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Rings whose nonsingular right modules are R-projective
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Abstract. A rightR-module M is calledR-projective provided that it is projective
relative to the right R-module RR. This paper deals with the rings whose all
nonsingular right modules are R-projective. For a right nonsingular ring R, we
prove that RR is of finite Goldie rank and all nonsingular right R-modules are
R-projective if and only if R is right finitely Σ-CS and flat right R-modules
are R-projective. Then, R-projectivity of the class of nonsingular injective right
modules is also considered. Over right nonsingular rings of finite right Goldie
rank, it is shown that R-projectivity of nonsingular injective right modules is
equivalent to R-projectivity of the injective hull E(RR). In this case, the injective
hull E(RR) has the decomposition E(RR) = UR⊕VR, where U is projective and
Hom(V,R/I) = 0 for each right ideal I of R. Finally, we focus on the right
orthogonal class N⊥ of the class N of nonsingular right modules.
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1. Introduction and preliminaries

In this paper, R stands for an associative ring with identity. As usual, we

denote by Mod-R the category of all right R-modules. For a right module M ,

E(M), Z(M) and Rad(M) denote the injective hull, singular submodule and

Jacobson radical of M , respectively. The notation K ≪ M means that K is

a small submodule of M in the sense that K +L 6=M for any proper submodule

L of M . Moreover, N EM is used for denoting an essential submodule of M and

this means that N ∩ S 6= 0 for any nonzero submodule S of M .

Baer’s Criterion for injectivity asserts that a right R-module M is injective

if and only if each homomorphism from any right ideal I of R into M extends

to R. Dually, a right R-module M is called R-projective provided that each

homomorphism f : M → R/I, where I is any right ideal, factors through the

canonical projection π : R → R/I. However, R-projective modules need not be

projective. In [14], C. Faith asked when R-projectivity implies projectivity for all

right R-modules. This problem has been considered by several authors, see [25],

[18], [21], [8], [2], [31], [32].
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Characterizing rings by projectivity of some classes of their modules is a clas-

sical problem in ring and module theory. A result of Bass, see [5, Theorem 28.4],

states that a ring R is right perfect if and only if each flat right R-module is

projective. Also, a ring R is QF if and only if each injective right R-module is

projective [14, Theorem 24.20]. On the other hand, K.R. Goodearl proved the

following remarkable theorem which is an inspiration source for our result, see

Theorem 3.5.

Theorem 1.1 ([17, Theorem 5.21]). If R is a right nonsingular ring, then the

following conditions are equivalent:

(1) All nonsingular right R-modules are projective.

(2) Ring R is right perfect, left semihereditary and E(RR) is flat.

Recently, the notion of R-projectivity and rings characterized by R-projectivity

of some classes of their modules were considered in [4], [3], [1]. The rings whose

flat right R-modules are R-projective were characterized in [3], [4] and these rings

are termed as right A-perfect, and the rings whose injective right R-modules are

R-projective were characterized in [1].

At this point, it is natural to ask “What are the rings over which each nonsin-

gular right R-module is R-projective?”

The main purpose of this paper is to derive necessary and sufficient conditions

on a right nonsingular ring R under which all nonsingular right R-modules are

R-projective and to describe the structure of such rings.

The paper is organized as follows.

Along the way, in Section 2, some properties of nonsingular right modules are

investigated. We first recall the following result due to D. R. Turnidge, see [33,

Theorem 2.1].

Theorem 1.2 ([17, Proposition 5.16]). Let R be a right nonsingular ring. Then,

all nonsingular right R-modules are flat if and only if R is left semihereditary and

E(RR) is flat.

Related to the above result, in Section 2, we obtain that every flat right R-

module is nonsingular if and only if R is right nonsingular and pure submodules

of free right R-modules are closed. Over a right nonsingular ring R, we prove that

pure submodules of nonsingular right R-modules are closed if and only if RR is

of finite Goldie rank. We also show that every flat right R-module is nonsingular

over a right semihereditary semiperfect ring, over a right nonsingular right perfect

ring, over a right semihereditary right A-perfect ring, and over a right nonsingular

ring of finite right Goldie rank.

