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Abstract. In considering packing three copies of a tree into a complete bipartite graph,
H. Wang (2009) gives a conjecture: For each tree T of order n and each integer k > 2, there
is a k-packing of T" in a complete bipartite graph B,,ij_; whose order is n + k — 1. We
prove the conjecture is true for k = 4.

Keywords: packing; bipartite packing; embedding
MSC 2020: 05C05, 05C70

1. INTRODUCTION

We discuss only finite simple graphs and use standard terminology and notation
from [6] except as indicated. For any graph G we use V(G) and E(G) to denote
the vertex set and the edge set of GG, respectively. A forest is a graph without
cycles. A tree is a connected forest. We use B,, (or K, ,—_;) to represent a complete
bipartite graph of order n. A bipartite graph G admits (a, b)-bipartition if G has
a bipartition (X,Y) such that |X| = a and |Y| = b. Note that up to isomorphism,
B, (K¢ n—¢) is not uniquely defined for n > 4 and ¢ > 1.

An isomorphism from a simple graph G to a simple graph H is a bijection f:
V(G) — V(H) such that uv € E(Q) if and only if f(u)f(v) € E(H). We say that G
is isomorphic to H, written as G = H. By an embedding o of a bipartite graph G
in By, we mean that o is an injection from V(G) into V(B,,) such that o(Vp) C X
and o(V1) C X1, where (Vp, V1) and (Xp, X1) are the given bipartitions of G and B,,,
respectively. A k-packing of T in the graph G is a partition of edges of subgraph of the
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graph G such that each element of the partition induces a subgraph isomorphic to 7',
where k is the number of the elements in the partition. (Later, denote the subgraph
of G by G'. Let o; be a bijection satisfying ;(G’) ~ T for 1 < i < k.) There have been
some results found on k-packing of T" in G for various k, T" and G. When T is a path
and G is a complete bipartite graph, some results can be found in [7], [8]. Hobbs,
Bourgeois and Kasiraj in [2] proved that any two trees of order m and n with m < n
can be packed into a complete bipartite graph K, _; r1,,7. It is proved in [1], [5] that
for any disconnected forest F' of order n, there is a 2-packing of F' in a complete bipar-
tite graph B,,. Wang in [3] showed that any two forests of order n admitting the same
(a, b)-bipartition can be packed into a complete bipartite graph of order at most n+1.
Wang in [4] also proved that for any tree T of order n a 3-packing of T in some By, 42
can be found. Wang gives a conjecture in paper (see [4]): For any tree T of order n
and each integer k > 2, there is a k-packing of T in some B,,,_1. The conjecture is
true for k = 2 and k = 3 by the results in [3], [4], [5]. We will show it is true for k = 4.

Theorem 1.1. For each tree T of order n, there is a 4-packing of T' in some B, 3.

Its proof can be found in Section 3 while in Section 2, some lemmas, which are
important for the proof of the main theorem, are given.

2. PRELIMINARY

We first give some terminology and notation. Given a bipartite graph G, we say
that two vertices of G are strongly independent if they are not adjacent and they do
not have any common neighbor either. A node of G is a vertex of GG that is adjacent to
an endvertex of G. A supernode of G is a vertex x of G such that, with one exception,
every neighbor of x is an endvertex of G. If GG is a tree but not a star, we readily see
that G has at least two distinct supernodes by observing a longest path of G. If (X, Y)
is the given bipartition of G, then any subgraph H of G has (X NV (H),Y NV (H))
as its given bipartition. For a 4-packing (b, g, 7, s) of G in B,,, we say that a vertex x
is 4-placed if b(z), g(x), r(z) and s(x) are distinct. A linear forest is a forest such
that each of its components is a path. By adopting the method in [4], we give
Lemmas 2.1 and 2.2, which are important for the proof of the main theorem. Let P =
Xi%iy1 ... iy denote a path of length [ with vertex set V(P) = {zi4+: 0 < t < 1}
and edge set E(P) = {Zitt—1®ite: 1 <t <1}, Let K, (Vs,V;) denote a bipartite
graph with vertex set V(K;;) = V,UV; and edge set E(K;;) = {ab: a € V5, be V;}.

Lemma 2.1. Let z, y, z and p be four strongly independent endvertices in the
same partite of a tree T. If there is a 4-packing of T —x —y — z — p in By, then
there is a 4-packing of T' in By, 4.
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Proof. Let {u,v,w,q} € V(T) be such that {zu,yv,zw,pq} C E(T). Let
(01,02,03, 04) be a 4-packing of T —x —y — 2z — p in B,,. For i € {1,2,3,4}, let

A; = {oi(u),0;(v),04(w),0;(q)}. Obviously |A4;| = 4. Note that U A; is contained
in one partite of B,,. Let V(B n+4) V(By) U{x,y,z,p} such that {z,y,z,p} is in
the partite that does not contain U A;. For each i € {1,2,3,4} we add a set E; con-
sisting of four independent edges between {z,y,z,p} and A; to 01 (T—xz—y—2z—p)to

obtain a copy of T in B,, 4. Note that < 20. The edges

i=1

in U FE; comes from the complete bipartite graph M with partlte sets {z,y, z,p}
z:l

and U A;. Obviously |E(M)| > 16. It is easy to choose E; (1 < ¢ < 4) satisfying

E; N E = for 1 < i < j < 4. Thus, we extend each o; to an embedding of T in
B, 4 such that (01,09, 03,04) becomes a 4-packing of T in B, 4. |

Lemma 2.2. Let H be a subgraph of a tree T such that each vertex of T —V (H)
is an endvertex of T'. If there is a 4-packing of H in B,, such that each vertex x of H
with xy € E(T) for some y € V(T) — V(H) is 4-placed, then there is a 4-packing
of T in Bytm, where m = |V (T)| — |V (H)|.

Proof. Let (01,02,05,04) be a 4-packing of H in B, so that if zy € E(T) with
y € V(T)—V(H), then z is 4-placed. Note that o1(z), o2(x), o3(z) and o4(z) are in
the same partite for all € V(H). We obtain B4, by adding eachy € V(T')—V (H)
to By, so that if xy € E(T), then y and o1 (x) are in the opposite partites. Then for
each i € {1,2,3,4} we extend o; to an embedding of T in By, 4, so that o;(y) =y
for each y € V(T') — V(H). Then (01,02,03,04) is a 4-packing of T in Byyy,. O

We also need the following lemmas in order to prove our main theorem.

Lemma 2.3. The following two statements hold:

(1) If P is a linear forest of order 2k with k > 8, then there is a 4-packing of P
in Ky, 1 such that each vertex of P is 4-placed.

(2) If P is a path of order 2k with k € {5,6,7}, then there is a 4-packing of P
in Kj41,k+2 such that each vertex of P is 4-placed.

