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Abstract. Hardy and Rellich type inequalities with an additional term are proved for
compactly supported smooth functions on open subsets of the Euclidean space. We obtain
one-dimensional Hardy type inequalities and their multidimensional analogues in convex
domains with the finite inradius. We use Bessel functions and the Lamb constant. The
statements proved are a generalization for the case of arbitrary p > 2 of the corresponding
inequality proved by F.G.Avkhadiev, K.-J.Wirths (2011) for p = 2. Also we establish Rel-
lich type inequalities on arbitrary domains, regular sets, on domains with θ-cone condition
and on convex domains.
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1. Introduction

Let Ω be a domain in the Euclidean space Rn and let C1
0 (Ω) denote the space of

continuously differentiable functions f : Ω → R, which vanish on the boundary ∂Ω

of the domain.

It is known that if Ω is convex, then the Hardy inequality

(1.1)

∫

Ω

|∇f(x)|2 dx >
1

4

∫

Ω

|f(x)|2
δ(x)2

dx ∀ f ∈ H1
0 (Ω)

is valid, where H1
0 (Ω) is the closure of the family C1

0 (Ω) with the finite Dirichlet

integral and δ(x) is the distance from a point x ∈ Ω to the boundary ∂Ω of Ω, i.e.,

δ = δ(x) = inf
y∈∂Ω

|x− y|.
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Note that the constant 1
4 is sharp for any convex subdomain of R

n, see [14], [16],

[22], [23]. There are many improvements and modifications of the inequality (1.1),

see [3], [4], [8]–[12], [14]–[34]. For instance, in [11], Avkhadiev and Wirths proved

that the generalization of (1.1) for all f ∈ C1
0 (Ω)

(1.2)

∫

Ω

|∇f(x)|2
δ(x)s−1

dx > h

∫

Ω

|f(x)|2
δ(x)s+1

dx+
λ2

δq0

∫

Ω

|f(x)|2
δ(x)s−q+1

dx

holds with two sharp constants

h =
s2 − ν2q2

4
> 0 and λ =

q

2
λν(2s/q) > 0,

where s and q are positive numbers, ν ∈ [0, s/q] and z = λν(s) is the Lamb constant

defined as the positive root of the equation sJν(z) + 2zJ ′

ν(z) = 0 for the Bessel

function

Jν(x) =

∞
∑

k=0

(−1)kx2k+ν

22k+νk! Γ(k + 1 + ν)
, ν > 0,

and Ω is an n-dimensional convex domain with finite inradius δ0 defined as

δ0 = δ0(Ω) = sup
x∈Ω

δ(x).

The inequality (1.2) is a bridge between Hardy’s inequality of the classical form and

sharp estimates of the first eigenvalue λ1(Ω) of the Laplacian under the Dirichlet

boundary condition for n-dimensional convex domains Ω (for details, see [11] and

references therein).

Note that the papers [4], [11], [17], [18]–[30], [33], [34] are also devoted to Hardy

type inequalities with additional nonnegative terms. Hardy inequalities with re-

mainders were first obtained by Maz’ya (see [24]) in the case, where Ω is a half-

space. Brezis and Marcus in their paper [14] established such inequalities in the case

when Ω is bounded and the constant in the inequalities depends on the diameter D.

M.Hoffmann-Ostenhof, T.Hoffmann-Ostenhof and A. Laptev in [20] proved inequal-

ities with remainders in terms of the volume of Ω. Let us note that in a number of

papers (see [1], [2], [17], [33]) Lp-inequalities are proved.

The aim of this paper is to obtain Lp-analogues of (1.2). For instance, we proved

that the following theorem holds.

Theorem 1.1. Let Ω be an n-dimensional convex domain of finite inradius δ0

and let λν(2(p− 2)/q) be the Lamb constant. If p > 2, q > 0 and ν ∈ [0, (p− 2)/q],

and f ∈ C1
0 (Ω) such that ∇f(x)δ1/p(x) ∈ Lp(Ω), then

∫

Ω

|∇f(x)|pδ(x) dx > ds,ν

∫

Ω

|f(x)|p
δ(x)p−1

dx+
hs,ν

δq0

∫

Ω

|f(x)|p
δ(x)p−1−q

dx
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and, if k > 1 is a positive integer, p = 2k and ν > (p− 2)/q, then

∫

Ω

|∇f(x)|pδ(x) dx+ ds,ν

∫

Ω

|f(x)|p
δ(x)p−1

dx >
hs,ν

δq0

∫

Ω

|f(x)|p
δ(x)p−1−q

dx,

where

ds,ν =
(p− 2

p

)p−2 |(p− 2)2 − ν2q2|
p2

and hs,ν =
(p− 2

p

)p q2λ2
ν(2(p− 2)/q)

(p− 2)2
.

Using Theorem 1.1 with ν = (p− 2)/q, we get the following corollary.

Corollary 1.1. Let Ω be an open proper convex subset of the Euclidean space Rn

with a finite inner radius δ0. If p > 2, q > 0 and f ∈ C1
0 (Ω) such that∇f(x)δ1/p(x) ∈

Lp(Ω), then

∫

Ω

|∇f(x)|pδ(x) dx >

(p− 2

p

)p q2j2[(p−2)/q]−1

(p− 2)2δq0

∫

Ω

|f(x)|p
δ(x)p−1−q

dx,

where j[(p−2)/q]−1 is the first positive zero of the Bessel function J[(p−2)/q]−1 of order

[(p− 2)/q]− 1.

Taking into account the known facts (see [11] for more information)

J1/2 =

√

2

π

sinx√
x
, J−1/2 =

√

2

π

cosx√
x

and j−1/2 = π/2, j1/2 = π, we have the following assertion.

Corollary 1.2. Let Ω be an open proper convex subset of the Euclidean space Rn

with a finite inner radius δ0. If p > 2 and f ∈ C1
0 (Ω) is such that ∇f(x)δ1/p(x) ∈

Lp(Ω), then

∫

Ω

|∇f(x)|pδ(x) dx >

(2π

3

)2(p− 2

p

)p 1

δ
2(p−2)/3
0

∫

Ω

|f(x)|p
δ(x)(p+1)/3

dx

and
∫

Ω

|∇f(x)|pδ(x) dx > π
2
(p− 2

p

)p 1

δ
2(p−2)
0

∫

Ω

|f(x)|p
δ(x)3−p

dx.
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Since qj[(p−2)/q]−1 → p− 2 as q → 0, Theorem 1.1 presents the known inequality,

see [2]
∫

Ω

|∇f(x)|pδ(x) dx >

(p− 2

p

)p
∫

Ω

|f(x)|p
δ(x)p−1

dx

as a limit case when q → 0. Note, that the sharpness of the constant ((p− 2)/p)p

for any convex domain Ω was proved by Avkhadiev and Shafigullin, see [9].

