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Abstract. Optical diffraction on a periodical interface belongs to relatively lowly exploited
applications of the boundary integral equations method. This contribution presents a less
frequent approach to the diffraction problem based on vector tangential fields of electromag-
netic intensities. The problem is formulated as the system of boundary integral equations
for tangential fields, for which existence and uniqueness of weak solution is proved. The
properties of introduced boundary operators with singular kernel are discussed with regard
to performed numerical implementation. Presented theoretical model is of advantage when
the electromagnetic field near the material interface is studied, that is illustrated by several
application outputs.
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1. Introduction

The diffraction of an optical wave on a periodical interface between two media

belongs to frequently solved problems, especially when the grating period Λ is com-

parable with the wavelength of the incident beam. Among other, these phenomena

are studied and exploited for nanostructured optical devices design as nanosensors

or integrated optics elements ([7], [8]). Naturally, the theoretical modelling is of

great importance in such cases. During the last thirty years, numerous works treat-

ing the optical diffraction in periodical structures have been published (see [1]) and

references therein. One of the relatively new approaches is based on the Boundary

Integral Equations (BIE) [2], [5]. In this article, we present specific integral formula-

tion of the boundary problem for the system of the Maxwell equations based on the

tangential vector fields and propose its numerical implementation.

In comparison with the usually used rigorous coupled waves algorithm (RCWA)

[11], [13] that is advantageous especially in the far fields analysis, the BIE models
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enable effective modelling of near fields in the spatially modulated region. But mod-

elling of far fields by BIE models is possible too if need be. Other advantage of BIE

models is their applicability to problems where the height of the interface profile is

comparable with its period, whereas the RCWA models do not work satisfactorily

in such cases. Similar and often used way of modelling of diffraction problems is the

Finite-Difference Time-Domain (FDTD) technique [15]. Unlike the presented model

based on tangential fields of electromagnetic intensity vectors, the FDTD method is

working directly with intensity vectors components.

2. Formulation of problem

We study the optical diffraction problem on a smooth interface S between two

homogeneous materials. Let S : x3 = f(x1) in R
3 be a smooth surface periodically

modulated in the coordinate x1 with the period Λ and uniform in the x2 direction.

The periodical interface S with the unit normal vector ν divides the space into two

semi-infinite homogeneous domains Ω(1) and Ω(2), where the materials are charac-

terized by the constant relative permittivities ε(1) 6= ε(2), ε(1) ∈ R and ε(2) ∈ C,

Re (ε(2)) > 0, Im (ε(2)) > 0 and the relative permeabilities µ(1) = µ(2) = 1 (both the

materials are supposed to be magnetically neutral), see Figure 1.
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Figure 1. Semi-infinite domains with common periodical boundary.

We aim to solve the optical diffraction problem for an incident monochromatic

plane wave with the wavelength λ, corresponding free-space wave number k0 = 2π/λ

82



and the wave vector k = (α, 0, β), that is incoming from the domain Ω(1) under the

incidence angle θ measured from the x3 direction. We seek for the space-dependent

amplitudes E(j) = E|Ω(j) , H(j) = H |Ω(j) of the electromagnetic field intensity vec-

tors E(x1, x2, x3)e
−iωt,H(x1, x2, x3)e

−iωt, where ω = c/λ and c represents the speed

of light in the free-space. The unknown intensities can be written as (the subscript 0

denotes the incident field)

(2.1) E =

{
E

(1)
0 +E(1) in Ω(1),

E(2) in Ω(2),
H =

{
H

(1)
0 +H(1) in Ω(1),

H(2) in Ω(2).

In the media without free charges, the vectors E(j),H(j), j = 1, 2, fulfil the Maxwell

equations

∇×E(j) = ik0µH
(j), ∇×H(j) = −ik0ε

(j)E(j) in Ω(j),(2.2)

∇ ·E(j) = 0, ∇ ·H(j) = 0 in Ω(j),(2.3)

where the free space impedance
√
µ0/ε0 is without loss of generality included in the

vector H . The tangential components are continuous on the boundary

(2.4) ν × (E(1) −E(2)) = o, ν × (H(1) −H(2)) = o on S,

where o = (0, 0, 0) is the zero vector.

