
n ) ) I

(a+1)
n for 0 6

a 6 n − 4. This means that In does not satisfy the symbolic strong persistence

property.

Based on Theorem 11 of [21], the strong persistence property implies the symbolic

strong persistence property. Moreover, in view of the proof of Proposition 2.9 of [15],

one can conclude that the strong persistence property implies the persistence prop-

erty. Does the persistence property imply the symbolic strong persistence property?

Does normally torsion-freeness imply the symbolic strong persistence property?

Our answers are negative. To accomplish this, consider the monomial ideal

In = (xn, xn−1y, xyn−1, yn) in the polynomial ring R = Q[x, y], n > 4. Since

AssR(R/Ikn) = {(x, y)} for all k > 1, one can conclude that I has the persistence

property, and also is normally torsion-free. While, by the argument which has been

mentioned before, we get that I does not satisfy the symbolic strong persistence

property.

In the sequel, our intent is to show that every square-free monomial ideal satisfies

the symbolic strong persistence property. To achieve this, we require Proposition 5.3

and Lemma 5.1.

Proposition 5.3. Every power of a primary monomial ideal is primary.

P r o o f. Assume that Q is a primary monomial ideal in a polynomial ring R =

K[x1, . . . , xn] over a field K, and fix t > 1. Let xi | u1 . . . ut, where 1 6 i 6 n and

u1, . . . , ut ∈ G(Q). This yields that xi | us for some 1 6 s 6 t. Since Q is a primary

monomial ideal, it follows from [22], Proposition 6.1.7 that there exists a positive

integer k such that xk
i ∈ G(Q), and hence xkt

i ∈ G(Qt). By setting α := kt, one

has xα
i ∈ G(Qt). Once again, Proposition 6.1.7 of [22] implies that Qt is a primary

monomial ideal, as required. �
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Lemma 5.1. Let Q1, . . . , Qr be primary monomial ideals in a polynomial ring

R = K[x1, . . . , xn] over a field K such that
√
Qi 6=

√

Qj for 1 6 i 6= j 6 r, and√
Q1, . . . ,

√
Qr are incomparable with respect to inclusion. If Qi has the strong

persistence property for each i = 1, . . . , r, then for all positive integers k,

( r
⋂

i=1

Qk+1
i : R

r
⋂

i=1

Qi

)

=

r
⋂

i=1

Qk
i .

P r o o f. We give a sketch of the proof. Assume that Qi has the strong persistence

property for each i = 1, . . . , r. Fix k > 1 and pick u in
( r
⋂

i=1

Qk+1
i : R

r
⋂

i=1

Qi

)

. Put

pi :=
√
Qi for each i = 1, . . . , r. Fix 1 6 j 6 r. One can choose an element such

as vi ∈ Qi \ pj for 1 6 i 6= j 6 r. Let λ be an arbitrary element in Qj. There-

fore, uλv1 . . . vj−1vj+1 . . . vr ∈
r
⋂

i=1

Qk+1
i ⊆ Qk+1

j , and so v1 . . . vj−1vj+1 . . . vr /∈ pj.

Since Qj is primary, Proposition 5.3 gives that Q
k+1
j is primary. Hence, uλ ∈ Qk+1

j ,

and so u ∈ (Qk+1
j : RQj) = Qk

j . Therefore,
( r
⋂

i=1

Qk+1
i : R

r
⋂

i=1

Qi

)

⊆
r
⋂

i=1

Qk
i . To prove

the reverse inclusion, one should note that
( r
⋂

i=1

Qi

)( r
⋂

i=1

Qk
i

)

⊆
r
⋂

i=1

Qk+1
i , and so

r
⋂

i=1

Qk
i ⊆

( r
⋂

i=1

Qk+1
i : R

r
⋂

i=1

Qi

)

. This finishes our argument. �

We are now in a position to express the main result of this section.

Theorem 5.1. Every square-free monomial ideal has the symbolic strong persis-

tence property.