Proof. To prove (1), without loss of generality, suppose P = z1y122y2 . . . Yk iS
a path with ({z1,...,2},{y1,...,yx}) as its bipartition. The subscript modulo k is
in {1,2,...,k}. Define a 4-packing (b, g, 7, s) of P in Ky p({z1,...,zx},{y1,-- -, yx})
as follows. For all z € V(P), let b(z) = z; for i = {1,2,...,k}, let g(x;) = ;41 and
9(i) = Yivs; (i) = Tivz and 7(yi) = Yite; (i) = Tivs and s(y;) = it
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To prove (2), let ({z1,...,zk, w1}, {y1,..., Yk, wa,ws}) be the bipartition of
Kit1,k+2. Say P=m1y122Y2 - - TkYk- 10 Koy apwi ), {yr ey we,ws s 1€ K1 k42,
we define four embeddings (b, g, r, s) of P with b being identity embedding as follows.

If kK = 5, define g, r and s such that g(P) = xaysxswswiwaziyszsyr, r(P) =
T3Y4W1Y3T W3 T2WL4Y2, S(P) = Tqwswzwosyiw1yor1ys, wWith g(x1) = a2, r(z1) =
x3 and s(z1) = x4.

If k = 6, define g, r and s such that g(P) = ZoysTewow YeXsWwsTay2L1ys, r(P) =
T3Y5T4Y6T2W3TeY1W1Y3T5W2, S(P) = TeY2T5y1T3WaT2y3T1Yswows, with g(x1) = @2,
r(z1) = 3 and s(x1) = x6.

If £ = 7, define g, r and s such that g(P) = z2y3x5ysw1WsT1YsT7WaT3Y1LaY2,
r(P) = 3yaTr7y1 T5WakaY6T1Y7wW1Y2Tews, S(P) = T5y7T3Ys5T2yaTeWaW1 W3T7Y3T1 Y6,
with g(z1) = 2, r(z1) = z3 and s(x1) = 5. O

Lemma 2.4. Let P be a path of order n from x to y. The following three
statements hold:
(1) If n € {4,6,8}, there is a 4-packing (b,g,r,s) of P in B,i3 such that z is
4-placed for each z € V(P) — {y}.
(2) If n =5, there is a 4-packing (b, g,r,s) of P in By, y3 such that z is 4-placed for
each z € V(P) — {z,y}. Furthermore,

{b(x), g(x), (x), s(x)} N {b(y), 9(y),r(y), s(y)} = 0.

(3) Ifn € {7,9}, there is a 4-packing (b, g,r, s) of P in B,13 such that z is 4-placed
for each z € V(P).

Proof. To prove (1), when n = 4, let P = zyxox3z4. Set Vo = {x1,23} and
Vi = {x2,24}. Let (Vp, V1) be the partition of P and (VoU{x5,z7}, Vi U{xzs}) be the
bipartition of B7. Define the required 4-packing (b, g,r, s) of P in B7 with b being
identity embedding as follows: ¢(P) = xszeriz4, r(P) = zra4z516 and s(P) =
x5rox7re With g(x1) = a3, (1) = x7 and s(z1) = w5.

When n = 6, let P = x1x003242526. Set Vo = {x1, 23,25} and Vi = {a2, 24, 26}.
Let (Vp, V1) be the partition of P and (VoU{x7}, ViU{xs, x9}) be the bipartition of By.
Define the required 4-packing (b, g, r, s) of P in Bg with b being identity embedding
as follows: ¢g(P) = zrzgzizsx3zs, r(P) = x3vexsxozras and s(P) = 5x307T9%1%6
with g(z1) = 27, r(z1) = z3 and s(z1) = xs.

When n = 8, let P = zjzawszaxsaer7ss, Vo = {r1,23,25,27F and V3 =
{za, x4, x6,25}. Let (V, V1) be the partition of P and (Vo U {z9}, V1 U {z10,211})
be the bipartition of By;. Define the required 4-packing (b,g,r,s) of P in Bi;
with b being identity embedding as follows: g(P) = x1211Z5T1007222924, 1(P) =
T1T10T9TeT3xsx522 and $(P) = xrxax128T9r11T3%10 With g(x1) = 1, r(x1) = 1
and s(z1) = x7.
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To prove (2), let P = xyzoxszaxs. Set Vo = {z1, 23,25} and Vi = {x2,z4}. Let
(Vb, V1) be the partition of P and (Vo U {xz7}, Vi U{xs,xs}) be the bipartition of Bs.
Define the required 4-packing (b, g, r, s) of P in Bg with b being identity embedding
as follows: g(P) = zrxexsrses, r(P) = zixszrxexs and s(P) = xrxsxizers with
g(x1) = z7, r(z1) = 21 and s(z1) = 7.

To prove (3), when n =7, let P = z1xowszgsxszexr. Set Vo = {x1, 23,25, 27} and
Vi = {x2,24,26}. Let (Vy, V1) be the partition of P and (Vo U {zs, 29}, V1 U{z10})
be the bipartition of Bjg. Define the required 4-packing (b,g,7,s) of P in Bjg
with b being identity embedding as follows: ¢(P) = zsxezsrioxrrazy, T(P) =
T7rax9rer1x10T3 and s(P) = xoxioTsxrersraxy with g(x1) = x3, r(x1) = 27 and
s(x1) = wo.

When n =9, let P = x120203040526272829. Set Vo = {x1, x3,25, 7,29} and V; =
{x2, 24,6, 28}. Let (Vo, V1) be the partition of P and (Vo U {z11}, V1 U {210, 212})
be the bipartition of Bjs. Define the required 4-packing (b,g,r,s) of P in B
with b being identity embedding as follows: g(P) = z3xsr1126T9x10T1T427, T(P) =
T5T10T7T2T11T4T921221 and $(P) = x7x1225T8T1T6x3210211 With g(z1) = x3,
r(r1) = x5 and s(z1) = z7. O

To state Lemma 2.5, we define graphs G; (1 < ¢ < 18 and ¢ # 8,13 or 17)
to be the subgraphs of Kgg (Vo, V1), where Vo = {z1,23,25,...,215} and V} =
{z2,24,%6,...,216}. Let Gg be the graph K4 ¢ (Up, Uy), where Up ={x1,x3, 25,27} C
Vo and Uy = {x2, x4, 26, T3, %9, 10} C Vi. Let Giz be the graph K¢ 7 (Up,Un),
where Uy = {1, x3, 5, 7, X9, x11} C Vo and Uy = {x2, x4, T, T8, T10, T12, T13} C V1,
and Gi7 be the graph Kr7g (Uo,Ui), where Uy = {1, z3, x5, 27,29, 11,13} C Vo
and Uy = {2, 24, x¢, Ts, T10, T12, 14, 15} C V1. Let

G1 = 212223242526 U T3T8T7,
where x1zox32425%6 is a path of length 5 with edges x1xs, xoxs, X324, T4x5, T5T6-

Go = 2129234 T5L6T7 U Tr3T8xy,

G3 = 102230405 U T3T6T7T8T9T10211,

Gy = 1020304T5T6T7 U T3T82T9T 10211,

Gs = 1102030475 U T3T6T7T3T9T10T11 12713,
G = 11020304 T5T6T7 U T3T3T9T10T11T12713,
G7 = 11020304 T5T6T7T8T9 U T5T10T11712713,
Gs = 2129232425 U Tr3Tel7,

G9 = T1T2T3T4T5LeLTLITYL10L11L12213 U X314 15,
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G0 = T1T203T4T5TeT7T8TeT10T11 U T3T12213T14% 15,
G11 = T10203T4T5T6T7T8T9 U T5T10211 2122131415,
G2 = T1T203%4T5T6T7T8T9 U T3T10T11T12T13T14 %15,
G13 = 110203047576 U T9T10T3T8T7,

G4 = T1022304T5T6T7 U T11 2102328,

G5 = T1020304T5T6T7 U T1321203T8L9 L1011

G16 = T102T3T4T5T6T7T8Tyg U T13T1223L 1011,

G17 = 110203740576 U T7T8T3T10T9 U T3T 12711,

G18 = T1T22324%5T6T7 U Tox8x3T10T11 U T3T12713.