For the far fields, the well-known Sommerfeld radiation convergence conditions

at infinity hold which enables to consider the problem on the common interface S

only [9]. With respect to studied plasmonic applications we solve problem (2.2)–(2.4)

for the transverse magnetic (TM) polarization of the incident wave, for which

(2.5) E(j) = (E
(j)
1 , 0, E

(j)
3 ), H(j) = (0, H

(j)
2 , 0).

The Maxwell equations (2.2), (2.3) lead to the Helmholtz equations for the scalar

components H
(j)
2 ,

(2.6) ∆H
(j)
2 + k20ε

(j)H
(j)
2 = 0 on Ω(j), j = 1, 2.

Denoting x = (x1, x3), y = (y1, y3), the periodical fundamental solution of the

Helmholtz equation in Ω(j) can be written as [12]

(2.7) Ψ(j)(x,y) =
1

2iΛ

∞∑

m=−∞

Ψ(j)
m (x,y),

Ψ(j)
m (x,y) =

1

β
(j)
m

ei(αm(x1−y1)+β(j)
m |x3−y3|),

where αm, β
(j)
m are the propagation constants introduced as

(2.8) αm = α+ 2πm/Λ, α = k0
√
ε(1) sin θ, α2

m + (β(j)
m )2 = k20ε

(j).
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The following theorem introduces an important property of the functions Ψ(j) that

we proved in [16].

Theorem 2.1. For the both functions Ψ(j)(x,y) defined by (2.7) and for an

arbitrary but fixed x ∈ R
2 the difference

(2.9) Ψ̃(j)(y) = Ψ(j)(x,y)− 1

2π

ln
1

k‖x− y‖

is continuous in R
2.

3. Mathematical model

We formulate the problem (2.2)–(2.4) as the system of boundary integral equations

for the scalar factors J2, Iτ of the tangential vector fields

(3.1) J = ν ×E(1) = ν ×E(2) = −J2e2, I = −ν ×H(1) = −ν ×H(2) = Iττ ,

where τ is the unit tangential vector of the boundary S, J2 = τ · E(1) = τ · E(2),

Iτ = −H(1)
2 = −H(2)

2 and e2 = (0, 1, 0), see Figure 2.
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Figure 2. Tangential fields.

Due to periodicity we can reduce the integral formulation only to one period of

the boundary. Considering fictitious boundaries x1 = 0 and x1 = Λ we can restrict

the problem to domains

Ω(1) = {x ∈ R
2, x1 ∈ (0,Λ), x3 > f(x1)},(3.2)

Ω(2) = {x ∈ R
2, x1 ∈ (0,Λ), x3 < f(x1)}(3.3)
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with common boundary

(3.4) SΛ = {x ∈ R
2, x1 ∈ [0,Λ], x3 = f(x1)}.

Let us note that integrals on newly established fictitious boundaries differ only in

signs as a result of periodicity and hence negate each other.

The up till now gained theoretical results are summarized in Theorem 3.1 below.

The governing formulas (3.10), (3.11) are based on the theoretical background estab-

lished in [6], where the constitutional idea of tangential fields on periodic structures

was introduced. The fundamental steps and the theoretical statements required to

derive these formulas can be found in our article [10].

Other important question not mentioned in the above listed sources and being

crucial for the weak formulation is the choice of function spaces. Hence, we establish

Sobolev spaces of vector functions with generalized curl on unbounded domains Ω(j),

j = 1, 2,

(3.5) Hloc(curl,Ω
(j)) = {v ∈ L

2(Ω(j)),∇× v ∈ L
2(Ω(j))}

that seem to be the most suitable for a weak formulation of Maxwell equations [3].

Further, we denote by γ
(j)
0 the Dirichlet trace of functions from Hloc(curl,Ω

(j)) on

the common boundary SΛ,

(3.6) γ
(j)
0 : Hloc(curl,Ω

(j)) → H1/2(SΛ).