In Section 3, we call a ring R right NR in case all nonsingular right R-

modules are R-projective. We show that for a right nonsingular right NR ring,
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all nonsingular right modules are flat. If R is of finite right Goldie rank and right

nonsingular, then every right NR-ring is right A-perfect. We prove that a right

nonsingular ring R is of finite right Goldie rank and right NR if and only if R

is semihereditary, right A-perfect, right CS and E(RR) is flat if and only if R

is right finitely Σ-CS and right A-perfect, see Theorem 3.5. As a consequence,

we obtain that if R is a semiprime right and left Goldie ring, then R is a right

NR-ring if and only if R is semihereditary and right A-perfect. For a right

nonsingular ring R of finite right Goldie rank, we prove that every nonsingular

injective right R-module is R-projective if and only if E(RR) is R-projective if

and only if E(RR) = UR ⊕ VR where U is projective and Hom(V,R/I) = 0 for

each cyclic right R-module R/I. In particular, over a right nonsingular right

Noetherian ring, nonsingular injective right R-modules are R-projective if and

only if E(RR) = UR ⊕ VR, where U is projective and Rad(V ) = V .

In Section 4, nonsingular covers will be considered. Let N be the class of

all nonsingular right R-modules. Following E.E. Enochs and O.M.G. Jenda,

see [12], an N -precover (or a nonsingular precover) of a right R-module M is

a homomorphism ϕ : N → M with N ∈ N such that for any homomorphism

ψ : N ′ → M with N ′ ∈ N , there exists λ : N ′ → N such that ϕλ = ψ. An

N -precover ϕ : N → M is said to be an N -cover (or a nonsingular cover) if

every endomorphism λ of N with ϕλ = ϕ is an isomorphism. Works on the

torsion-free covers date back to 1960s and some of the results about the existence

of torsion-free covers for abstract torsion theories were given in [29], [16], [30]. As

a particular corollary, M. L. Teply in [29] proved that nonsingular covers exist for

all right modules over a right nonsingular ring of finite right Goldie rank. This

result was further discussed and a sort of converse of this result was given in [7].

Then, in 2003, L. Bican extended the aforementioned result for Goldie’s torsion

theory. More precisely, in [6, Thoerem 2], among the other things, L. Bican proved

the following noticable theorem.

Theorem 1.3 ([6, Theorem 2]). Let (T ,F) be Goldie’s torsion theory. The

following conditions are equivalent:

(1) F is a covering class.

(2) (T ,F) is of finite type.

If moreover, the ring R is right nonsingular, then these conditions are equivalent

to the following condition:

(3) Every nonzero right ideal of R contains a finitely generated essential right

ideal.

Since the classN contains the class of projective modules over a right nonsingu-

lar ring, every right module has an epic nonsingular cover over a right nonsingular
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ring of finite right Goldie rank. We will denote by

N⊥ = {X ∈ Mod−R : Ext1R(N,X) = 0 for all N ∈ N}

the right orthogonal class of the class N of nonsingular right modules. In Sec-

tion 4, several properties of the class N⊥ of right modules are obtained. Particu-

larly, we obtain that a right nonsingular ring R having finite right Goldie rank is

right NR if and only if nonsingular covers of finitely generated right R-modules

are (finitely generated) projective. In the same section, we also need the following

fact of [20] which is needed for the deduction of Lemma 4.4.

Theorem 1.4 ([20, Theorem 3.4]). If a class F contains the ground ring R

and is closed under extensions, direct sums, pure submodules, and pure quotient

modules, then F is covering and F⊥ is enveloping.

2. Nonsingular modules

Recall that the singular submodule Z(M) of a right R-module M is the set of

elements m ∈M such that mI = 0 for some essential right ideal I of R. A right

module M is called singular if Z(M) = M , and nonsingular if Z(M) = 0.