P r o o f. Let I be a square-free monomial ideal in a polynomial ring R =

K[x1, . . . , xn] over a field K with AssR(R/I) = {p1, . . . , pr}. On account of
AssR(R/I) = Min(I), it follows from Lemma 5.1 and Corollary 2.1 that

( r
⋂

i=1

p
k+1
i : R

r
⋂

i=1

pi

)

=

r
⋂

i=1

p
k
i

for all k > 1. In addition, Proposition 1.4.4 of [6] implies that I(k) =
r
⋂

i=1

pki for all

k > 1. Therefore, we have (I(k+1) : RI
(1)) = I(k) for all k > 1, that is, I has the

symbolic strong persistence property, as desired. �

Is there an ideal satisfying the symbolic strong persistence property but not being

the strong persistence property?
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The answer is positive. We give such an ideal. Consider the following square-free

monomial ideal I in the polynomial R = K[x1, . . . , x12] over a field K,

I = (x1x3x6x8x9x10x11x12, x2x4x5x7x9x10x11x12, x1x2x4x5x7x10x11x12,

x2x3x5x6x8x9x11x12, x1x2x3x6x8x9x11x12, x2x4x5x6x7x9x11x12,

x1x3x6x7x8x9x10x12, x2x3x5x7x8x9x10x12, x2x3x4x5x7x9x10x12,

x1x3x4x5x6x7x10x12, x1x2x3x4x5x7x10x12, x1x3x4x6x8x9x10x11,

x1x2x4x5x7x8x10x11, x1x3x4x5x6x8x10x11, x1x2x4x6x7x8x9x11,

x1x2x3x4x6x8x9x11).

As we will state in Question 6.3, since (I4 : RI) 6= I3, one gains that I does not
satisfy the strong persistence property, whereas Theorem 5.1 shows that I satisfies
the symbolic strong persistence property.

We terminate this paper with the following corollary. In fact, Rajaee, Al-Ayyoub

and the first author have established it in [19], Theorem 6.10, and we now re-prove

it by using Theorem 5.1.

Corollary 5.1. Every normally torsion-free square-free monomial ideal has the

strong persistence property.

P r o o f. Let I be a square-free monomial ideal in a polynomial ring R =

K[x1, . . . , xn] over a field K with AssR(R/I) = {p1, . . . , pr}. In the light of
Theorem 5.1, one has (I(k+1) : RI

(1)) = I(k) for all k > 1. On the other hand,

Theorem 1.4.6 of [6] implies that I(k) = Ik for all k > 1. Cosequently, by Theo-

rem 5.1, we get (Ik+1 : RI) = Ik for all k > 1, that is, I has the strong persistence

property, as required. �

6. Future works

Many questions arise along these arguments for future works. We terminate this

paper with several open questions which are devoted to the strong persistence prop-

erty and the symbolic strong persistence property of monomial ideals. In particular,

after investigating and examining the cover ideals of a plenty of graphs, we made up

the questions which are related to the cover ideals of the union of two finite simple

graphs. We list them as follows:

To express the following question, one has to recall the definition of simple graphs

of the form θn1,...,nk
, which has been introduced in [14]. To do this, let k > 1 be

an integer and n1, . . . , nk be a sequence of positive integers. Then θn1,...,nk
is the
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graph constructed by k paths of length n1, . . . , nk such that only their endpoints are

common. By length of a path, we mean the number of edges in the path. If k = 2,

then θn1,...,nk
will be a cycle of length n1 + n2.

Question 6.1. With the notation above, does J(θn1,...,nk
) have the strong per-

sistence property?

Question 6.2. Let I be a square-free monomial ideal in a polynomial ring R =

K[x1, . . . , xn] over a field K, and m = (x1, . . . , xn) be the unique homogeneous

maximal ideal of R. If AssR(R/Is) = AssR(R/I) ∪ {m} for all s > 2, then does I

have the strong persistence property?

It should be noted that in general, finding a square-free monomial ideal I such

that AssR(R/Is) = AssR(R/I)∪{m} for all s > 2, could be really tricky. One of the

well-known such classes is the cover ideals of odd cycle graphs. It has been proved

in [18] that if I is the cover ideal of an odd cycle graph C2n+1, then AssR(R/Is) =

AssR(R/I)∪{m} for all s > 2, where R = K[x1, . . . , x2n+1] and m = (x1, . . . , x2n+1),

see [18], Proposition 3.6, and also satisfies the strong persistence property, see [18],

Theorem 3.3.

To formulate the following question, we need to recall the notion of a clutter.

A clutter (or simple hypergraph) C with vertex set X = {x1, . . . , xn} is a fam-
ily of subsets of X , called edges, none of which is included in another. See [22],

Definition 6.3.33 for more details. The edge ideal of a clutter is defined in [22],

Definition 6.3.35, and the cover ideal of a clutter can be defined as the ideal of all

monomials M such that given any edge e of C there is a variable xi such that xi ∈ e

and xi | M . Note that the vertices of these clutters become the variables of the
ring in which the edge ideal and cover ideal are allocated. Given a clutter C on
{x1, . . . , xn} with edges e1, . . . , er, we define the complement clutter, denoted by Cc,

as the clutter whose edges are {x1, . . . , xn} \ ei for each i = 1, . . . , r. We denote the

edge ideal of a clutter C by I(C).