This paper organization is as follows. In the first section, we prove one-dimensional

inequalities. Using these one-dimensional inequalities, we get Hardy type inequalities

in the multidimensional case. Note that we use Avkhadiev’s method to get multidi-

mensional inequalities from a corresponding one-dimensional inequality, see [1], [2]

and [8] for more details. We prove Hardy type inequalities in convex domains with

the finite inradius.

The last part is devoted to Rellich type inequalities with remainders. Rellich

inequalities on arbitrary domains, on regular sets, on domains with θ-cone condition

and on convex domains are proved. We refer to [5]–[7], [12], [13], [17] and [31] for

more information about Rellich type inequalities.

We especially want to highlight a remarkable book by Balinsky, Evans and Lewis

(see [12]), which collected the most beautiful results on multidimensional inequalities

of Hardy and Rellich type.

For example, in [13], Barbatis obtained, that for a convex bounded domain Ω and

all f ∈ C∞

0 (Ω) the Rellich type inequality

(1.3)

∫

Ω

|∆f(x)|2 dx >
9

16

∫

Ω

|f(x)|2
δ(x)4

+Kn(n+ 2)
( |Sn−1|

n|Ω|
)4/n

∫

Ω

|f(x)|2 dx

holds, where K = 11
48 . Here, ∆ stands for the Laplace operator, |Sn−1| is the surface

area of the unit sphere Sn−1 in the Euclidean space Rn and |Ω| is the volume of the
set Ω.

This result was improved by Evans and Lewis in [17] for all n > 4. Namely, they

proved that the constant K ≈ 1.25 for all n > 4. We show that K > 0.417322 for all

n > 2. Therefore, our result improves the bound given by (1.3) for all n > 2.

2. One-dimensional estimates

Suppose that q ∈ (0,∞), s ∈ (0,∞) and ν > 0. Denote by Jν the Bessel function

of order ν

Jν(x) =

∞
∑

k=0

(−1)kx2k+ν

22k+νk! Γ(k + 1+ ν)

and put for all x ∈ [0, 1] that Fν,s,q(x) = xs/2Jν(λ(2s/q)x
q/2).
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Following [10] and [11] the Lamb constant is called the first positive root z = λν(s)

of the equation

(2.1) sJν(z) + 2zJ ′

ν(z) = 0,

where ν > 0 and s are fixed parameters.

It is easily shown that

F ′

ν,s,q(x) =
s

2
x(s/2)−1Jν(λ(2s/q)x

q/2) + qx(q/2)+(s/2)−1λν(2s/q)J
′

ν(λν(2s/q)x
q/2),

F ′

ν,s,q(1) = 0, Fν,s,q(x) > 0, x ∈ (0, 1], and F ′

ν,s,q(x) > 0, x ∈ (0, 1).

Moreover, as is known, the function y = Fν,s,q(x) is a solution of the differential

equation

(2.2) x2y′′ + (1− s)xy′ +
(s2 − ν2q2

4
+

q2λ2
ν(2s/q)

4x−q

)

y = 0

and the equality

(2.3) lim
x→0

xF ′

ν,s,q(x)

Fν,s,q(x)
=

s+ νq

2

holds. See [10], [11] for more information.

The following lemma holds.

Lemma 2.1. Let λν(2s/q) be the Lamb constant. Suppose that p > 2, s > 0,

q ∈ (0,∞) and ν > 0, and f is a positive nondecreasing absolutely continuous

function in [0, 1] such that f(0) = 0 and

(2.4) lim
x→0

fp(x)

xs−1

F ′

ν,s,q(x)

Fν,s,q(x)
= 0,

then

(2.5)

∫ 1

0

fp−2(x)f ′2(x)

xs−1
dx >

s2 − ν2q2

p2

∫ 1

0

fp(x)

xs+1
dx+

q2λ2
ν(2s/q)

p2

∫ 1

0

fp(x)

xs−q+1
dx.

P r o o f. Clearly,

0 6 P :=

∫ 1

0

fp−2(x)

xs−1

(

f ′(x) − 2

p

F ′

ν,s,q(x)

Fν,s,q(x)
f(x)

)2

dx

=

∫ 1

0

fp−2(x)f ′2(x)

xs−1
dx− 4

p2

∫ 1

0

F ′

ν,s,q(x)

Fν,s,q(x)xs−1
dfp(x)

+
4

p2

∫ 1

0

fp(x)

xs−1

F ′2
ν,s,q(x)

F 2
ν,s,q(x)

dx.
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Integrating by parts, one easily obtains

P =

∫ 1

0

fp−2(x)f ′2(x)

xs−1
dx− lim

x→0

fp(x)

xs−1

F ′

ν,s,q(x)

Fν,s,q(x)

+
4

p2

∫ 1

0

fp(x)
x2F ′′

ν,s,q(x) + (1− s)xF ′

ν,s,q(x)

Fν,s,q(x)xs+1
dx.

Using the asymptotic behavior (2.4) and the differential equation (2.2) we have

∫ 1

0

fp−2(x)f ′2(x)

xs−1
dx >

4

p2

∫ 1

0

fp(x)
(s2 − ν2q2

4xs+1
+

q2λ2
ν(2s/q)

4xs−q+1

)

dx.

This completes the proof of Lemma 2.1. �

Remark. If k is a positive integer and p = 2k, then in Lemma 2.1 we can assume

that f is any absolutely continuous function.

Further we put

cs =
|s2 − ν2q2|p/2

pp
and µs = cs

p

2

q2λ2
ν(2s/q)

|s2 − ν2q2| ,

where λν(2s/q) is the Lamb constant defined as the first positive root of the equa-

tion (2.1).

Lemma 2.2. Let λν(2s/q) be the Lamb constant. Suppose that p > 2, s > 0 and

q ∈ (0,∞), and f is an absolutely continuous function in [0, 1] such that f(0) = 0

and f ′(x)x(p−s−1)/p ∈ Lp[0, 1]. If ν ∈ [0, s/q] then the inequality

∫ 1

0

|f ′(x)|p
xs−p+1

dx > cs

∫ 1

0

|f(x)|p
xs+1

dx+ µs

∫ 1

0

|f(x)|p
xs−q+1

dx

holds, and if ν > (s− 1)/q, k is a positive integer and p = 2k, then

∫ 1

0

f ′p(x)

xs−p+1
dx+ cs(p− 1)

∫ 1

0

fp(x)

xs+1
dx > µs

∫ 1

0

fp(x)

xs−q+1
dx.