Thus, R is called a right nonsingular ring if Z(RR) = 0. Moreover, for any right

module M , the submodule Z2(M) is defined by Z2(M)/Z(M) = Z(M/Z(M)).

We begin with the following lemma that we use frequently in this paper.

Lemma 2.1 ([26, Lemma 2.3]). Let N be a submodule of a right module M .

(1) If Z(M/N) = 0, then N is closed in M .

(2) If N is closed in M and Z(M) = 0, then Z(M/N) = 0.

A right R-module M is said to be of finite Goldie rank provided that M con-

tains no infinite independent families of nonzero submodules. For example, all

Noetherian modules are of finite Goldie rank. A ring R is said to be of finite

right Goldie rank if the right R-module RR is of finite Goldie rank, equivalently,

every right ideal has a finitely generated essential submodule, see [17, Propo-

sition 3.13 (a)]. Next, we recall the notion of torsion theories. A torsion the-

ory (T ,F) for the category Mod-R consists of two classes of right R-modules T

and F satisfying the properties T = {M ∈ Mod-R : Hom(M,F ) = 0 for every

F ∈ F} and F = {M ∈ Mod-R : Hom(T,M) = 0 for every T ∈ T }. If we take

the classes T = {M ∈ Mod-R : Z(M) E M} = {M ∈ Mod-R : Z2(M) = M}

and F = {M ∈ Mod-R : Z(M) = 0}, then the pair (T ,F) becomes the torsion

theory known as Goldie’s torsion theory, we refer the reader to [28, page 139

and page 148]. It should be pointed out that in Goldie’s torsion theory when

Z(RR) = 0, the class T will be exactly the class of singular modules. Finally,
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a torsion theory (T ,F) is said to be of finite type if each right ideal I for which

R/I is in T contains a finitely generated right ideal J for which R/J is in T , see

[6, page 396], and said to be hereditary if the class T is closed under submodules,

see [28, page 141]).

In [11], it was proved that a ring R is right Noetherian if and only if pure

submodules of right R-modules are closed. Considering only nonsingular right

modules we have the following corresponding result over right nonsingular rings.

Proposition 2.2. Let R be a right nonsingular ring. Then, the following are

equivalent:

(1) RR is of finite Goldie rank.

(2) Pure submodules of nonsingular right R-modules are closed.

Proof: (1) ⇒ (2) Let A be a pure submodule of a nonsingular rightR-moduleM .

Suppose for the contrary that A is not closed in M . In that case, there exists

a proper essential extension B of A in M . For b ∈ B \A, if we set K = A+ bR,

thenK/A becomes singular by [17, Proposition 1.20 (b)]. Moreover,K/A is cyclic

and so K/A ∼= R/I for some right ideal I of R. The right ideal I is essential in R

by [17, Proposition 1.21]. Additionally, there exists a finitely generated essential

submodule I ′ of I with the help of finiteness condition on RR. Now, consider the

following diagram:

0 //A
pure

//K
π

//R/I //0

R/I ′

f 6=0

OO

g

aa❈

❈

❈

❈

❈

where f is just the projection of R/I ′ modulo I/I ′. By the fact that R/I ′ is

finitely presented, we have πg = f for some g : R/I ′ → K. However, using

I ′ E R, we obtain that g(Z(R/I ′)) = g(R/I ′) ≤ Z(K) = 0, that is, g = 0 which

is a contradiction.

(2) ⇒ (1) Take a family {Eγ}γ∈Γ of nonsingular injective right modules. Be-

cause
⊕

Eγ is pure in
∏

Eγ , by the assumption it is closed. Considering [17,

Corollary 1.9], we see that
⊕

Eγ is injective. Consequently, [17, Theorem 3.17]

yields that RR is of finite Goldie rank. �

Before proving Corollary 2.4, we state the following lemma of [20].