Question 6.3. Does I(C) have the strong persistence property if and only if I(Cc)

has the strong persistence property?

We give an example of a clutter C, where both I(C) and I(Cc) do not have the

strong persistence property. Consider the graph below, from [9]. For a positive

integer n, let [n] denote the set {0, . . . , n − 1}. We denote by Pn a path with

vertex set [n], with vertices in the increasing order along Pn. Let also K3 be the

complete graph whose vertex set is the group Z3. For n > 4, we define Hn as the

graph obtained from the Cartesian product Pn � K3 by adding the three edges

joining (0, j) to (n− 1,−j) for j ∈ Z3. The Figure 1 below is the graph of H4.
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Figure 1. H4.

Set F := J(H4). By using Macaulay2 (see [5]), F is given by

F = (x1x3x6x8x9x10x11x12, x2x4x5x7x9x10x11x12, x1x2x4x5x7x10x11x12,

x2x3x5x6x8x9x11x12, x1x2x3x6x8x9x11x12, x2x4x5x6x7x9x11x12,

x1x3x6x7x8x9x10x12, x2x3x5x7x8x9x10x12, x2x3x4x5x7x9x10x12,

x1x3x4x5x6x7x10x12, x1x2x3x4x5x7x10x12, x1x3x4x6x8x9x10x11,

x1x2x4x5x7x8x10x11, x1x3x4x5x6x8x10x11, x1x2x4x6x7x8x9x11,

x1x2x3x4x6x8x9x11).

It has already been shown in [9] that F does not satisfy the persistence property

(and hence does not satisfy the strong persistence property either). One can show,

using Macaulay2 (see [5]), that in the polynomial ring R = K[x1, . . . , x12] over

a field K, m = (x1, . . . , x12) ∈ AssR(R/F 3) \ AssR(R/F 4) and (F 4 : RF ) 6= F 3.

Now, we construct the clutter C on {x1, . . . , x12} whose edge ideal is F , that is,
F = I(C), as follows:

C := {{x1, x3, x6, x8, x9, x10, x11, x12}, {x2, x4, x5, x7, x9, x10, x11, x12},
{x1, x2, x4, x5, x7, x10, x11, x12}, {x2, x3, x5, x6, x8, x9, x11, x12},
{x1, x2, x3, x6, x8, x9, x11, x12}, {x2, x4, x5, x6, x7, x9, x11, x12},
{x1, x3, x6, x7, x8, x9, x10, x12}, {x2, x3, x5, x7, x8, x9, x10, x12},
{x2, x3, x4, x5, x7, x9, x10, x12}, {x1, x3, x4, x5, x6, x7, x10, x12},
{x1, x2, x3, x4, x5, x7, x10, x12}, {x1, x3, x4, x6, x8, x9, x10, x11},
{x1, x2, x4, x5, x7, x8, x10, x11}, {x1, x3, x4, x5, x6, x8, x10, x11},
{x1, x2, x4, x6, x7, x8, x9, x11}, {x1, x2, x3, x4, x6, x8, x9, x11}}.

Then F = I(C) does not satisfy the strong persistence property. On the other hand,
one can deduce from the definition that the complement clutter of C, that is Cc, is
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as follows:

Cc := {{x2, x4, x5, x7}, {x1, x3, x6, x8}, {x3, x6, x8, x9}, {x1, x4, x7, x10},
{x4, x5, x7, x10}, {x1, x3, x8, x10}, {x2, x4, x5, x11}, {x1, x4, x6, x11},
{x1, x6, x8, x11}, {x2, x8, x9, x11}, {x6, x8, x9, x11}, {x2, x5, x7, x12},
{x3, x6, x9, x12}, {x2, x7, x9, x12}, {x3, x5, x10, x12}, {x5, x7, x10, x12}}.

This implies that the edge ideal of I(Cc) is given by

I(Cc) = (x2x4x5x7, x1x3x6x8, x3x6x8x9, x1x4x7x10, x4x5x7x10, x1x3x8x10,

x2x4x5x11, x1x4x6x11, x1x6x8x11, x2x8x9x11, x6x8x9x11, x2x5x7x12,

x3x6x9x12, x2x7x9x12, x3x5x10x12, x5x7x10x12).