The tangential trace of functions v ∈ C
∞(Ω(j)) on SΛ is the mapping

(3.7) γ(j)
τ : v → ν × v|SΛ

that can be continuously extended to the whole space Hloc(curl,Ω
(j)), and

(3.8) γ(j)
τ : Hloc(curl,Ω

(j)) → H−1/2(div, SΛ),

where

(3.9) H
−1/2(div, SΛ) = {v ∈ H−1/2(SΛ), div v ∈ H

−1/2(SΛ)}

is the space of tangential traces with generalized divergence [4]. The symbols

H
−1/2(SΛ) and H

−1/2(SΛ) denote dual spaces to scalar and vector spaces of Dirich-

let traces H1/2(SΛ) and H
1/2(SΛ) (see [14], for instance).
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Theorem 3.1. The intensity vectors E(j), H(j) ∈ Hloc(curl,Ω
(j)), j = 1, 2,

defined as

E(j)(x) = ik0µ

∫

SΛ

I(η)Ψ(j)(x,η) dlη +
1

ik0ε(j)
∇x

∫

SΛ

I(η) · ∇ηΨ
(j)(x,η) dlη(3.10)

−
∫

SΛ

J(η) ×∇ηΨ
(j)(x,η) dlη,

H(j)(x) = ik0ε
(j)

∫

SΛ

J(η)Ψ(j)(x,η) dlη +
1

ik0µ
∇x

∫

SΛ

J(η) · ∇ηΨ
(j)(x,η) dlη(3.11)

+

∫

SΛ

I(η) ×∇ηΨ
(j)(x,η) dlη,

represent the unique weak solution of problem (2.2)–(2.4), even as the scalar fac-

tors J2, Iτ ∈ H
−1/2(SΛ) of the vector tangential fields I, J ∈ H−1/2(div, SΛ),

J = −J2e2, I = Iττ , fulfil the system of integral equations

−ik0µτξ ·
∫

SΛ

Iτ (η)τη(Ψ
(1)(ξ,η)−Ψ(2)(ξ,η)) dlη(3.12)

− 1

ik0
τξ ·

∫

SΛ

̺Iτ (η)∇η

( 1

ε(1)
Ψ(1)(ξ,η)− 1

ε(2)
Ψ(2)(ξ,η)

)
dlη

+ J2(ξ)− νξ ·
∫

SΛ

J2(η)∇η(Ψ
(1)(ξ,η)−Ψ(2)(ξ,η)) dlη = −J2,0(ξ),

Iτ (ξ) + ik0

∫

SΛ

J2(η)(ε
(1)Ψ(1)(ξ,η)− ε(2)Ψ(2)(ξ,η)) dlη(3.13)

−
∫

SΛ

Iτ (η)νη · ∇η(Ψ
(1)(ξ,η)−Ψ(2)(ξ,η)) dlη = −Iτ,0(ξ),

where

(3.14) J2,0(ξ) = τξ ·E(1)
0 (ξ), Iτ,0(ξ) = −H(1)

0,2(ξ).

P r o o f. The applicability of function spaces used in the weak formulation above

to the problems related to the Maxwell equations was presented in [3], where the

existence and uniqueness of the weak solution of the primary problem (2.2)–(2.4)

were proved in a general case.

The equivalence of problems (3.10), (3.11) and (3.12), (3.13) results from the rela-

tions between the tangential fields and the intensity vectors derived in [10], whereas

these relations remain in force even on established function spaces under authority

of properties of these spaces and of applied differential operators, that were proved

in [3] and [4].
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The existence and the uniqueness of weak solution of problem (3.12), (3.13) can

be verified using the Fredholm alternative (see [14], for instance). In article [6], the

compactness of integral operators of the same type as those in the formulas above has

been proved. The relevant homogeneous problem corresponds to the incident wave

of zero intensity that evidently produces only trivial solution of this problem. �

In relation to numerical implementation we introduce a suitable parametrization

π : R → R
2, π(t) = (p(t), q(t)) of the boundary S such that its one period SΛ

(cf. (3.4)) corresponds to t ∈ [0, 2π]. We denote by ν(t) the normal vector to S and

by ν(t) its magnitude.