Lemma 2.5. The following statements hold:
(1) There is a 4-packing of Gy in By; such that, except x1, x¢ and x7, every vertex
of Gy is 4-placed.
(2) There is a 4-packing of G2 in B2 such that, except x7 and xg, every vertex of
Gy is 4-placed.

(3) There is a 4-packing of G5 in By4 such that every vertex of G3 is 4-placed.
(4) There is a 4-packing of G4 in By4 such that every vertex of G4 is 4-placed.
(5) There is a 4-packing of G5 in Big such that every vertex of G5 is 4-placed.
(6) There is a 4-packing of Gg in Big such that every vertex of G¢ is 4-placed.
(7) There is a 4-packing of G7 in Big such that every vertex of G7 is 4-placed.
(8) There is a 4-packing of G in By such that, except x1, x5 and x7, every vertex

of G is 4-placed.
There is a 4-packing of Gg in B1g such that every vertex of Gg is 4-placed.
There is a 4-packing of G1¢ in Big such that every vertex of Gyq is 4-placed.

)
(10)
(11) There is a 4-packing of G171 in Byg such that every vertex of G11 is 4-placed.
(12) There is a 4-packing of G12 in Big such that every vertex of G12 is 4-placed.
(13)

There is a 4-packing of G13 in B3 such that, except x1, x¢ and xg, every vertex
of G13 is 4-placed.

There is a 4-packing of G14 in B4 such that every vertex of G4 is 4-placed.
There is a 4-packing of G5 in Big such that every vertex of G5 is 4-placed.

(14)

(15)

(16) There is a 4-packing of G16 in Big such that every vertex of Gi¢ is 4-placed.
(17) There is a 4-packing of G17 in Bys such that every vertex of Gz is 4-placed.
(18)

There is a 4-packing of G1g in Big such that every vertex of G1g is 4-placed.
The proof can be found in Appendix (I).
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To state Lemma 2.6, we define graphs F; (1 < ¢ < 8) to be the subgraphs of K9
(Vo, V1), where Vy = {z1,23,25,...,2109} and Vi = {x9, 24, xg, ..., x18}. Let

Fi = 2129232425 U Tex7x8T9L10 U r3rTg,

Fy = 2129230475 U 2627T8T9T10 U T3T12211 T8,

Fy = 2120230475 U 2627T8T9T10 U T3T14213T12T11 T8,

Fy = 2122037475 U 2627089710 U X3T16%15T14 U T8T11T12713,
Fs5 = 2172737475 U T6T7T8T9T10 U T3TT11T12,

Fs = 122031475 U 26270829210 U X3T14T13T8T11%12,

Fr = 2120230405 U 2627T8T9T10 U T3T16215T14T13T8T11 212,

Fy = 2122232425 U 26277829210 U T15T14%13T8% 11212 U T3T18T 17T 16-

Lemma 2.6. The following statements hold:

(1) There is a 4-packing of Fy in B3 such that, except x1g, every vertex of Fy is
4-placed.

(2) There is a 4-packing of F» in Bis such that every vertex of Fy is 4-placed.

(3) There is a 4-packing of F5 in By7 such that every vertex of F3 is 4-placed.

(4) There is a 4-packing of Fy in Byg such that, except x; and x5, every vertex
of F is 4-placed.

(5) There is a 4-packing of F5 in Bis such that every vertex of Fy is 4-placed.

(6) There is a 4-packing of Fg in By such that, except xg and 12, every vertex
of Fy is 4-placed.

(7) There is a 4-packing of F; in Byg such that every vertex of F; is 4-placed.

(8) There is a 4-packing of Fg in Big such that every vertex of Fy is 4-placed.

The proof can be found in Appendix (II).

3. PROOF OF THE MAIN THEOREM
Now we are in the position to prove our main result Theorem 3.1.

Theorem 3.1. For each tree T' of order n, there is a 4-packing of T' in some B, 3.

Proof. To avoid considering many classes of non-isomorphic trees with the same
order n, the theorem is proved by contradiction. Let T be a tree with the smallest
order such that the theorem fails for 7. Say |V(T")| = n. By Lemma 2.1, T does not
contain four strongly independent endvertices in the same partite. Thus, 7' contains
at most six supernodes. Clearly, n > 4 and T is not a star. By observing a longest
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path, we see that T has at least two supernodes. We need to consider only the trees
of order n with ¢ supernodes (2 < t < 6). We divide the proof into several cases by
the numbers of supernodes of T'. In every case, we manage to define a subgraph H
of T'. Then from the 4-packing of H in B,,, we shall obtain a 4-packing of T" in B,, ;3.

Case 1: T has exactly two supernodes.

In this case, let P = x125...x; be a longest path. Then every vertex of T'— V(P)
is an endvertex of T. If ¢ = 2k and k ¢ {3,4}, then by Lemma 2.3 (1) and (2),
there is a 4-packing of P in Bay3 such that each vertex of P is 4-placed, and thus
the theorem holds by Lemma 2.2. If k € {3,4}, we apply Lemma 2.4 (1) to P and
Lemma 2.2 to T, and see that the theorem holds. If t =2k + 1, let P’ = P — zo11.
For the same reason, if k ¢ {3,4}, then the theorem holds. If k € {3,4}, we apply
Lemma 2.4 (3) to P and Lemma 2.2 to T, and see that the theorem holds.

Case 2: T has at least three but at most six supernodes.

In this case, T has a vertex-cut U with |U| < 3 such that no component of T — U
contains two distinct supernodes of T. We choose such a vertex-cut U with |U]|
minimal. Let wy, wo and w3 be three distinct vertices not in 7T'. In the following,
we shall define a subgraph H of T. Then from a 4-packing of H we shall obtain
a 4-packing of T in By, 3 with V(By13) = V(T) U {w1, wa, ws}. We divide this case
into the following three subcases.

U = T4,

oY1 41 a1 b1

Ty T Ys Zt—1 Q0p—1 bq,1
Q1 Q2
2t ap bq
Qs Qi Qs

Figure 1. |U| = 1. (The larger dots are supernodes.)