P r o o f. For an absolutely continuous function f : [0, 1] → R with the property

f(0) = 0 and f ′(x)x(p−s−1)/p ∈ Lp[0, 1] we have

|f(x)|p 6

(
∫ x

0

|f ′(t)| dt
)p

6

(
∫ x

0

t(s−p+1)/(p−1) dt

)p−1 ∫ x

0

|f ′(t)|p
ts−p+1

dt

=
(p− 1

s

)p−1

xs

∫ x

0

|f ′(t)|p
ts−p+1

dt.

Using the last estimate and (2.3) we get

lim
x→0

|f(x)|p
xs−1

F ′

ν,s,q(x)

Fν,s,q(x)
= 0.

92



Consequently, we can use Lemma 2.1. Let us consider two cases.

Case 1: ν ∈ [0, s/q]. Without loss of generality it can be assumed that f is

a positive and nondecreasing function. Indeed, if

g(x) =

∫ x

0

|f ′(t)| dt,

where f(x) =
∫ x

0
f ′(t) dt, and the inequality

(2.6)

∫ b

a

gp(x)w(x) dx 6 C1

∫ b

a

g′p(x)v(x) dx

holds then since

|f(x)| 6
∫ x

0

|f ′(t)| dt = g(x), g′(x) = |f ′(x)|,

we have

∫ b

a

|f(x)|pw(x) dx 6

∫ b

a

gp(x)w(x) dx 6 C1

∫ b

a

g′p(x)v(x) dx

= C1

∫ b

a

|f ′(x)|pv(x) dx.

Using the inequality (2.5) and the elementary inequality (see [19])

ap1bp2 6

(p1a+ p2b

p1 + p2

)p1+p2

to the quantities

a =
fp(x)

xs+1
, b =

pp

(s2 − ν2q2)p/2
f ′p(x)

xs−p+1
, p1 = 1− 2

p
and p2 =

2

p
,

we obtain

pp

(s2 − ν2q2)p/2

∫ 1

0

f ′p(x)

xs−p+1
dx >

∫ 1

0

fp(x)

xs+1
dx+

p

2

q2λ2
ν(2s/q)

s2 − ν2q2

∫ 1

0

fp(x)

xs−q+1
dx.

Case 2: ν > s/q. By Lemma 2.1 and Remark, we have

p2

ν2q2 − s2

∫ 1

0

fp−2(x)f ′2(x)

xs−1
dx+

∫ 1

0

fp(x)

xs+1
dx >

q2λ2
ν(2s/q)

ν2q2 − s2

∫ 1

0

fp(x)

xs−q+1
dx.
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Applying the inequality (2.5) and the elementary inequality (see [19])

ap1bp2 6

(p1a+ p2b

p1 + p2

)p1+p2

to the quantities

a =
fp(x)

xs+1
, b =

pp

(ν2q2 − s2)p/2
f ′p(x)

xs−p+1
, p1 = 1− 2

p
and p2 =

2

p
,

we have

pp

(ν2q2 − s2)p/2

∫ 1

0

f ′p(x)

xs−p+1
dx+ (p− 1)

∫ 1

0

fp(x)

xs+1
dx >

p

2

q2λ2
ν(2s/q)

ν2q2 − s2

∫ 1

0

fp(x)

xs−q+1
dx.

This completes the proof of Lemma 2.2. �

Theorem 2.1. Suppose that 0 < b−a < ∞, δ(x) = max{x−a, b−x}, p ∈ [2,∞),

s ∈ (0,∞) and q ∈ (0,∞). Let f : [a, b] → R be an absolutely continuous function

such that f(a) = f(b) = 0 and f ′(x)/δ(s−p+1)/p(x) ∈ Lp[a, b]. If ν ∈ [0, s/q] then the

inequality

(2.7)

∫ b

a

|f ′(x)|p
δ(x)s−p+1

dx > cs

∫ b

a

|f(x)|p
δ(x)s+1

dx+
µs

δq0

∫ b

a

|f(x)|p
δ(x)s−q+1

dx

is valid, and if ν > s/q, k is a positive integer and p = 2k, then

(2.8)

∫ b

a

f ′p(x)

δ(x)s−p+1
dx+ cs(p− 1)

∫ b

a

fp(x)

δ(x)s+1
dx >

µs

δq0

∫ b

a

fp(x)

δ(x)s−q+1
dx,

where δ0 = 1
2 (b− a).

P r o o f. By the change x = ̺t of variables for any constant ̺ > 0 the inequality

of Lemma 2.2 implies that
∫ ̺

0

|f ′(x)|p
xs−p+1

dx > cs

∫ ̺

0

|f(x)|p
xs+1

dx+
µs

̺q

∫ ̺

0

|f(x)|p
xs−q+1

dx.

Now apply the last inequality to the functions u(t) = f(t + a) and u(t) = f(b − t)

with ̺ = δ0 = 1
2 (b− a). We have

(2.9)

∫ b

δ0

|f ′(x)|p
(b− x)s−p+1

dx > cs

∫ b

δ0

|f(x)|p
(b− x)s+1

dx+
µs

δq0

∫ b

δ0

|f(x)|p
(b− x)s−q+1

dx

and

(2.10)

∫ δ0

a

|f ′(x)|p
(x− a)s−p+1

dx > cs

∫ δ0

a

|f(x)|p
(x− a)s+1

dx+
µs

δq0

∫ δ0

a

|f(x)|p
(x− a)s−q+1

dx.

Summing up (2.9) and (2.10), we get (2.7). The inequality (2.8) is proved similarly.

This completes the proof of Theorem 2.1. �
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Let now

as,ν =
|(s− 1)2 − ν2q2|(s− 1)p−2

23−ppp−1
and bs,ν =

(s− 1)p−2q2λ2
ν(2s/q)

23−ppp−1
,

where λν(2s/q) is the Lamb constant.

Lemma 2.3. Suppose that p > 2, s > 0, q ∈ (0,∞), and f is an absolutely

continuous function in [0, 1] such that f(0) = 0 and f ′(x)x(1−2s/p)(1−1/p) ∈ Lp[0, 1].

If ν ∈ [0, s/q], then

∫ 1

0

|f ′(x)|p
x(1−2s/p)(1−p)

dx > as,ν

∫ 1

0

|f(x)|p
xs+1

dx+ bs,ν

∫ 1

0

|f(x)|p
xs−q+1

dx,

and if ν > s/q, k is a positive integer and p = 2k, then

∫ 1

0

|f ′(x)|p
x(1−2s/p)(1−p)

dx+ as,ν

∫ 1

0

|f(x)|p
xs+1

dx > bs,ν

∫ 1

0

|f(x)|p
xs−q+1

dx.