Lemma 2.3 ([20, Lemma 4.7 (iii)]). Let (T ,F) be a torsion theory. If (T ,F) is

hereditary and of finite type, then F is closed under pure submodules and pure

quotient modules.
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Corollary 2.4. The following are equivalent for a right nonsingular ring R:

(1) RR is of finite Goldie rank.

(2) Pure submodules of nonsingular right R-modules are closed.

(3) The torsion theory (S,N ) is of finite type, where S is the class of all

singular right R-modules and N is the class of all nonsingular right R-

modules.

(4) Nonsingular right R-modules are closed under pure quotients.

Proof: (1) ⇔ (2) is shown in Proposition 2.2. (1) ⇔ (3) is proved in Theo-

rem 1.3. (3) ⇒ (4) follows from Lemma 2.3 and (4) ⇒ (2) can be easily seen from

Lemma 2.1 (1). �

Proposition 2.5. Every flat right R-module is nonsingular if and only if R is

right nonsingular and pure submodules of free right R-modules are closed.

Proof: We immediately obtain that Z(RR) = 0 since RR is flat. Now, let K

be a pure submodule of a free right R-module F . Then, F/K is a flat right

R-module by [22, Corollary 4.86 (1)]. By the assumption, F/K is nonsingular

and Lemma 2.1 (1) implies that K is closed in F . Conversely, let M be a flat

right R-module and consider the short exact sequence 0 → K →֒ F → M → 0

where F is a free right R-module. As M is flat, K is a pure submodule of F by

[22, Corollary 4.86 (1)]. Hence, K is closed in F and so F/K ∼=M is nonsingular

by Lemma 2.1 (2). �

Following [4], a ring R is called right almost-perfect (A-perfect, for short) if

every flat right R-module is R-projective. These are exactly the rings over which

flat covers of finitely generated right modules are projective. It was shown in [4]

that, rightA-perfect rings lies properly between right perfect rings and semiperfect

rings.

In the following proposition, we give some examples of rings whose flat right

modules are nonsingular.

Proposition 2.6. Over the following rings R, all flat right R-modules are non-

singular.

(1) R is right nonsingular ring of finite right Goldie rank.

(2) R is right semihereditary and semiperfect.

(3) R is right nonsingular and right perfect.

(4) R is right semihereditary and right A-perfect.

Proof: (1) This holds by [17, page 139, Exercise 12]. We include the proof for

completeness. LetM be a flat rightR-module and f : F →M be an epimorphism

where F is a free rightR-module. By the assumption and Corollary 2.4, we obtain

that M ∼= F/ ker(f) is nonsingular.
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(2) LetM be a flat right R-module. We show that every finitely generated sub-

module K ofM is nonsingular which implies thatM is nonsingular. For a finitely

generated submodule K ofM , we have that K is flat by [22, Theorem 4.67]. Then

K is projective by the semiperfect assumption, see [22, page 161, Exercise 21],

and so nonsingular as desired.

(3) It can be obtained from the fact that flat right modules are projective over

right perfect rings.

(4) This follows from (2). �

3. NR-rings

The right nonsingular rings whose nonsingular right modules are projective

were characterized in Theorem 1.1. These are exactly the right perfect, left semi-

hereditary rings with E(RR) being flat. On the other hand, the rings whose

flat right and injective right modules are R-projective were characterized in [4]

and [1], respectively. Motivated by the aforementioned rings, in this section, we

investigate the rings whose nonsingular right modules are R-projective.

Definition 3.1. A ring R is called right NR if every nonsingular right R-module

is R-projective. Left NR-rings are defined similarly.

Clearly, the rings whose nonsingular right modules are projective are right NR.

We shall see in Example 3.10 that the converse is not true in general.

Proposition 3.2. Let R be a right NR-ring having finite right Goldie rank with

Z(RR) = 0 and M be a nonsingular right R-module with Rad(M) ≪ M . Then,

M is projective.