Subcase 2.1: |[U| = 1. Say U = {u}. As T has at least three supernodes,
there exists a path Q1 = ziz2...xx in T such that z; and z, are two endver-
tices while x2 and xp_; are two distinct supernodes. Furthermore, u = x;, for some
io € {3,4,...,k — 2}. Let x; and x be two endvertices in the opposite partites
when T has at least four supernodes. In this situation, k is even and k > 6. Let
Q2 = y1y2 . .. ys be a path vertex-disjoint from @7 such that z;,y1 € E(T) and ys—1
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is a supernode of T'. Thus, ys is an endvertex of T'. If T has four supernodes, let
Q3 = z122 ...z be the path vertex-disjoint from @1 U Q2 such that z;,z1 € E(T)
and z;_1 is a supernode of 7. If T" has five supernodes, let Q4 = aja2...a, be the
path vertex-disjoint from @1 UQ2 U Q3 such that z;,a; € E(T) and ap_1 is a supern-
ode of T'. If T has six supernodes, let Q)5 = b1b2...b,; be the path vertex-disjoint
from Q1 U Q2 U Q3 U Q4 such that x;,b; € E(T) and b,—1 is a supernode of T, see
Figure 1.

Subcase 2.1.1: We suppose that T" has exactly three distinct supernodes. In this
situation, let H = Q1 U Q2. If x1, x) and ys are in the opposite partites, we may
assume that {z1,2;,,ys} C Vo, xx € V4. Then |V(H)| = 2h for some h > 4. It
is easy to see that each vertex of T'— V(H) is an endvertex of T, for otherwise T
would have four distinct supernodes. Since H does not contain the edge z;,y1, each
of Q1 and Q)7 is a component of H, i.e., H is a linear forest. Assume for the moment
h > 8. By Lemma 2.3(1), there is a 4-packing (b, g,r,s) of H in Bgyj such that
each vertex of H is 4-placed. We may assume that b is the identity embedding. We
extend the embeddings b, g, 7, s to H + x;,y1 in Baop43 by adding wi, we and ws
and defining b(x;,) = x4, 9(i,) = w1, r(z;,) = w2 and s(x;,) = ws. By Lemma 2.2
there is a 4-packing of T in B, 13. Therefore, h = 4, 5, 6 or 7. If h = 4, then
TV(H)] 2 Gy. If h =5, then k = 6 or k = 8. Furthermore, we see that if £ = 6,
then T[V(H)] — x¢ = G2, and if k = 8, then T[V(H)] — xs = G3. If h = 6, then
k =6, 8, or 10. Furthermore, we see that if k = 6, then TV (H)] —x¢ = Gs, if k = 8,
then T[V(H)] — zg & G4, and if k = 10, then T[V(H)] —z19 2 G3 or G4. If h =T,
then k = 6, 8, 10 or 12. Furthermore, we see that if k = 6, then T[V(H)] — 26 = G5,
if k=8, then T[V(H)] — s = Gg, if k = 10, then T[V(H)] — 19 = G¢ or G7, and
if k =12, then T[V(H)] — z12 = G5 or G¢. By Lemma 2.2 and Lemma 2.5 (1)—(7),
there is a 4-packing of T in By, 3.

If 1, x, and ys are in the same partite, we may assume that {x1,z,ys} C Vo.
Thus z;, € Vo or V. Without loss of generality, we assume that z;, € Vp, then
[V(H)| = 2h + 1 for some h > 3. If h > 8, let H' = H — y,, then we prove the
theorem as above. Therefore h = 3,4, 5,6 or 7. If h = 3, then k = 5, s = 2, and
TIV(H)=2Gs. Ifh=4,thenk=5,s=4,or k=7,s=2, and T[V(H)] = Gq. If
h=5thenk=5s=6,ork=7,s=4,or k=9,s=2 and T[V(H)] = G5 or Gy.
Ifh=6,thenk=5,s=8 0ork=7,s=6,ork=9,s=4,or k=11, s =2, and
TIV(H) =2 G5, Gg or G7. If h =7, then k =5,s=10,0or k=7, s =8, 0r k =9,
s=6,ork=11,s=4,0or k=13, s =2, and T[V(H)] £ Gy, G10, G11 or G12. By
Lemma 2.2 and Lemma 2.5 (2)—(12), there is a 4-packing of T" in Bj43.

Subcase 2.1.2: We suppose that T has exactly four distinct supernodes. In this
case, without loss of generality, say {z1,2;,} C V. As T does not contain four
strongly independent endvertices of the same partities, we may assume that ys € V}
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and z; € Voor Vi. Let H = Q1 UQ2UQ3, and t/ =t if z; € Vy. Let H =
Q1UQaUQ3— 2z, and ¢ =t —11if 2z € V5. Then |V (H)| = 2h for some h > 5. We
can see that each vertex of T — V(H) is an endvertex of T, for otherwise T would
have four strongly independent endvertices in the same partite. Clearly, H is a linear
forest. If h > 8, the proof is the same as that in Subcase 2.1.1. Therefore, h = 5, 6
or 7. If h =5, then k =6, s =2 and t/ =2, and T[V(H)] & G13. If h = 6, then
k = 6 or k = 8. Furthermore, we see that if k = 6 then s =4,¢ =2, 0or s =2, t/ = 4,
and T[V(H)] — 26 =2 G1a. f k=8, then s =2, ¢ =2, and T[V(H)| — 28 = G14. If
h =7, then k = 6, 8 or 10. Furthermore, we see that if k = 6, then s = 2, ' =6, or
s=4,t =4,0or s =6, =2, and T[V(H)] —x¢ = G15 or Gy. If k = 8, then s = 4,
' =2,0ors=2t =4, and T[V(H)] — zg = G15. If k = 10, then s = 2, ¢’ = 2,
and T[V(H)] — z10 = G15 or Gi6. By Lemma 2.2 and Lemma 2.5 (13)—(16), there is
a 4-packing of T in B, 3.

Subcase 2.1.3: We suppose that T has exactly five distinct supernodes. Without
loss of generality, say {1, z;,} C Vb. As T does not contain four strongly independent
endvertices in the same partite, we may assume that ys € Vg, 2, € V4 and a, € V)
or Vi.Let H=Q1UQ2UQ3UQsifa, € Vi,andlet H =Q1UQ2UQ3U Qg — 2
if ap, € Vy. Then |V (H)| = 2h for some h > 6. It is easy to see that each vertex of
T—V(H) is an endvertex of T, for otherwise T' would have four strongly independent
endvertices in the same partite. Clearly, H is a linear forest. If h > 8, the proof is
the same as that in Subcase 2.1.1. Therefore, h =6 or 7. If h = 6, then k = 6, s = 2,
t—1=2,p=2 and T[V(H)] = Gy7. If h =7, then k = 6 or kK = 8. Furthermore,
we see that if k =6, then s =2,t =3, p=3,ors=2,t—1=2,p=4,0r s =2,
t—1=4,p=2,and T[V(H)|—23—a3 = Giror T[V(H)] —z¢ = G13. If k = 8, then
s=2,t—1=2,p=2,and T[V(H)] — 25 = G15. By Lemma 2.2 and Lemma 2.5 (17)
and (18), there is a 4-packing of T in B, 3.

Subcase 2.1.4: We suppose that T has exactly six distinct supernodes. As T
does not contain four strongly independent endvertices in the same partite, we may
assume that {z1,ys, 2¢} C Vo, and {zk, ap, b} C V1. Let H = Q1UQ2UQ3UQ4UQs.
Then |V (H)| = 2h for some h > 8. The proof is the same as that in Subcase 2.1.1.