P r o o f. Note that for an absolutely continuous function f : [0, 1] → R with the

property f(0) = 0 and f ′(x)x(1−2s/p)(1−1/p) ∈ Lp[0, 1] we have

|f(x)|p 6

(
∫ x

0

|f ′(t)| dt
)p

6

(
∫ x

0

t2s/p−1 dt

)p−1 ∫ x

0

|f ′(t)|p
t(1−2s/p)(1−p)

dt

=
( p

2s

)p−1

x2s(p−1)/p

∫ x

0

|f ′(t)|p
t(1−2s/p)(1−p)

dt.

Consequently, the condition (2.5) holds. Combining the following Opial type in-

equality (see [32], page 312)

∫ 1

0

|f(x)|p−2|f ′(x)|2
xs−1

dx 6
pp−3

2p−3(s− 1)p−2

∫ 1

0

|f ′(x)|p
x(1−2s/p)(1−p)

dx

and Lemma 2.1, we get

pp−3

2p−3sp−2

∫ 1

0

f ′p(x)

x(p−2s)(1/p−1)
dx

>
s2 − ν2q2

p2

∫ 1

0

fp(x)

xs+1
dx+

q2λ2
ν(2s/q)

p2

∫ 1

0

fp(x)

xs−q+1
dx.

If ν ∈ [0, s/q], then for all absolutely continuous functions

pp−3

2p−3sp−2

∫ 1

0

|f ′(x)|p
x(p−2s)(1/p−1)

dx

>
s2 − ν2q2

p2

∫ 1

0

|f(x)|p
xs+1

dx+
q2λ2

ν(2s/q)

p2

∫ 1

0

|f(x)|p
xs−q+1

dx
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and if ν > s/q, k is a positive integer and p = 2k, then

pp−3

2p−3sp−2

∫ 1

0

|f ′(x)|p
x(p−2s)(1/p−1)

dx+
ν2q2 − s2

p2

∫ 1

0

|f(x)|p
xs+1

dx

>
q2λ2

ν(2s/q)

p2

∫ 1

0

|f(x)|p
xs−q+1

dx.

This completes the proof of Lemma 2.3. �

The application of Lemma 2.3 yields:

Theorem 2.2. Suppose that 0 < b−a < ∞, δ(x) = max{x−a, b−x}, p ∈ [2,∞),

s ∈ (0,∞), q ∈ (0,∞) and ν ∈ [0, s/q]. Let f : [a, b] → R be an absolutely continuous

function such that f(a) = f(b) = 0 and f ′(x)/δ(1−2s/p)(1/p−1)(x) ∈ Lp[a, b]. Then

the inequality

(2.11) δ
s(1−2/p)
0

∫ b

a

|f ′(x)|p
δ(x)(1−2s/p)(1−p)

dx

> as,q

∫ b

a

|f(x)|p
δ(x)s+1

dx+
bs,ν
δq0

∫ b

a

|f(x)|p
δ(x)s−q+1

dx

is valid, and if ν > (s− 1)/q, k is a positive integer and p = 2k, then

δ
s(1−2/p)
0

∫ b

a

|f ′(x)|p
δ(x)(1−2s/p)(1−p)

dx+ as,ν

∫ b

a

|f(x)|p
δ(x)s+1

dx >
bs,ν
δq0

∫ b

a

|f(x)|p
δ(x)s−q+1

dx,

where δ0 = 1
2 (b− a).

Suppose that

ds,ν =
(p− 2

p

)p−2 |(p− 2)2 − ν2q2|
p2

and hs,ν =
(p− 2

p

)p−2 q2λ2
ν(2(p− 2)/q)

p2
,

where λν(2(p− 2)/q) is the Lamb constant.

Lemma 2.4. Suppose that p > 2, q > 0 and f is an absolutely continuous function

such that f(0) = 0 and f ′(x)x1/p ∈ Lp[0, 1]. If ν ∈ [0, (p− 2)/q] then the Hardy type

inequality

∫ 1

0

|f ′(x)|pxdx > ds,ν

∫ 1

0

|f(x)|p
xp−1

dx+ hs,ν

∫ 1

0

|f(x)|p
xp−1−q

dx

holds, and if ν > (s− 1)/q, k is a positive integer and p = 2k, then

∫ 1

0

|f ′(x)|pxdx+ ds,ν

∫ 1

0

|f(x)|p
xp−1

dx > hs,ν

∫ 1

0

|f(x)|p
xp−1−q

dx.

96



P r o o f. Since

|f(x)|p =

(
∫ x

0

|f ′(t)| dt
)p

6

(
∫ x

0

t−1/(p−1) dt

)p−1 ∫ x

0

|f ′(t)|pt dt

=
( p

p− 1

)p−1

xp

∫ x

0

|f ′(t)|pt dt

and

lim
x→0

xF ′

ν,s,q(x)

Fν,s,q(x)
=

s+ ν

2
,

the condition (2.5) holds. By Lemma 2.1 and the Opial type inequality (see [32],

page 313)
∫ 1

0

|f(x)|p−2|f ′(x)|2
xp−3

dx 6

( p

p− 2

)p−2
∫ 1

0

|f ′(x)|pxdx,

we obtain

( p

p− 2

)p−2
∫ 1

0

|f ′(x)|pxdx

>
(p− 2)2 − ν2q2

p2

∫ 1

0

|f(x)|p
xp−1

dx+
q2λ2

ν(2(p− 2)/q)

p2

∫ 1

0

|f(x)|p
xp−1−q

dx.

This completes the proof of Lemma 2.4. �

The application of Lemma 2.4 yields:

Theorem 2.3. Suppose that 0 < b − a < ∞, δ(x) = max{x − a, b − x} and
f : [a, b] → R is an absolutely continuous function such that f(a) = f(b) = 0 and

f ′(x)δ1/p(x) ∈ Lp[a, b]. If p > 2, q > 0 and ν ∈ [0, (p− 2)/q], then

∫ b

a

|f ′(x)|pδ(x) dx > ds,ν

∫ b

a

|f(x)|p
δ(x)p−1

dx+
hs,ν

δq0

∫ b

a

|f(x)|p
δ(x)p−1−q

dx

and, if k > 1 is a positive integer, p = 2k and ν > (p− 2)/q, then

∫ b

a

|f ′(x)|pδ(x) dx+ ds,ν

∫ b

a

|f(x)|p
δ(x)p−1

dx >
hs,ν

δq0

∫ b

a

|f(x)|p
δ(x)p−1−q

dx,

where δ0 = 1
2 (b− a).
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3. Sharpness of constants

Note that both the constants in the inequality of Lemma 2.2 are sharp, when ν > 0

and p = 2 (see [11] for more information). At the same time, we know nothing about

the sharpness of constants in the case p > 2.

In the next lemma we prove that the constant

(p− 2

p

)p−2 (p− 2)2 − ν2q2

p2

in Lemma 2.4 is sharp in the case ν = 0.