Proof: Since R is of finite right Goldie rank and right nonsingular, flat right

R-modules are nonsingular by Proposition 2.6. Then, R becomes right A-perfect

as R is right NR. Thus, R is semiperfect by [4] and so [21, Theorem 1] yields

that every right nonsingular R-module with small radical is projective. �

The next result indicates that being NR-ring is preserved by Morita equiva-

lence.

Proposition 3.3. Let R and S be Morita equivalent rings. Then, R is a right

NR-ring if and only if S is a right NR-ring.

Proof: A right R-module M is R-projective if and only if M is N -projective

for any finitely generated projective right R-module N , see [5, Proposition 16.12].

Now, by [22, page 501, Exercise 2], being nonsingular is a categorical property.
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Moreover, by [5, Proposition 21.6 and Proposition 21.8] projectivity, relative pro-

jectivity and being finitely generated are preserved by Morita equivalence, hence

the proof is clear. �

A right R-module M is called CS if every closed submodule of M is a direct

summand of M and a ring R is called right CS if RR is CS. A ring R is called

right Σ-CS (right finitely Σ-CS) if every (finite) direct sum of copies of RR is CS

(the reader might consult [10]).

Proposition 3.4. Let R be a right NR-ring. Then the following hold:

(1) Finitely generated nonsingular right R-modules are projective.

(2) All nonsingular right R-modules are flat.

Moreover, if R is right nonsingular, then

(3) R is right finitely Σ-CS,

(4) R is right and left semihereditary.

Proof: (1) Assembling the right NR-ring assumption and [2, Lemma 2.1] which

states that finitely generated R-projective right R-modules are projective, we are

done.

(2) Let M be a nonsingular right R-module and N be a finitely generated

submodule of M . Since N is nonsingular, it is projective by (1). We conclude

that M is flat by the fact that every module is a direct limit of its finitely

generated submodules and the direct limit of projective modules is flat.

(3) Let K be a closed submodule of R(n). Then, R(n)/K is nonsingular by

Lemma 2.1 (2), and so projective by (1). Therefore, the sequence 0 → K →

R(n) → R(n)/K → 0 splits, i.e., K is a direct summand of R(n) which in turn

yields that R is right finitely Σ-CS.

(4) This follows from (3) and [10, Chapter 4, 12.17]. �

Now, we are ready to give a characterization of right NR-rings.

Theorem 3.5. Let R be a right nonsingular ring. The following statements are

equivalent:

(1) R is a right NR-ring and RR is of finite Goldie rank.

(2) R is semihereditary, right A-perfect, right CS and E(RR) is flat.

(3) R is right finitely Σ-CS and right A-perfect.

If any of these statements is satisfied, then the classes of all flat rightR-modules

and all nonsingular right R-modules coincide.

Proof: (1) ⇒ (2) By Proposition 2.6, we have that all flat right R-modules

are nonsingular. Therefore, all flat right R-modules become R-projective by the
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right NR-ring assumption and so R is right A-perfect. In addition, by Proposi-

tion 3.4 (4) R is both right and left semihereditary, and by Proposition 3.4 (2)

E(RR) is flat. To show that R is right CS, let I be a closed right ideal of R. By

Lemma 2.1 (2) R/I is nonsingular. Then, R/I is projective by Proposition 3.4 (1)

which implies that I is a direct summand of R. Therefore, R is right CS.

(2) ⇒ (1) Let M be a nonsingular right R-module. The assumptions E(RR)

is flat and R is left semihereditary imply that M is flat by Theorem 1.2. As R

is right A-perfect, we see that M is R-projective, that is, R is a right NR-ring.

Since every right A-perfect ring is semiperfect, there exist orthogonal idempotents

e1, . . . , en in R such that RR = e1R⊕ · · · ⊕ enR and each eiR is an indecompos-

able right R-module, see [23, Theorem 23.6]. From this, by applying the same

arguments as in [9, Theorem 3.1], we conclude that R is of finite right Goldie

rank.

(1) ⇒ (3) By Proposition 3.4 (3), R is right finitely Σ-CS. Moreover, since

flat right R-modules are nonsingular, see Proposition 2.6, we obtain that all flat

right R-modules are R-projective, that is, R is right A-perfect.