The system of integral equations (3.12), (3.13) can be introduced in the operator

form (I is the identity operator)

(3.15)

[V1 + V2 I − V3

I − V4 V5

] [
Iτ
J2

]
=

[−J2,0
−Iτ,0

]
.

Let us emphasize an important fact that the operators Vl, l = 1, . . . , 5, can be

rewritten and generally presented as (multiplication constants are omitted for sim-

plification)

(3.16) (Vlu)(s) =

∫ 2π

0

u(t)(c1Ψ
(1)(s, t)− c2Ψ

(2)(s, t))ν(t) dt,

whereΨ(1)(s, t), Ψ(2)(s, t) are parametrized Green functions (2.7), c1, c2 are generally

different complex constants and u represents one of the parametrized scalar factors Iτ
or J2.

Theorem 3.2. Let Ψ(j)(s, t), j = 1, 2, be the parametrized Green functions de-

fined by (2.7) and c1, c2 ∈ C. Then the differences c1Ψ
(1)(s, t) − c2Ψ

(2)(s, t) are

continuous in R×R for c1 = c2 and have the singularity of the logarithmic type for

c1 6= c2.

P r o o f. The considered differences are evidently continuous for s 6= t, whereas

the singular case occurs for s = t and must be enquired separately. The mth term bm
of the difference series is

(3.17) bm =
i

2Λ

( c1

β
(1)
m

− c2

β
(2)
m

)
=

1

4π

c1B2 − c2B1

B1B2
,

where

(3.18) Bj =
iΛ

2π

β(j)
m =

√(
m+

Λ

λ

√
ε(1) sin θ

)2
−
(Λ
λ

)2
ε(j), j = 1, 2.
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The degree of the term bm is −1 for c1 6= c2 and that is why the sum of the series

has a weak singularity in this case. If c1 = c2 = c, then (3.17) can be converted to

the form

(3.19) bm =
c

4π

(Λ
λ

)2 ε(1) − ε(2)

B1B2(B2 +B1)
,

that is of degree −3 and the series is absolutely convergent. �

Singularity of the logarithmic type is of the key importance, because together with

the statement

(3.20) ln
1

k‖π(s)− π(t)‖ =
∑

m∈Z

m 6=0

e−im(s−t)

2k|m|

that we proved in [16] and with Theorem 2.1 it enables to split the operators into

the compact ones with the continuous kernels and the other with the logarithmic

singularity according to the following notation:

(3.21) Ψ(j)(s, t) = Ψ(j)
r (s, t) + ψ(s, t).

Here we write

(3.22) Ψ(j)
r (s, t) = Ψ

(j)
0 (s, t) +

∑

m∈Z

m 6=0

(
Ψ(j)

m (s, t)− 1

2π

e−im(s−t)

2k|m|
)

for the regular part and

(3.23) ψ(s, t) =
1

2π

∑

m∈Z

m 6=0

e−im(s−t)

2k|m|

for the singular one.
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4. Numerical implementation

To solve the system of boundary integral equations (3.12), (3.13) we use collo-

cation method with equidistant collocation points. The choice of the appropriate

basis functions system appears to be very important. After experiments with usu-

ally used systems of linear or cubic splines we prefer the system of trigonometric

polynomials with the nodes identical to collocation points, because the structure of

trigonometric polynomials is analogous to the structure of singular parts (3.23) of

Green functions (2.7) in the integral operators kernels.

With respect to character of input data, the accuracy of numerical calculations

is given by number of collocation points as well as by number of used diffraction

orders, whereas the influences of both these quantities to output accuracy is assumed

to be in correlation, as we verified by experimental calculations. Therefore, we find

advantageous to take the order of the boundary discretization equal to the order of

the diffraction modes truncation of Green functions.