Subcase 2.2: |U| = 2. Say U = {u,v}. In this case, T has at least four supernodes,
there are two pairwise vertex-disjoint paths Q1 = x122 ..., and Q2 = y1y2 ... Ys
such that zo, xp_1, yo and ys_1 are supernodes of T'. Without loss of generality, say
u = z;, and v = y;, for some iy € {3,4,...,k —2} and jo € {3,4,...,s — 2}. Let
Q3 = z122 ... z; be the path vertex-disjoint from @1 U Q2 such that {z;,21,yj,2:} C
E(T). We divide this case into the following three subcases, see Figure 2.

Subcase 2.2.1: We suppose that T has exactly four distinct supernodes. In this
case, T has at most two another nodes. Set m; = k + s + t. Without loss of
generality, we assume that {z1,zr} C Vp. Let H = Q1 U Q2 if {y1,ys} C V4 and let
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H=0Q1UQs—y ify; € Vo, ys € V1. Then H is a linear forest and |V (H)| = 2h.
Assume for the moment that A > 8, by Lemma 2.3 (1), there is a 4-packing (b, g, , s)
of H in Bs, such that each vertex of H is 4-placed. For even ¢, let Q% = Q3. For
odd ¢, let Q% = Q3— 2 if 21 and z; are not nodes or z1 is a node, let Q5 = Qs —z1 if 2
is a node, and let Q% = Q3 + d if z; and z; are both nodes, where d is an endvertex
which is adjacent to 2. If there is a 4-packing (b1, 91,71, 51) of Q3 in B}y (q;)|43 such
that each vertex of )} is 4-placed, we can see that a 4-packing of T[V(Q1UQ2UQ3)]
in B,,, 13 is obtained from (b U b1,g9 U g1,7 U r1,s U s1) by defining ¢(z;) = 2z for
each ¢ € {b1,g1,71,51} when Q5 = Q3 — 2z or by defining ¢(z1) = z; for each
¢ € {b1,91,71,51} when Q% = Q3 — z1. Furthermore, each node of T is 4-placed
in this packing. Then by Lemma 2.2 the theorem holds. Thus, there is no such
a 4-packing of Q5.

U= Ti, Q3 U=Yjo

) T Txkl ) T |
T T 7 Ys—1

@1
Ys
Q2
Figure 2. |U| = 2. (The larger dots are supernodes.)

Therefore, by Lemma 2.3, we see that ¢ < 9 when z; and z; are not nodes. If
t € {7,9}, by Lemma 2.4 (3), there is a 4-packing (bz, g2,72,52) of Q3 in Biis
such that each vertex of Q3 is 4-placed. If ¢t € {4,6,8}, by Lemma 2.4 (1), there
is a 4-packing (be, g2, 72, s2) of Q3 in Byys such that each vertex of Q3 is 4-placed
except z;. If t = 5, by Lemma 2.4 (2), there is a 4-packing (bs, g2, 72, s2) of Q3
in Byy3 such that each vertex of Q3 is 4-placed except z1 and z;. Then (bUbsy, gUga,
rUrg, s U sg) is a 4-packing of T[V(Q1 U Q2 U Q3)] in By, +3 such that each node
of T is 4-placed. By Lemma 2.2 the theorem holds. Hence, we must have ¢t < 3. Let
wo = x;, if t = 0. Let wg = 21 if t = 1. Let wg = 22 if ¢t € {2,3}. We define or redefine
the values of b(wo), g(wo), r(wo) and s(wp) as: b(wy) = wo, g(we) = w1, r(wy) = wa
and s(wp) = ws. Let b(x) = g(x) = r(z) = s(x) forallz € V(T) -V (Q1UQ2) —{wo}.
Then (b, g,7,s) is a 4-packing of T in By, ;3.

When z; is a node, we see that ¢ < 9 by Lemma 2.3. If ¢t € {1,2,4,6,7,8,9},
we prove the theorem as above. Let QF = Q3 + e when ¢ € {3,5}, where e is an
endvertex which is adjacent to z;. Then by Lemma 2.4 (1), there is a 4-packing
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(b2, g2,72,82) of QF in Bv(qy)|+3 such that each vertex of QY4 is 4-placed except e.
Then (bUba, g U ga,7 UTa,sU s2) is a 4-packing of T[V(Q1 U Q2 U Q3)] in By, 43
such that each node of T' is 4-placed. By Lemma 2.2 the theorem holds.

When z; is a node, the proof is the same as the case when z; is a node.

When z; and z; are both nodes, we see that ¢ < 8 by Lemma 2.3. If ¢t € {1,7},
we prove it as above. Let Q4 = Qs +d+eif t € {2,4,6,8}, and let QY = Q3 +d if
t € {3,5}, where d and e are the endvertices which are adjacent to z; and z1, respec-
tively. Then by Lemma 2.3 (2) and Lemma 2.4 (1), there is a 4-packing (b2, g2, r2, S2)
of Q3 in Bjy(qy)|+3- Furthermore, each vertex of Q3 is 4-placed for ¢ € {2,3,4,5,6}
except d and each vertex of QY is 4-placed for ¢ = 8. Then (bUbq, gUga, 7UTa, sUs2)
is a 4-packing of T[V(Q1 U Q2 U Q3)] in By, +3 so that each node of T is 4-placed.
By Lemma 2.2 the theorem holds.

Now, we conclude that h =5, 6 or 7. Then if A = 5, each of ()1 and @) is a path
of order 5. Thus Q1 = z1x2x374%5 and u = x3. Rename Q2 = zgxrr8T9x19. Thus,
v = xg. As we already assumed z1 € Vj, we have zg € V;. Hence, the order of Q3
must be even. Say t = 2t'. If t/ = 0, i.e., z3xs € E(T), let H = Q1 UQ2+x3x8. Then
H = F} and there is a 4-packing of H in B3 such that each vertex of H is 4-placed
except x19. If ' = 1, say 12 = 21 and w11 = z;. Let H = Q1UQ2UQ3+x3T120+T8T11-
Then H = F,. There is a 4-packing of H in Bj; and each vertex of H is 4-placed.
If¢ = 2, say Q3 = x14x13x12211. Let H = Q1 U Q2 U Q3 + 23214 + w3x11. Then
H = F3. There is a 4-packing of H in Bj7 and each vertex of H is 4-placed. If
t' > 3, rename z1, 22, 23, zi—2, z—1 and 2; as Tig, Ti5, Ti4, T13, T12 and Tq1,
respectively. Let H = Q1 U Q2 + £3x16215T14 + T13T1221128. Then H = Fy. There
is a 4-packing (b, g, 7, s) of H in Bjg such that each vertex of H is 4-placed except 1
and x5. We consider two situations ¢ = 3 and ¢/ > 3. If ¢ = 3, we define or
redefine b(x14) = 214, g(x14) = w1, r(x14) = we and s(z14) = wz. Let c(x) = x
for all z € V(T) — V(H) — {x14} and ¢ € {b,g,r,s}. We can find that (b,g,7,s)
is a 4-packing of T' in Bj,,+3 such that each node of T is 4-placed. Therefore,
we have ¢ > 3, and let Qf = Q3 — 212223 — zt24—12t—2. 1f 3 <t/ < 8, we have
[V(Q3)] € {2,4,6,8}. Then there is a 4-packing (b2, g2,72,52) of Q3 in Bjy(qy)|+3
such that each vertex of QY is 4-placed, and we can give the proof as above. If ¢’ > 8,
by Lemma 2.3, there is a 4-packing (b2, g2, 72, $2) of Q% in By (qy)+3 and each vertex
of QY is 4-placed. Then when t' > 3, (bU ba, g U ga,r U ra, s U s2) is a 4-packing of
TIV(Q1UQ2UQ3)] in By, +3 such that each node of T is 4-placed. By Lemma 2.2
and Lemma 2.6 (1)—(4) the theorem holds.