(3) ⇒ (1) Note that over right finitely Σ-CS rings, finitely generated nonsin-

gular right R-modules are projective, see [10, Corollary 11.4]. By this fact, we

obtain that nonsingular right R-modules are flat. Now, by the A-perfectness as-

sumption, we have that R is right NR. For the remaining part, recall that right

finitely Σ-CS rings are also right CS. Therefore, combining with being A-perfect,

as in the proof of (2) ⇒ (1), we conclude that R is of finite right Goldie rank.

Now, for the last statement, suppose one of these conditions holds. Then, that

nonsingular right R-modules are flat follows from Theorem 1.2 and the converse

holds by Proposition 2.6. �

Remark 3.6. For the sake of simplicity, call a ring R right G-ring if all nonsingu-

lar right R-modules are flat. Clearly, if R is any right G-ring which is also right

A-perfect, then R is a right NR-ring. By Theorem 3.5, the converse implication

holds in the case when R is right nonsingular and of finite right Goldie rank.

In other words, the NR-property of the ring in that particular case is just the

conjunction of two known properties: of being a G-ring, and of being A-perfect.

As a consequence of Theorem 3.5, we have the following corollaries.

Corollary 3.7. Let R be a right nonsingular ring. If R is a right A-perfect left

semihereditary ring with E(RR) being flat, then R is a right NR-ring.

The fact that E(RR) is flat over semiprime right and left Goldie rings, see [17,

page 85, Exercise 23 and Corollary 3.32], together with [10, Corollary 12.18] give

rise to the following corollary.
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Corollary 3.8. Let R be a semiprime right and left Goldie ring. Then, the

following statements are equivalent:

(1) R is a right NR-ring.

(2) R is semihereditary and right A-perfect.

(3) R is finitely Σ-CS and right A-perfect.

Semihereditary commutative local domains are valuation domains. Since A-

perfect rings are semiperfect, and semiperfect domains are local, we have the

following corollary.

Corollary 3.9. Let R be a commutative domain. Then, the following statements

are equivalent:

(1) R is NR.

(2) R is an A-perfect valuation domain.

By the following example, we show that there are right NR-rings which are

not right perfect.

Example 3.10. Let F be a field and R = F [[x]] be the ring of formal power

series in one indeterminate x. Then, R is a valuation domain and also, R is an

A-perfect ring which is not perfect by [4, Example 3.11]. Thus, R is an NR-ring

by Corollary 3.9.

In [1], the authors studied the rings whose injective right modules are R-

projective. In the following proposition, we characterize when every nonsingular

injective right R-module is R-projective over a right nonsingular ring of finite

right Goldie rank.

Proposition 3.11. Let R be a right nonsingular ring having finite right Goldie

rank. Then, the following statements are equivalent:

(1) Every nonsingular injective right R-module is R-projective.

(2) E(RR) is R-projective.

(3) E(RR) = UR ⊕ VR, where U is projective and Hom(V,R/I) = 0 for each

right ideal I of R.

Proof: (1) ⇒ (2) It is clear since E(RR) is nonsingular and injective.

(2) ⇒ (1) Let M be a nonsingular injective right R-module. Then, by [17,

page 84, Exercise 5],M can be written as a direct sum of indecomposable injective

right R-modules Nγ , i.e., M =
⊕

γ∈ΓNγ . Now, let Kγ be a nonzero cyclic

submodule of Nγ . Since Kγ ’s are nonsingular for each γ ∈ Γ, we see that Kγ

is isomorphic to a submodule of E(RR), see [13, Lemma 4]. However, Nγ ’s are

uniform. This implies that Nγ ’s can be embedded in E(RR), too. So, Nγ ’s are
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direct summands of E(RR). Therefore, Nγ ’s are R-projective by the assumption,

and then, using [5, Proposition 16.10] we obtain that M is R-projective.