Since the integral operators in solved system can be split in accordance with (3.21),

we evaluate numerically the compact operators with the continuous kernels equiva-

lent to (3.22)—the trapezoidal rule with the nodes in the collocation points gives

sufficiently accurate results. The logarithmic-type singular operators with kernels

equivalent to (3.23) are computed analytically whereas due to using the trigonometric

basis we are to integrate only exponential functions. Application of bases of linear

(or cubic) splines appears quite disadvantageous now, because then we would be to

integrate products of linear (or cubic) polynomials and exponential functions. The

resulting formulas would be more complicated in such cases.

Obtained discrete solution of system (3.15) represents values of scalar factors Iτ
and J2 at collocation points. The representation formulas (3.10), (3.11) then en-

able us to calculate values of components of the electromagnetic intensity vectors E

andH at arbitrary far points in the space that are usually required in many practical

applications.

5. Numerical results

To test the presented mathematical model we consider the smooth sine interface

S : x3 = 1
2h(1 + cos(2πx1/Λ)), x1 ∈ [0,Λ], Λ = 500 nm, h = 50 nm.

In the following examples, the electromagnetic field near the interface between two

dielectrics (air n1 = 1, glass n2 = 1.5) and between the dielectric (glass n1 = 1.5)

and the metal (gold n2 = 0.1838 + 3.43i) is modelled. The incident beam of the

wavelength λ = 632.8 nm (red light) propagates under the angle of incidence θ.
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Figures 3 and 4 illustrate distribution of absolute value of the tangential (i.e. con-

tinuous) component H2 of the magnetic intensity vector H = (0, H2, 0) with the

normed incident field. Here, the dissimilarity between the diffraction on the non-

absorbing and absorbing media is well visible.

The applicability of presented model for two typical material combinations has

been sufficiently verified. All numerical outputs were obtained by our own program

code in the Matlab software.

6. Applications

The most used quantity in many applications where the comparison of incident

and diffracted energy is required is the directional energy flux represented by the

Poynting vector P = E ×H∗. Its magnitude P =
√
P ·P ∗ indicates the density of

the electromagnetic field power flux (in Wm−2). The asterisk denotes the complex

conjugate quantity.

If the incident beam has the assumed TM polarization, the Poynting vector can

be expressed by components of intensity vectors E and H

(6.1) P = (E1, 0, E3)× (0, H∗
2 , 0) = (−E3H

∗
2 , 0, E1H

∗
2 ).

To illustrate this application we consider similar smooth sine interface S as in the

previous chapter, but now we choose the profile height h comparable to the period Λ

due to plasticity of presented results. In particular, S : x3 = 1
2h(1 + cos(2πx1/Λ)),

x1 ∈ [0,Λ], Λ = 500 nm, h = 200 nm, separates glass superstrate (n1 = 1.5) from gold

substrate (n2 = 0.1838 + 3.43i). The incident beam of the red light (λ = 632.8 nm)

again propagates under the incidence angle θ. Obtained values of the Poyntig vector

magnitude are represented in Figure 5.

Presented theoretical model enables to specify an electromagnetic field distribution

near spatially modulated dielectric/metal interface that is useful among other when

surface plasmon polaritons are studied for sensoric applications.

7. Conclusion

The diffraction problem on a smooth interface between two homogeneous me-

dia was formulated as the system of boundary integral equations for the scalar

factors of the electromagnetic intensities tangential fields. This formulation rep-

resents appropriate background of the numerical solution by the Boundary Elements

Method (BEM). Obtained values of tangential fields enable to compute electromag-

netic intensities on the boundary and above all to extrapolate these out of the bound-

ary. The model functionality was verified for dielectrics as well as for absorbing
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materials. Presented results show possible applicability of the approach based on

the tangential fields to such problems, where the detailed analysis of the diffracted

optical field at an interface and/or in the near region is studied. A mathematical

model for the diffraction on multi-layers is the future goal.
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Figure 3. The |H2| component on air/glass interface for incidence angle θ.
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Figure 4. The |H2| component on glass/gold interface for incidence angle θ.
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Figure 5. Poynting vector magnitude on glass/gold interface for incidence angle θ.
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