If h =6 or 7, the proof is the same as that of h = 5.

Subcase 2.2.2: We suppose that T has exactly five distinct supernodes. In this
case, T' has at most one another node. Let Q)4 = a1az...a, be a path vertex-disjoint
from @1 U Q2 U Q3 such that a,_; is a supernode and a, is an endvertex, where a;
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is adjacent to a vertex of Q3 U {u,v}. (If a1 is adjacent to a vertex of Q1 or Q2, we
can deal with the case in the same way.) Without loss of generality, we assume that
vay € E(T). Set ma = k + s+ p +t. We assume that {x1, 21} C Vo, {y1,ys} C V1,
since T' does not have four strongly independent endvertices in the same partite. Let
H=0Q:1UQ2UQsif piseven and let H = Q1 UQ2U Q4 — a, if p is odd. Then H is
a linear forest and |V (H)| = 2h for some h > 6. Assume for the moment that i > 8.
By Lemma 2.3 (1), there is a 4-packing (b, g, 7, s) of H in Bgy, such that each vertex
of H is 4-placed. For even t, let Q% = Q3. For odd ¢, let Q5 = Q3 — 2 if 21 and z; are
not nodes or z; is a node, and let Q4 = Q3 — 21 if 2 is a node. If there is a 4-packing
(b1,91,71,51) of Q3 in Bjy(qy)+3 such that each vertex of Q3 is 4-placed, we can
see that a 4-packing of T[V(Q1 U Q2 U Q35U Q4)] in Byy,+3 is obtained from (bU by,
gUg1,m7Ur1, sUsy) by defining ¢(z;) = 2z for ¢ € {b1, 91,71, 51} when Q5 = Q3 —2; or
by defining ¢(z1) = 21 for each ¢ € {b1,91,71, 51} when Q5 = Q3 — z1. Furthermore,
each node of T is 4-placed in this packing. Then by Lemma 2.2 the theorem holds.
Thus, there is no such a 4-packing of Q4. Therefore, by Lemma 2.3 we see that ¢ < 9.
At most one of z; and z; is a node. The proof is the same as that in Subcase 2.2.1.

We conclude that i = 6 or 7. Then if h = 6, each of @1 and Q)2 is a path of order 5.
Thus, Q1 = 122232425 and v = x3. Rename Qo = xgx7x8ToT10, Q4 = T11X12.
Thus, v = x5. As we already assumed z; € Vj, we have x4 € V7. Hence, the
order of Q3 must be even. Say t = 2t/. If t' = 0, ie., a3xg € E(T), let H =
Q1 UQ2U Q4+ x3x8711- Then H = F5. Therefore, there is a 4-packing of H in Bis
and each vertex of H is 4-placed. If t/ = 1, say 14 = 21 and 213 = 2;. Let H = Q1 U
Q2UQ3UQ4s+ 3114 +2x13082711. Then H = Fy. There is a 4-packing of H in By;7 and
each vertex of H is 4-placed except xg and x12. If t' = 2, say Q3 = T16715T14713. Let
H=0Q1UQUQ3UQs+ 3116+ x1178713. Then H = F;. There is a 4-packing of H
in Byg and each vertex of H is 4-placed. If t’ > 3, rename 21, 22, 23, 2;_2, z;—1 and z
as Tig, 17, L16, 15, 14 and x13, respectively. Let H = Q1UQ2UQ4+ 23218717216+
Z15T14%1328211. Then H = Fg. There is a 4-packing (b, g, 7, s) of H in Bjg and each
vertex of H is 4-placed. We consider two situations ' = 3 and ¢’ > 3. If t’ = 3, define
or redefine b(z15) = x15, g(x15) = w1, r(x15) = we and s(x15) = ws. Let c(z) = =
forall z € V(T) — V(H) — {x15} and ¢ € {b,g,r,s}. We can find that (b, g,r,s) is
a 4-packing of T in By,,+3 such that each node of T is 4-placed. Therefore, we have
t' > 3. Let QF = Q3 — 212223 — z12—121—2. If 3 <t < 8, we can prove that there is
a 4-packing (be, g2,72, 52) of @QF in Bv(qy)|+3 and each vertex of QY is 4-placed as
that in Subcase 2.2.1. If ¢ > 8, by Lemma 2.3, there is a 4-packing (b2, g2, 72, $2) of
Q3 in Bjy(qy))+3 and each vertex of Q3 is 4-placed. Then when ¢’ > 3, (bU b, g U
92,7 Ura, sUss) is a 4-packing of T[V(Q1 UQ2UQ3UQ4)] in Byy,+3 such that each
node of 7' is 4-placed. By Lemma 2.2 and Lemma 2.6 (5)—(8) the theorem holds.

If h =7, we prove the theorem as the case h = 6.

o1



Subcase 2.2.3: We suppose that T has exactly six distinct supernodes. In this case,
there exist two pairwise vertex-disjoint paths Q4 = a1as2...ap and Q5 = biba ... b,
whose vertices are also disjoint from Q1UQ2UQ)3. Furthermore, a,_; and b, are two
supernodes while a; is adjacent to a vertex of Q1 UQ3 and by is adjacent to a vertex
of Q2. Set mg =k + s+ p+q+t. Without loss of generality, say z;, € Vo, y;, € V1.
As T does not have four strongly independent endvertices in the same partite, we
assume that {z1,y1,a,} C Vo and {zk,ys, 04} C Vi. Let H = Q1 UQ2U Q41U Q5
if mg —¢is even, and let H = Q1 U Q2 U Qs U Q5 — by if mz — ¢ is odd. Then H
is a linear forest and |V (H)| = 2h for some h > 8. By Lemma 2.3 (1), there is
a 4-packing (b, g, 7, s) of H in By, such that each vertex of H is 4-placed. If ¢ is even,
let Q5 = Q3. If t is odd, let Q5 = Q3 — z;. If there is a 4-packing (b1, g1,71, $1) of Q%
in By (qgy)|+3 such that each vertex of Q% is 4-placed, we can see that a 4-packing of
TV(Q1UQRQ2UQ3UQ4UQ5)] in Byy,y,t3 is obtained from (bUby,gUg1,rUry, sUsq)
by defining ¢(z¢) = 2z for ¢ € {b1, 91,71, $1} when t is odd. Furthermore, each node
of T is 4-placed in this packing. Then by Lemma 2.2 the theorem holds. Thus, there
is no such a 4-packing of Q5. Therefore, by Lemma 2.3, we see that ¢t < 9. Then we
can give the proof as that in Subcase 2.2.1 when z; and z; are not nodes. Thus, we
can find a 4-packing of T[V(Q1 UQ2UQ3UQ4UQ5)] in B,y such that each node
of T is 4-placed. By Lemma 2.2 the theorem holds.