By using Macaulay2 (see [5]), one can check that (I(Cc)4 : RI(Cc)) 6= I(Cc)3 and

m = (x1, . . . , x12) ∈ AssR(R/I(Cc)3)\AssR(R/I(Cc)4), that is, I(Cc) does not satisfy

the strong persistence property and the persistence property.

Question 6.4. Let R = K[x1, . . . , xn] be a polynomial ring over a field K and

SPP+(n) (or SPP−(n)) be the set of square-free monomial ideals in R such that they

satisfy (or do not satisfy) the strong persistence property. Then, does the following

limit exist? Can it be zero?

lim
n→∞

|SPP−(n)|
|SPP+(n)|

,

where |A| denotes the cardinality of A.

To realize Question 6.5, we first recall the definition of the monomial localization of

a monomial ideal with respect to a monomial prime ideal as it has been introduced

in [7]. Let I be a monomial ideal in a polynomial ring R = K[x1, . . . , xn] over

a field K. We also denote by V ∗(I) the set of monomial prime ideals containing I.

Let p = (xi1 , . . . , xir ) be a monomial prime ideal with p ∈ V ∗(I). The monomial

localization of I with respect to p, denoted by I(p), is the ideal in the polynomial

ring R(p) = K[xi1 , . . . , xir ] which is obtained from I by applying the K-algebra

homomorphism R → R(p) with xj 7→ 1 for all xj /∈ {xi1 , . . . , xir}.

Question 6.5. Let I be a monomial ideal in a polynomial ring R = K[x1, . . . , xn]

over a field K. If I has the symbolic strong persistence property, then does I(p) have

the symbolic strong persistence property for all p ∈ Min(I)?

To state the next question, one has to recall the definition of monomial ideals of

clutter type.
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Definition 6.1. Let I be a non-square-free monomial ideal in a polynomial ring

R = K[x1, . . . , xn] over a fieldK with G(I) = {u1, . . . , ur}. We say that I is of clutter
type if

√
ui ∤

√
uj (or equivalently, supp(ui) * supp(uj)) for each 1 6 i 6= j 6 r.

Example 6.1. Let I = (x1x
2
2x3, x2x

2
3x4, x3x

2
4x5, x4x

2
5x1, x5x

2
1x2) be a monomial

ideal in the polynomial ring R = K[x1, x2, x3, x4, x5] over a field K. Then one

can rapidly see that I is of clutter type. Note that I does not satisfy both the

persistence property and strong persistence property since m = (x1, x2, x3, x4, x5) ∈
AssR(R/I) \AssR(R/I2) and (I2 : RI) 6= I.

Question 6.6. Does every non-square-free monomial ideal of clutter type have

the symbolic strong persistence property?

Question 6.7. Let I be a monomial ideal in a polynomial ring R = K[x1, . . . , xn]

over a field K with G(I) = G1 ∪ . . . ∪Gr such that for each 1 6 i 6= j 6 r,

{xs : xs | u for some u ∈ Gi} ∩ {xt : xt | u for some u ∈ Gj} = ∅.

Then does I have the symbolic strong persistence property if and only if (Gi) has

the symbolic strong persistence property for some 1 6 i 6 r?

Question 6.8. Let I be an ideal in a commutative Noetherian ring R. Then

does I have the symbolic strong persistence property if and only if Ip has the strong

persistence property for all p ∈ Min(I), where Ip denotes the localization of I at p?

Question 6.9. Let I be a monomial ideal in a polynomial ring R = K[x1, . . . , xn]

over a field K, and w a weight over R. Then does I have the symbolic strong

persistence property if and only if Iw has the symbolic strong persistence property,

where Iw denotes the weight of I?

Question 6.10. Let I be a monomial ideal in a polynomial ringR = K[x1, . . . , xn]

over a field K, and 1 6 i 6 n. If I has the symbolic strong persistence property,

then does I\xi
have the symbolic strong persistence property, where I\xi

denotes the

contracted of I at xi?

Question 6.11. Let I be a monomial ideal in a polynomial ringR = K[x1, . . . , xn]

over a field K. Then does I have the symbolic strong persistence property if and

only if I∗ have the symbolic strong persistence property, where I∗ denotes the ex-

pansion of I?
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Question 6.12. Let I be a monomial ideal in a polynomial ringR = K[x1, . . . , xn]

over a field K, and h be a monomial in R. Also, let gcd(h, u) = 1 for all u ∈ G(I).
Then does I has the symbolic strong persistence property if and only if hI have the

symbolic strong persistence property?
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