Lemma 3.1. If p > 2 and q > 0 then for any ε > 0 there exists a function fε that

satisfies the conditions of Lemma 2.4 and the inequality

∫ 1

0

|f ′

ε(x)|pxdx 6
((p− 2)2 + 4ε)p/2

pp

∫ 1

0

|fε(x)|p
xp−1

dx

+
(p− 2)p−2

pp
q2λ2

0(2(p− 2)/q)

pp

∫ 1

0

|fε(x)|p
xp−1−q

dx.

P r o o f. Let ε > 0 and fε(x) = t(p−2+ε/(p−1))/p. Without loss of generality we

suppose that ε 6 1. Straightforward computations give that

∫ 1

0

|f ′

ε(x)|pxdx =
(

p− 2 +
ε

p− 1

)p p− 1

ppε
< ((p− 2)2 + 4ε)p/2

p− 1

ppε

=
((p− 2)2 + 4ε)p/2

pp

∫ 1

0

|fε(x)|p
xp−1

dx,

which implies Lemma 3.1. �

4. Hardy inequalities in convex domains

Let Ω be an open proper convex subset of the Euclidean space Rn with a finite

inner radius

δ0 = δ0(Ω) = sup
x∈Ω

δ(x),

where δ(x) = dist(x, ∂Ω) is the distance function to the boundary of domain.

By C1
0 (Ω) we denote the family of continuously differentiable functions f : Ω → R

with compact supports lying in Ω.
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Recall that

as,ν =

∣

∣(s− 1)2 − ν2q2
∣

∣ (s− 1)p−2

23−ppp−1
, bs,ν =

(s− 1)p−2q2λ2
ν(2s/q)

23−ppp−1
,

cs =
|s2 − ν2q2|p/2

pp
, µs = cs

p

2

q2λ2
ν(2s/q)

|s2 − ν2q2| ,

where λν(2s/q) is the Lamb constant defined as the first positive root of the equa-

tion (2.1).

The following theorem holds.

Theorem 4.1. Let Ω be an open proper convex subset of the Euclidean space Rn

with a finite inner radius δ0 and let λν(2s/q) be the Lamb constant. Suppose

that p ∈ [2,∞), s ∈ (0,∞) and q ∈ (0,∞), and f ∈ C1
0 (Ω) is such that

∇f(x)/δ(s−p+1)/p(x) ∈ Lp(Ω). If ν ∈ [0, s/q] then the inequality

∫

Ω

|∇f(x)|p
δ(x)s−p+1

dx > cs

∫

Ω

|f(x)|p
δ(x)s+1

dx+
µs

δq0

∫

Ω

|f(x)|p
δ(x)s−q+1

dx

is valid, and if ν > s/q, k is a positive integer and p = 2k, then

∫

Ω

|∇f(x)|p
δ(x)s−p+1

dx+ cs(p− 1)

∫

Ω

fp(x)

δ(x)s+1
dx >

µs

δq0

∫

Ω

|f(x)|p
δ(x)s−q+1

dx.

Theorem 4.2. Let Ω be an open proper convex subset of the Euclidean space Rn

with a finite inner radius δ0. Suppose that p ∈ [2,∞), s ∈ (0,∞) and q ∈ (0,∞),

and f ∈ C1
0 (Ω) is such that ∇f(x)/δ(1−2s/p)(1/p−1)(x) ∈ Lp(Ω). Then the inequality

δ
s(1−2/p)
0

∫

Ω

|∇f(x)|p
δ(x)(1−2s/p)(1−p)

dx > as,q

∫

Ω

|f(x)|p
δ(x)s+1

dx+
bs,q
δq0

∫

Ω

|f(x)|p
δ(x)s−q+1

dx

is valid, and if ν > (s− 1)/q, k is a positive integer and p = 2k, then

δ
s(1−2/p)
0

∫

Ω

|∇f(x)|p
δ(x)(1−2s/p)(1−p)

dx+ as,ν

∫

Ω

|f(x)|p
δ(x)s+1

dx >
bs,ν
δq0

∫

Ω

|f(x)|p
δ(x)s−q+1

dx.

P r o o f of Theorem 1.1, Theorem 4.1 and Theorem 4.2. To prove the case of

n > 2 we use the method of Avkhadiev (see [1], [2], [8]). This method allows to get

a multidimensional inequality from a corresponding one-dimensional inequality. We

give a brief description of this method.
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Let Λ be an arbitrary open domain in R
n, n > 2. Using approximation of the

open set Λ by cubes, Avkhadiev showed that it suffices to prove inequalities only for

sets of the form

K(S) = {x ∈ Λ1 : there exist a point y ∈ S such that δ(x,Λ) = |x− y|},

where Λ1 is some partition of the domain Λ, k ∈ {1, 2, . . . , n}, and S is an (n− k)-

dimensional cube face.

While calculating integrals over the set K(S), we have to employ either spherical

or cylindric or Cartesian coordinates which allows us to pass to the corresponding it-

erated integral and to prove only one-dimensional inequalities. For a convex domain

the situation is simple and one-dimensional inequalities are extended straightfor-

wardly to the spatial case. This completes the proofs of Theorem 1.1, Theorem 4.1

and Theorem 4.2. �

5. Rellich inequalities in domains

5.1. Inequalities on arbitrary domains. Let Ω be an open subset of the Eu-

clidean space Rn and let C1
0 (Ω) be the family of continuously differentiable functions

f : Ω → R with compact supports lying in Ω. Denote the unit sphere in Rn by Sn−1.

For each x ∈ Ω and ν ∈ S
n−1, put

τν(x) = min{s > 0: x+ sν /∈ Ω}, ̺ν(x) = min(τν(x), τ−ν (x)),

Dν(x) = τν(x) + τ−ν(x), Ωx = {y ∈ Ω: x+ t(y − x) ∈ Ω ∀ t ∈ [0, 1]},
δ(x) = inf

ν∈Sn−1

τν(x) = dist(x, ∂Ω), D(Ω) := sup
x∈Ω, ν∈Sn−1

Dν(x).

The volume of Ωx is denoted by |Ωx|. Clearly, Ωx ⊂ Ω. In [15], Davies introduced

the mean distance function ̺(x) by the formula

̺(x) :=

∫

Sn−1

1

̺ν(x)2
dω(ν),

where dω(ν) is the normalized measure on S
n−1, i.e.,

∫

Sn−1 dω(ν) = 1.

For a general s ∈ (0,∞), there is the analogue (see [12], [17], [33])

̺(x, s) :=

∫

Sn−1

dω(ν)

̺ν(x)s
.
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Further assume that s > 0, q > 0, ν ∈ [0, s/q] and λν(2s/q) is the Lamb constant. In

this article we suppose that |Sn−1| is the surface area of the unit sphere Sn−1, |Ω| is
the volume of the set Ω, D(Ω) is the diameter of Ω,

B(n, s) =
Γ(12 (s+ 1))Γ(12n)√

πΓ(12 (n+ s))
, c(s) :=

s2 − ν2q2

4
and µ(s) :=

q2λ2
ν(2s/q)

4
.