U = Ty, Q4 U2 = Yjo QS U3 = 2r,
........... [} Oevsessonsns

)T@al @, /\ A

Z2 Thk—1 Y2

x1 T 28 Ys—1 22 Zt—1
Q1

Ys 21 Zt
Q2 Q3

Figure 3. |U| = 3. (The larger dots are supernodes.)

Case 2.3: |U| = 3. Say U = {u1,uz,us}. In this case, T has exactly six distinct su-
pernodes. There exist three vertex-disjoint paths Q1 = z1x2 ... 2k, Q2 = Y1y2 .. . Ys
and Q3 = z122...2 in T such that x1, xx, y1, ¥s, 21 and z are six endvertices
while z2, Tx_1, Y2, Ys—1, 22 and z;_1 are six distinct supernodes. Furthermore,
u1 = x;, for some iy € {3,4,...,k — 2}, us = y;, for some jo € {3,4,...,s5 — 2},
and uz = z,, for some r¢ € {3,4,...,t —2}. Let Q4 = a1a2...a, be a path vertex-
disjoint from Q1 UQ2UQ3 such that {z; a1, yj,ap} € E(T'). Thus, there exists a path
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Q5 = b1by . .. by vertex-disjoint from Q1 UQ2UQ3UQ4 such that b; is adjacent to a ver-
tex of Q1UQ2UQ4 and byz,, € E(T), see Figure 3. Let H = Q1 UQ2UQ3UQ4UQs.
We can see that every vertex of T'— H is an endvertex of T. And T does not have other
nodes besides the six supernodes, for otherwise T' would have four strongly indepen-
dent endvertices in the same partite. Let H; = Q1 UQ2UQs3. Set m = k+s+t. AsT
does not contain four strongly independent endvertices in the same partite, without
loss of generality, we assume that {x1,zr,y1} C Vo and {ys,21,2:} C V4. Thus,
|V (Hy)| = 2h for some h > 8. By Lemma 2.3 (1), there is a 4-packing (b, g,, s) of
Hy in Bsj, such that each vertex of Hy is 4-placed. Let Ho = Q4 UQs5. Set I = p+gq.
We can find that there is a 4-packing (b1, 91,71, $1) of T[V(H3)] in B;43 by Case 1 and
Subcase 2.1.1. We can see that (bUby, gUgy,7Ury, sUsy) is a 4-packing of T'[V (H)]
in Bpy4i43. Furthermore, each node of T[V(H)] is 4-placed in this 4-packing. Then
by Lemma 2.2, the theorem holds. This completes the proof of the theorem. (Il

In this theorem, n + 3 cannot be further reduced. A simple example is a star.
Another example is a tree such that it is obtained from two vertex-disjoint stars by
connecting two centers of them with a path of length 2.

We can see there are more cases in the proof of the conjecture (see [7]) when k = 4.
Another purpose of this article is to improve the state of knowledge approaching the
conjecture by determining the case k = 4.

4. ApPENDIX (I): THE PROOF OF LEMMA 2.5

For each case, we define the required 4-packing (b, g,r, s) with b as identity em-
bedding as follows.
To prove (1), let

> g(G1) = v124@9x22726 U Tox19711 With g(x1) = 21 and g(x7) = 11,
> r(G1) = x9rsr11T6T3x10 U X11 2427 With 7(x1) = xg and r(x7) = z7,
> $(G1) = x7x10T5T8T126 U X522211 With s(x1) = z7 and s(z7) = 211.
To prove (2), let
> g(G2) = rsr10T126292T2211 U 12427 With g(x1) = 5 and g(xg) = z7,
> 1r(G2) = X1128T5T2T7 1023 U T5L12T9 With (1) = x11 and r(xg) = z9,
> $(G2) = x9x4211T1201827 U 2110623 With s(x1) = z9 and s(zg) = x3.
To prove (3), let
> 9(G3) = 721401306211 U 21304290 12050821 With g(x1) = x7 and g(x11) = 1,
> ’I“(G3) — X3T8XL11L12713 U T11X14T1X4X7T2X5 With ’I“(J?l) = I3 and ’I“(J?H) = Ts,
> S(G3) = T5XeL9L14X3 U L9Xox13X10L1X12T7 with 8(331) = XI5 and 5(1)11) = X7.
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To prove (4), let

> g(G4) = T326T9T12213T14%1 U Tox2211 2427 With g(x1) = 23 and g(z11) = z7,

> r(G4) = T5T10213T2T728T11 U T13T6x1T1223 with r(x1) = x5 and r(z11) = w3,

> S(G4) = T11714X7T10X1T4X9 U L7L12T5X8T13 with 5(1)1) =711 and 5(1)11) = T13-
To prove (5), let

> g(G5) = x3x8211014015UT11T16 1321021 LaL7L2Te With g(x1) = x5 and g(z13) = x,
> r(Gs) = T5xToT1201 UTgT14T3T16T15L8T1324211 With r(x1) = x5 and r(x13) = 211,
> $(G5) = Tox1625T1023 UT5T12215T2211 TeT1 21427 With s(x1) = xg and s(x13) = z7.
To prove (6), let

> g(Ge) = T3T6T9212015T1621 UT9Z2x11 0142130407 With g(x1) = x3 and g(x13) =27,
> T(GG) = T5L8XL11LL1X14T9 U$111‘16$3J)121)7$2$15 with 7“(])1) = X5 and 7“(1)13) =T15,
> S(GG) = T9T16XL7LIXL13L2Xs U$7$101)1$4J)15$14$3 with 5(1)1) = X9 and 5(1)13) = X3.
To prove (7), let

> g(G7) = 326092 1201501621 04011 UT15Z2 0721405 With (1) = 23 and g(213) = 5,
> T(G7) = x9x16x11x14x3x10x13x8x5Ufcgfclgxlfcﬁxlg, With r(:cl) =9 and T(xlg) =15,
> S(G7) = T7X12X5T2X9L14X15T10L1 ngl‘4$131)16l‘3 with 5(1)1) =7 and 8(1313) =XI3.
To prove (8), let

> g(Gs) = z3xgr1w9x5 U 121027 With g(z1) = 3 and g(x7) = a7,

> r(Gs) = x1T6T5T10T3 U x52227 with r(x1) = z1 and r(x7) = 27,

> s(Gs) = x3wox7asrs Uxrraxy With s(zq) = x5 and s(z7) = 1.