(2) ⇒ (3) E(RR) is of finite Goldie rank since RR is of finite Goldie rank.

Therefore, E(RR) = U1 ⊕ · · · ⊕ Un where Ui’s are indecomposable and injective

right R-modules for i = 1, . . . , n. Clearly, every Ui is R-projective. Now, we

divide the proof into two cases:

Case 1: Let U = {i ∈ {1, . . . , n} : Hom(Ui, R/I) 6= 0 for some right ideal I

of R} and i ∈ U . Then, there exists a nonzero homomorphism f : Ui → R/I. By

the R-projectivity property of Ui, we have a nonzero homomorphism g : Ui → R.

As ker(g) is a closed submodule of the injective module Ui, ker(g) becomes a direct

summand, and so Ui = ker(g) ⊕ S for some submodule S of Ui. However, Ui is

indecomposable and g is nonzero. Thus, we conclude that g is monic which

means Ui
∼= g(Ui) is a direct summand of RR. Therefore, Ui is projective, and so

is
⊕

i∈U Ui.

Case 2: Let V = {i ∈ {1, . . . , n} : Hom(Ui, R/I) = 0 for every right ideal I

of R}. This gives that Hom
(
⊕

i∈V Ui, R/I
)

= 0 for each cyclic right R-module

R/I.

(3) ⇒ (2) Clearly, such UR and VR are R-projective. The rest follows from [5,

Proposition 16.10]. �

We deduce the following corollary by the fact that for a right module M over

a right Noetherian ring, Rad(M) = M if and only if Hom(M,R/I) = 0 for each

right ideal I of R.

Corollary 3.12. Let R be a right nonsingular right Noetherian ring. Then, the

following statements are equivalent:

(1) Nonsingular injective right R-modules are R-projective.

(2) E(RR) is R-projective.

(3) E(RR) = UR ⊕ VR, where U is projective and Rad(V ) = V .

4. Right orthogonal class of nonsingular modules

In this section, N will denote the class of all nonsingular right R-modules and

N⊥ =
{

X ∈ Mod-R : Ext1R(N,X) = 0 for all N ∈ N
}

will represent the right

orthogonal class of N .

A right R-module C is said to be cotorsion (in the sense of Enochs) if

Ext1R(F,C) = 0 for every flat right R-module F .

Example 4.1. (1) Any injective right R-module M is contained in N⊥.

(2) Nonsingular right R-modules need not be flat in general. If R is right

nonsingular, left semihereditary and E(RR) is flat or if R is right nonsingular
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and right NR, then nonsingular right R-modules are flat, see Theorem 1.2 and

Proposition 3.4, respectively. So, in these cases every cotorsion right R-module is

contained in N⊥.

(3) Let R be a ring which is mentioned in Proposition 2.6. Then, every right

R-module M ∈ N⊥ is cotorsion.

Corollary 4.2. Let R be a right nonsingular ring. Then, the following are

equivalent:

(1) R is left semihereditary and E(RR) is flat.

(2) All nonsingular right R-modules are flat.

(3) All cotorsion right R-modules are contained in N⊥.

Proof: (1) ⇔ (2) comes from Theorem 1.2 and (2) ⇒ (3) follows from Ex-

ample 4.1 (2). For (3) ⇒ (2), let M be a nonsingular right R-module. Then,

Ext1R(M,C) = 0 for every cotorsion right R-module C, which means that M is

flat. �

Having reminded the notion of covers in the introductory section, we now recall

the dual notion of envelopes. For a class X of right R-modules, an X -preenvelope

of a right R-module M is a homomorphism ϕ : M → X with X ∈ X such that

for any homomorphism ϕ′ : M → X ′ with X ′ ∈ X , there exists f : X → X ′ such

that fϕ = ϕ′. An X -preenvelope ϕ : M → X is said to be an X -envelope if every

endomorphism f of X with fϕ = ϕ is an isomorphism. For the notions of special

X -precovers, special X -preenvelopes and more on the subject we direct the reader

to [12].