The following theorem holds.

Theorem 5.1. Let Ω be a domain in R
n. Suppose that s > 0, q > 0 and

ν ∈ [0, s/q]. If s > 1 and s+ 3 > q, then for all f ∈ C2
0 (Ω)

1

n(n+ 2)

∫

Ω

[

|∆u(x)|2 + 2

n
∑

i,j=1

∣

∣

∣

∂2u(x)

∂xi∂yj

∣

∣

∣

2
]

dx

δ(x)s−1

> c(s)

∫

Ω

|u(x)|2
(

c(s+ 2)̺(x, s+ 3) +
µ(s+ 2)2s−q+3

D(Ω)s−q+3

( |Sn−1|
n|Ωx|

)q/n)

dx.

If s > 1 and s+ 3 6 q, then for all f ∈ C2
0 (Ω)

1

n(n+ 2)

∫

Ω

[

|∆u(x)|2 + 2

n
∑

i,j=1

∣

∣

∣

∂2u(x)

∂xi∂yj

∣

∣

∣

2
]

dx

δ(x)s−1

> c(s)

∫

Ω

|u(x)|2
(

c(s+ 2)̺(x, s+ 3) +
µ(s+ 2)

δ(x)s−q+3

( |Sn−1|
n|Ωx|

)q/n)

dx.

If 0 < s 6 1 and s+ 3 > q, then for all f ∈ C2
0 (Ω)

3

n(n+ 2)

2s−1

D(Ω)s−1

∫

Ω

|∆u(x)|2 dx

> c(s)

∫

Ω

|u(x)|2
(

c(s+ 2)̺(x, s+ 3) +
µ(s+ 2)2s−q+3

D(Ω)s−q+3

( |Sn−1|
n|Ωx|

)q/n)

dx.

If 0 < s 6 1 and s+ 3 6 q, then for all f ∈ C2
0 (Ω)

3

n(n+ 2)

2s−1

D(Ω)s−1

∫

Ω

|∆u(x)|2 dx

> c(s)

∫

Ω

|u(x)|2
(

c(s+ 2)̺(x, s+ 3) +
µ(s+ 2)

δ(x)s−q+3

( |Sn−1|
n|Ωx|

)q/n)

dx.
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P r o o f. It follows from Theorem 2.1 for p = 2 that for all f ∈ C1
0 (a, b)

(5.1)

∫ b

a

|f ′(x)|2
δ(x)s−1

dx > c(s)

∫ b

a

|f(x)|2
δ(x)s+1

dx+
µ(s)

δq0

∫ b

a

|f(x)|2
δ(x)s−q+1

dx.

Note that this inequality was proved by Avkhadiev andWirths in [11]. Applying (5.1)

to the function f defined by f(x) = u′(x), we get

∫ b

a

|u′′(x)|2
δ(x)s−1

dx > c(s)

∫ b

a

|u′(x)|2
δ(x)s+1

dx.

Therefore, by (5.1) we have

∫ b

a

|u′′(x)|2
δ(x)s−1

dx > c(s)

(

c(s+ 2)

∫ b

a

|u(x)|2
δ(x)s+3

dx+
µ(s+ 2)

δq0

∫ b

a

|u(x)|2
δ(x)s−q+3

dx

)

for all u ∈ C2
0 (a, b).

Consequently,

∫ bν

aν

|∂2
νu(x)|2

̺ν(x)s−1
dx > c(s)

(

c(s+2)

∫ bν

aν

|u(x)|2
̺ν(x)s+3

dx+
µ(s+ 2)

δq0

∫ bν

aν

|u(x)|2
̺ν(x)s−q+3

dx

)

,

where ∂2
νu, ν ∈ S

n−1 denotes the second derivative of u in the direction of ν, (aν , bν)

is the interval of intersection of Ω with the ray in the direction ν and δ0 = 1
2 (bν−aν).

Integrating both sides of the last inequality with respect to the normalized surface

measure dω(ν) on S
n−1, we get

(5.2)

∫

Ω

∫

Sn−1

|∂2
νu(x)|2

̺ν(x)s−1
dω(ν) dx

> c(s)

∫

Ω

∫

Sn−1

c(s+ 2)

̺ν(x)s+3
+
( 2

Dν(x)

)q µ(s+ 2)

̺ν(x)s−q+3
dω(ν)|u(x)|2 dx.

Let us consider four cases.

Case 1: s > 1 and s+ 3 > q. Obviously, for any ν ∈ S
n−1

(5.3)
1

̺ν(x)s−1
6

1

δ(x)s−1
,

1

̺ν(x)s−q+3
>

2s−q+3

D(Ω)s−q+3
.

Moreover, in his paper [33], Tidblom proved that

(5.4)

∫

Sn−1

( 2

Dν(x)

)q

dω(ν) >
( n|Ωx|
|Sn−1|

)−q/n

.
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Combining (5.2), (5.3) and (5.4), we obtain

∫

Ω

∫

Sn−1

|∂2
νu(x)|2 dω(ν)

dx

δ(x)s−1

> c(s)

∫

Ω

|u(x)|2
(

c(s+ 2)̺(x, s+ 3) +
µ(s+ 2)2s−q+3

D(Ω)s−q+3

( |Sn−1|
n|Ωx|

)q/n)

dx.

Case 2: s > 1 and s+ 3 < q. Clearly, for any ν ∈ S
n−1

1

̺ν(x)s−1
6

1

δ(x)s−1
,

1

̺ν(x)s−q+3
>

1

δ(x)s−q+3
.

Similarly, we have

∫

Ω

∫

Sn−1

|∂2
νu(x)|2 dω(ν)

dx

δ(x)s−1

> c(s)

∫

Ω

|u(x)|2
(

c(s+ 2)̺(x, s+ 3) +
µ(s+ 2)

δ(x)s−q+3

( |Sn−1|
n|Ωx|

)q/n)

dx.

Case 3: 0 < s < 1 and s+ 3 > q. Evidently, for any ν ∈ S
n−1

1

̺ν(x)s−1
6

2s−1

D(Ω)s−1
,

1

̺ν(x)s−q+3
>

2s−q+3

D(Ω)s−q+3
.

In the same way, we obtain

2s−1

D(Ω)s−1

∫

Ω

∫

Sn−1

|∂2
νu(x)|2 dω(ν) dx

> c(s)

∫

Ω

|u(x)|2
(

c(s+ 2)̺(x, s+ 3) +
µ(s+ 2)2s−q+3

D(Ω)s−q+3

( |Sn−1|
n|Ωx|

)q/n)

dx.