To prove (9), let

9(Go) = T326T9T12T15T16217T18T5T14T121007 U ToTax13 With g(z1) = z3 and
r Gg) = T5X10X15XL2X7L14X3L16L11L4T9X18T1 U 15617 with 7“(131) = XI5 and

Go) = ZoZ14T17T10T3T18T11T6T13L16L5L8L15 U T1721207 with s(z1) = x9 and
T13) = T15.
To prove (10), let

9(G1o0) = x3T6T9T12T15T16L17T18T1 2407 U ToT1425210T13 With g(x1) = 3 and
g(x15) = 213,
T(Glo) = T5X8TL11X14X17X2X9L4X13L16T3 U T11XL15L18L7 with 7“(131) = XI5 and
(x15) =7,
G10) = T7T12T17T6T13T18T3T10L15T2T5 U T17L8T1T16%Ty with s(zq1) = x7 and

s(
s(

1315) = X9.

54



To prove (11), let

9(G11) = 211T429T6213T10T121403 U T13022170421 71825 With g(z1) = 211 and
Gll) = T5X8L1X16XL17L18XL9T2X11 U T17X12X3XL10X7T4X13 With 7“(131) = XI5 and

G11) = ToT16T11T14T15T2T521221 U T15T8X13T18T3L6T17 with s(z1) = x9 and

Gi2) = T3T6ToT12T15T16T17L18%5 U ToT14T1T102724213 With g(z1) = 23 and

T15) = T13,
Glg) = T5X8L15X2X7X14X3L16L11 U L15X4X9X18L1XgL 17 With r(xl) = I5 and

Glg) = X7X12T17X8L3XL18L11TLL13 U L17X2Tx5X16L9L10T5 With 5(1)1) = X7 and
1315) = T5.

To prove (13), let

> g(Glg) = X3TeXL7L10XL11TL12 U L1X4T7X13T9 With 9(131) = I3 and g(l‘7) = Zg,

> T(Glg) = T5T12X9TIAL1X13 U L1XeT9X2T11 with 7“(131) =I5 and 7“(137) =11,

> S(Glg) = T3T13X5T2XL7XL12 U T11X8T5T10X1 with 5(1)1) = I3 and 5(1)7) =2X.

To prove (14), let

> g(G14) = X3TeX9L10L13X14T1 U T7X12X9X2T5 With g(l‘l) = I3 and 9(1‘11) =x7,

> ’I“(GM) = T5TX8L11L12X1XL4T9 U T13X2L11X14T7 with 7“(])1) = T5 and 7“(1)11) = 13,
> S(GM) = L1124X13T8XL7L10L5 U T1XeL13T12X3 With 8(131) = T11 and 8(1311) =2x.
To prove (15), let

> 9(G15) = 132629212011 214015UT5 T2 29 T162104213 With g(210) =3 and g(z13) =5,
> ’I“(G15) = J)5J)g$11$161)3$10$13U1)1$61)111‘21‘151)121)7 With 7“(])1) =5 and ’I“(xlg) =7,
> S(G15)21‘71‘161)151)61)131)8$1U$111‘4$15$1QJ)5$14$3 with 5(1)1)2137 and 5(1)13)21311.
To prove (16), let

> g(Glg) = X3TeX9L10L13X14T15L16L1 Ul‘7$21‘91‘121)5 With g(l‘l) =3 and g(l‘13) =2x7,
> T(Glg) = T15X8L11X14X1X10X5T2T13 U L9L4T11X16T7 with 7“(])1) = X15 and
7(13) = @9,

S(Glg) = 1‘9131613131361‘11$12$7$14$5U$3J)8$13$4$15 With 8(131) =9 and 8(3313) =XIs3.
To prove (17), let

> g(G17) = $3l‘6$g$12$13$8U$5J)15J)91)14J)1Ul‘9$4l‘7 with g(l‘l) = X3 and g(l‘7) = Ts5,
> ’I“(G17) = X5TRL11X14T7X10 U T9XoT11X4T13 U T11X15T1 with T(l‘l) = X5 and

r(z7) = g,
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> S(G17) = T7T15T13L10T1T12 U T11T6X13T2T5 U £13T1423 With S((El) = x7 and
s(z7) = z11.

To prove (18), let

> g(Gis) = T3xexoT12X15T16%13 U T5X14Tex427 U Tox10x1 with g(z1) = z3 and
g(713) = z1,

> T(Glg) = XT7T8X11X14X1X12T5 U I3L16L11LeL13 U T11X2%15 With 7“(131) = X7 and

r(213) = 215,

S(Glg) = T13214X15T10L7T2X9 U T1TeL15T8L5 U T15T4T11 with 8(131) = 213 and

s(

1313) = T11-

5. APPENDIX (II): THE PROOF OF LEMMA 2.6

For each case, we define the required 4-packing (b, g, r, s) with b as identity em-
bedding as follows.
To prove (1), let

> g(F1) = xsx8x132 1027 U T12211T62124 U T13%6,
> 7(F1) = 211242722013 U £801 21223710 U 27212,
> S(Fl) = T13T12X9T6IT3 U T10X5T2X11T8 U T9X9.
To prove (2), let
> g(Fh) = 2328012710713 U 2429 T6T1522 U 12142116,
> 7(Fy) = 2701225214203 U T2211 24213812 U L5282 1524,
> s(Fy) = 921421501221 U 28213%205T6 U T15T1027L2.
To prove (3), let
> g(F3) = x3w609212215 U 8213016211014 U T9L2T17210T5T 16,
> T(F3) = T5T8215%162X17 U T1021122T13%4 U T15X6L1214T7 T2,
> s(F3) = 270421706011 U T12T5214015T2 U T172823L16T9T 14
To prove (4), let
> g(Fy) = x1308T5216%9 U T12215T1023%14 U T5L6L124 U T10T7T2211,
> 7(Fy) = 210162110673 U 24090221508 U 1121407212 U T2213210T5,
> s(Fy) = z11210T1 2823 U T14213T4T7%16 U 12120522 U T4T15T6 L.
To prove (5), let
> g(F5) = 237122906213 U 24012140528 U L9 L1427 10,
> 7(F5) = o5T102130871 U L2011 2427012 U 2130415214,

> s(F5) = T1126T1210T3 U T8T15212213014 U 121225 T 2.

56



To prove (6), let
> g(Fg) = 23x6Zox12Z15 U 21321021214 U T9ZaL17T10T5L 16,
> 7(F) = wsxst15T2017 U 214211 24213%12 U T15T621 2427210,
> s(Fg) = T7214T17T62T11 U T2ZoZ16T15T4 U T1728T3T16T1T12-
To prove (7), let
> g(F7) = T3T6T9T12T13 U TgT15T18T17T2 U T9T14T1T10T19T18X7L4,
> T(F7) = T528T17216T11 U T4X9T2T7214 U T17T6T19T12L15T2L13%10,
> s(F7) = ox18T11T6T15 U T12217Z4Z13%16 U T11T10L3L8L1 L4 L19L2.
To prove (8), let
> g(F3) = x3x6x9r12%13 U T8T15T18T1 %16 U T1704L11L18T5L10 U ToToZ7T14,
> 1r(Fg) = wsxsri7rerin U X121 21023218 U T13T2T15T10L7%16 U T17814T9T4,
> s(Fg) = 17210T13%18%9 U Z2Z11T16T5T14 U T721223%16L15T6 U T13T4T1T8.
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