Remark 4.3. It is well known that the class N of all nonsingular right R-

modules is closed under submodules, direct products, direct sums, essential ex-

tensions and module extensions. Over a right nonsingular ring of finite right

Goldie rank, it is also closed under pure quotients by Corollary 2.4.

Lemma 4.4. If R is a right nonsingular ring of finite right Goldie rank, then

all right R-modules have an N -cover and an N⊥-envelope. Besides, all right

R-modules have a special N -precover and a special N⊥-preenvelope.

Proof: Since over a right nonsingular ring R of finite right Goldie rank all

conditions of Theorem 1.4 are satisfied by Remark 4.3, we conclude that ev-

ery right R-module has an N -cover and N⊥-envelope. Observing the facts that

the class N contains all projective right R-modules and the class N⊥ contains

all injective right R-modules, we have that N -covers are epic and N⊥-envelopes

are monic. Also, it is clear that the class N⊥ is closed under module extensions.

Thus, the remaining part follows from Wakamatsu’s lemma, see, for example, [15,

Lemma 2.1.13]. �



Rings whose nonsingular right modules are R-projective 405

At this point, we emphasize that Lemma 4.4 does not extend to right non-

singular rings of infinite right Goldie rank which may be seen from the following

example.

Example 4.5. Let R be the endomorphism ring of an infinite dimensional right

vector space over a division ring, R is von Neumann regular, right self-injective,

but not semisimple, see [17, Proposition 2.23]. Note that nonsingular right R-

modules coincide with the flat Mittag–Leffler right R-modules by [19, Corol-

lary 2.10 (i) and Example 6.8]. However, the class of all flat Mittag–Leffler right

R-modules is not precovering by [27, Theorem 3.3].

Proposition 4.6. Let R be a right nonsingular ring of finite right Goldie rank.

Then, the following are equivalent:

(1) R is a right NR-ring.

(2) Nonsingular covers of finitely generated right R-modules are (finitely gen-

erated) projective.

(3) Nonsingular covers of cyclic right R-modules are (finitely generated) pro-

jective.

Proof: (1) ⇒ (2) Let R be a right NR-ring. Since R is a right nonsingular ring

of finite right Goldie rank, R is right A-perfect, and flat right R-modules and

nonsingular right R-modules coincide by Theorem 3.5. Now, (2) follows from [4,

Theorem 3.7].

(2) ⇒ (3) is clear.

(3) ⇒ (1) This part of the proof is an analog of the proof of [4, Theorem 3.7,

(e) ⇒ (a)]. �

Proposition 4.7. Let R be a right nonsingular ring of finite right Goldie rank.

Then, the following are equivalent:

(1) Every right R-module has an N⊥-envelope which is nonsingular.

(2) Every M ∈ N⊥ is injective.

(3) Every M ∈ N⊥ is nonsingular.

(4) R is semisimple.

Proof: (4) ⇒ (2), (4) ⇒ (3) and (3) ⇒ (1) are clear.

(1) ⇒ (4) Let M be a right R-module and f : M → L be its monic N⊥-

envelope. Since L is nonsingular,M is also nonsingular. Hence, R is semisimple.

(2) ⇒ (4) Let A be any right R-module. By Lemma 4.4, special N -precovers

exist and so there is a short exact sequence 0 →M → F → A→ 0 with M ∈ N⊥

and F ∈ N . Then, by (2), M is injective, whence A ∈ N . Therefore, R is

semisimple. �
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In [24, Lemma 1.16], it was shown that for a projective right R-module M , if

M = P + K, where P is a direct summand of M and K is a submodule of M ,

then there exists a submodule Q of K with M = P ⊕Q. Using the same method

as in the proof of [3, Theorem 2.8], one can prove the following result.

Proposition 4.8. A ring R is right NR if and only if for every nonsingular right

R-module N , if N = P + L, where P is a finitely generated projective direct

summand of N and L is a submodule of N , then N = P ⊕K for some K in L.
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