Case 4: 0 < s < 1 and s+ 3 < q. It is clear that for any ν ∈ S
n−1

1

̺ν(x)s−1
6

2s−1

D(Ω)s−1
,

1

̺ν(x)s−q+3
>

1

δ(x)s−q+3
.

As before, we get

2s−1

D(Ω)s−1

∫

Ω

∫

Sn−1

|∂2
νu(x)|2 dω(ν) dx

> c(s)

∫

Ω

|u(x)|2
(

c(s+ 2)̺(x, s+ 3) +
µ(s+ 2)

δ(x)s−q+3

( |Sn−1|
n|Ωx|

)q/n)

dx.
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In [17], Evans and Lewis proved that if Ω is a domain in Rn, then for all u ∈ C2(Rn)

∫

Sn−1

|∂2
νu(x)|2 dω(ν) =

1

n(n+ 2)

[

|∆u(x)|2 + 2

n
∑

i,j=1

∣

∣

∣

∂2u(x)

∂xi∂yj

∣

∣

∣

2
]

,

and for all u ∈ C2
0 (Ω)

∫

Ω

∫

Sn−1

|∂2
νu(x)|2 dω(ν) dx =

3

n(n+ 2)

∫

Ω

|∆u(x)|2 dx.

This completes the proof of Theorem 5.1. �

5.2. Inequalities on regular sets. Recall that

1

̺(x)2
:=

∫

Sn−1

1

̺ν(x)2
dω(ν),

where dω(ν) is the normalized measure on S
n−1.

We say that a domain Ω ⊂ R
n is regular if there exists a finite constant m(Ω) > 0

such that

δ(x) 6 ̺(x) 6 m(Ω)δ(x) ∀x ∈ Ω.

We denote the regularity constant for the domain Ω by m(Ω) (see [15], [34] for

information).

In [15], [34], sufficient conditions for regularity are obtained. For example, Davies

in [15] got the following sufficient condition:

The region Ω ⊆ R
n is regular if there exists a constant m(Ω) such that

|{y ∈ Ω: |y − a| < r}| > 2m(Ω)r2

for all a ∈ ∂Ω and all r > 0.

In [34], Tukhvatullina proved a sufficient condition of regularity for multidimen-

sional domains in R
n, n > 2. Some examples of regular domains were considered

in [34]. In particular, concentric circles with radii R1 and R2, when R2 > R1/5, and

balls with removed spherical sector are examples of regular domains.

Let us remember that |Sn−1| is the surface area of the unit sphere Sn−1 , |Ω| is
the volume of the set Ω, and D(Ω) is the diameter of Ω,

Ωx = {y ∈ Ω: x+ t(y − x) ∈ Ω ∀ t ∈ [0, 1]},

B(n, s) =
Γ(12 (s+ 1))Γ(12n)√

πΓ(12 (n+ s))
,

c(s) :=
s2 − ν2q2

4
and µ(s) :=

q2λ2
ν(2s/q)

4
.
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Since the function f(t) = ts/2 is convex when s > 2 and t > 0, we can use Jensen’s

inequality to get

∫

Sn−1

1

̺ν(x)s
dω(ν) >

(
∫

Sn−1

1

̺ν(x)2
dω(ν)

)s/2

.

Consequently, for regular domains we have

1

̺(x, s)s
:=

∫

Sn−1

dω(ν)

̺ν(x)s
>

1

m(Ω)sδ(x)s
.

It is obvious that |Ωx| 6 |Ω|. Therefore, the following theorem holds.

Theorem 5.2. Let Ω be a regular domain in R
n and let m(Ω) be the regularity

constant for the domain Ω. Suppose that s > 2, q > 0 and ν ∈ [0, s/q]. If s+ 3 > q,

then for all f ∈ C2
0 (Ω)

1

n(n+ 2)

∫

Ω

[

|∆u(x)|2 + 2

n
∑

i,j=1

∣

∣

∣

∂2u(x)

∂xi∂yj

∣

∣

∣

2
]

dx

δ(x)s−1

> c(s)

∫

Ω

|u(x)|2
( c(s+ 2)

m(Ω)s+3δ(x)s+3
+

µ(s+ 2)2s−q+3

D(Ω)s−q+3

( |Sn−1|
n|Ω|

)q/n)

dx.

If s+ 3 6 q, then for all f ∈ C2
0 (Ω)

1

n(n+ 2)

∫

Ω

[

|∆u(x)|2 + 2

n
∑

i,j=1

∣

∣

∣

∂2u(x)

∂xi∂yj

∣

∣

∣

2
]

dx

δ(x)s−1

> c(s)

∫

Ω

|u(x)|2
( c(s+ 2)

m(Ω)s+3δ(x)s+3
+

µ(s+ 2)

δ(x)s−q+3

( |Sn−1|
n|Ω|

)q/n)

dx.

Example 1. Let Ω0 be concentric circles with radii R1 and R2, where R2 > R1/5.

It is proved in [34] that m(Ω0) = 2
√
12. Consequently, if s > 2 and s + 3 6 q, then

for all f ∈ C2
0 (Ω)

1

8

∫

Ω

[

|∆u(x)|2 + 2
2

∑

i,j=1

∣

∣

∣

∂2u(x)

∂xi∂yj

∣

∣

∣

2
]

dx

δ(x)s−1

> c(s)

∫

Ω

|u(x)|2
( c(s+ 2)

48(s+3)/2δ(x)s+3
+

µ(s+ 2)

δ(x)s−q+3

( 1

R2
1 −R2

2

)q/2)

dx.
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Example 2. Let Ω1 be a ball with the spherical sector removed. Let R be the

radius of the ball. Consider the cone that corresponds to the removed spherical

sector. By α we denote the cone angle, i.e., the angle between the rim of the cap

and the direction to the middle of the cap as seen from the sphere center. In [34] it

was shown that

m(Ω1) =
2
√
7

sin 1
4α

.

Consequently, if s > 2 and s+ 3 6 q, then for all f ∈ C2
0 (Ω)

1

15

∫

Ω

[

|∆u(x)|2 + 2

3
∑

i,j=1

∣

∣

∣

∂2u(x)

∂xi∂yj

∣

∣

∣

2
]

dx

δ(x)s−1

> c(s)

∫

Ω

|u(x)|2
((sin 1

4α

2
√
7

)s+3 c(s+ 2)

δ(x)s+3
+

µ(s+ 2)

δ(x)s−q+3

( 1

R3 cos2 1
4α

)q/3)

dx.

Above we use that |S2| = 4π and |Ω1| = 4
3πR3 cos 1

4α.

5.3. Domains with θ-cone condition. The boundary ∂Ω is said to satisfy the

θ-cone condition if every x ∈ ∂Ω is the vertex of the circular cone Cx of the semi

angle θ which lies entirely in R
n \ Ω, see [12].

Assume that |Sn−1| is the surface area of the unit sphere Sn−1, |Ω| is the volume
of the set Ω, D(Ω) is the diameter of Ω, h = h(12 sin θ),

B(n, s) =
Γ(12 (s+ 1))Γ(12n)√

πΓ(12 (n+ s))
,

cs =
((s− 1)2 − ν2q2)p/2

pp
and µs =

p

2

q2λ2
ν(2(s− 1)/q)

(s− 1)2 − ν2q2
.

By h(α) we denote the solid angle subtended at the origin by a ball of radius α < 1,

whose centre is at the distance 1 from the origin. If ∂Ω satisfies the θ-cone condition,

then for all x ∈ Ω

1

̺(x, s)s
>

h
(

1
2 sin θ

)

2sδ(x)s
.

For more information we refer to the book [12], page 86.

Using the last estimates and Theorem 5.1, we get the following theorem.
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Theorem 5.3. Let Ω be a domain in Rn and ∂Ω satisfy the θ-cone condition. Sup-

pose that s > 0, q > 0 and ν ∈ [0, s/q]. If s > 1 and s+3 > q, then for all f ∈ C2
0 (Ω)

1

n(n+ 2)

∫

Ω

[

|∆u(x)|2 + 2
n
∑

i,j=1

∣

∣

∣

∂2u(x)

∂xi∂yj

∣

∣

∣

2
]

dx

δ(x)s−1

> c(s)

∫

Ω

|u(x)|2
(

c(s+ 2)
h
(

1
2 sin θ

)

2s+3δ(x)s+3
+

µ(s+ 2)2s−q+3

D(Ω)s−q+3

( |Sn−1|
n|Ωx|

)q/n)

dx.

If s > 1 and s+ 3 6 q, then for all f ∈ C2
0 (Ω)

1

n(n+ 2)

∫

Ω

[

|∆u(x)|2 + 2
n
∑

i,j=1

∣

∣

∣

∂2u(x)

∂xi∂yj

∣

∣

∣

2
]

dx

δ(x)s−1

> c(s)

∫

Ω

|u(x)|2
(

c(s+ 2)
h
(

1
2 sin θ

)

2s+3δ(x)s+3
+

µ(s+ 2)

δ(x)s−q+3

( |Sn−1|
n|Ωx|

)q/n)

dx.

If 0 < s 6 1 and s+ 3 > q, then for all f ∈ C2
0 (Ω)

3

n(n+ 2)

2s−1

D(Ω)s−1

∫

Ω

|∆u(x)|2 dx

> c(s)

∫

Ω

|u(x)|2
(

c(s+ 2)
h(12 sin θ)

2s+3δ(x)s+3
+

µ(s+ 2)2s−q+3

D(Ω)s−q+3

( |Sn−1|
n|Ωx|

)q/n)

dx.

If 0 < s 6 1 and s+ 3 6 q, then for all f ∈ C2
0 (Ω)

3

n(n+ 2)

2s−1

D(Ω)s−1

∫

Ω

|∆u(x)|2 dx

> c(s)

∫

Ω

|u(x)|2
(

c(s+ 2)
h(12 sin θ)

2s+3δ(x)s+3
+

µ(s+ 2)

δ(x)s−q+3

( |Sn−1|
n|Ωx|

)q/n)

dx.

5.4. Inequalities in convex sets. Let Ω be a convex domain. It is known that

for convex domains

̺(x; s)−s :=

∫

Sn−1

dω(ν)

̺ν(x)s
>

B(n, s)

δ(x)s
, where B(n, s) =

Γ(12 (s+ 1))(12n)√
πΓ(12 (n+ s))

.

Recall that

c(s) :=
s2 − ν2q2

4
and µ(s) :=

q2λ2
ν(2s/q)

4
.
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Moreover, for the case of convex domains |Ωx| = |Ω| holds. Taking into account
Theorem 5.1 we obtain the following theorem.

Theorem 5.4. Let Ω be a convex domain in R
n. Suppose that s > 0, q > 0 and

ν ∈ [0, s/q]. If s > 1 and s+ 3 > q, then for all f ∈ C2
0 (Ω)

1

n(n+ 2)

∫

Ω

[

|∆u(x)|2 + 2

n
∑

i,j=1

∣

∣

∣

∂2u(x)

∂xi∂yj

∣

∣

∣

2
]

dx

δ(x)s−1

> c(s)

∫

Ω

|u(x)|2
(

c(s+ 2)
B(n, s+ 3)

δ(x)s+3
+

µ(s+ 2)2s−q+3

D(Ω)s−q+3

( |Sn−1|
n|Ω|

)q/n)

dx.

If s > 1 and s+ 3 < q, then for all f ∈ C2
0 (Ω)

1

n(n+ 2)

∫

Ω

[

|∆u(x)|2 + 2
n
∑

i,j=1

∣

∣

∣

∂2u(x)

∂xi∂yj

∣

∣

∣

2
]

dx

δ(x)s−1

> c(s)

∫

Ω

|u(x)|2
(

c(s+ 2)
B(n, s+ 3)

δ(x)s+3
+

µ(s+ 2)

δ(x)s−q+3

( |Sn−1|
n|Ω|

)q/n)

dx.

If 0 < s < 1 and s+ 3 > q, then for all f ∈ C2
0 (Ω)

1

n(n+ 2)

2s−1

D(Ω)s−1

∫

Ω

|∆u(x)|2 dx

> c(s)

∫

Ω

|u(x)|2
(

c(s+ 2)
B(n, s+ 3)

δ(x)s+3
+

µ(s+ 2)2s−q+3

D(Ω)s−q+3

( |Sn−1|
n|Ω|

)q/n)

dx.

If 0 < s < 1 and s+ 3 < q, then for all f ∈ C2
0 (Ω)

1

n(n+ 2)

2s−1

D(Ω)s−1

∫

Ω

|∆u(x)|2 dx

> c(s)

∫

Ω

|u(x)|2
(

c(s+ 2)
B(n, s+ 3)

δ(x)s+3
+

µ(s+ 2)

δ(x)s−q+3

( |Sn−1|
n|Ω|

)q/n)

dx.

Corollary 5.1. Let Ω be a convex domain in R
n. Then for all f ∈ C2

0 (Ω)

∫

Ω

|∆u(x)|2 dx >
9

16

∫

Ω

|u(x)|2
δ(x)4

+Kn(n+ 2)
( |Sn−1|

n|Ω|
)4/n

∫

Ω

|u(x)|2 dx,

where K = 1
3λ

2
0(

3
2 ) ≈ 0.417322.
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