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Abstract. Proper traffic simulation of electric vehicles, which draw energy from overhead
wires, requires adequate modeling of traction infrastructure. Such vehicles include trains,
trams or trolleybuses. Since the requested power demands depend on a traffic situation, the
overhead wire DC electrical circuit is associated with a non-linear power flow problem. Al-
though the Newton-Raphson method is well-known and widely accepted for seeking its solu-
tion, the existence of such a solution is not guaranteed. Particularly in situations where the
vehicle power demands are too high (during acceleration), the solution of the studied prob-
lem may not exist. To deal with such cases, we introduce a numerical method which seeks
maximal suppliable power demands for which the solution exists. This corresponds to intro-
ducing a scaling parameter to reduce the demanded power. The interpretation of the scaling
parameter is the amount of energy which is absent in the system, and which needs to be
provided by external sources such as on-board batteries. We propose an efficient two-stage
algorithm to find the optimal scaling parameter and the resulting potentials in the overhead
wire network. We perform a comparison with a naive approach and present a real-world sim-
ulation in the part of the Pilsen city in the Czech Republic. These simulations are performed
in the traffic micro-simulator SUMO, a popular open-source traffic simulation platform.
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1. Introduction

Electrification of transport belongs to one of the key targets of the automotive

industry today. The electrification of public transport road vehicles in urban ar-

eas is feasible and well-used for decades employing trolleybuses or recently hybrid

trolleybuses (i.e. dynamically charging e-buses with a battery pack on the board).

A replacement of classic buses (with a combustion engine) with (hybrid) trolley-

buses is, nonetheless, hardly possible without an appropriate adjustment and dimen-

sioning of the necessary traction infrastructure. For this purpose, a simultaneous

simulation of the power network and traffic conditions needs to be used to identify

weaknesses of the proposed solution [15].

The trolleybus overhead wire network is typically a direct current (DC) electric

circuit, where traction substations supply electric energy. The connected trolleybuses

represent power loads. The steady state analysis of such circuits enables monitoring

of voltage drops, undesirable over-currents, power losses and therefore effective di-

mensioning of suggested overhead wire networks in urban areas. In this manuscript,

we consider the well-known DC power flow (PF) problem, where electric traction

substations are modelled as constant voltage sources with voltages V•; the resistance

of overhead wires is replaced by ideal resistor elements with the resistances R• lin-

early dependent on the distances between nodes; trolleybuses are substituted by an

electric current sources with power loads P• proportional to source currents I•; and

the corresponding connection nodes are associated with electric potentials ϕ• (see

a sample DC network in Figure 1).

P3 = I3ϕ3

R23

P2 = I2ϕ2

R12

direction of the movement on the lane

−

+

vehicle’s
power demand

vehicle’s
power demand

R34

ϕ1 ϕ2 ϕ3 ϕ4

V1

Figure 1. Simple DC network in ladder-form with moving trolleybuses.

Although there exists a rich literature on the alternating current (AC) power flow

problem [16], papers on the DC PF problem were limited in the past. In the majority

of cases, they dealt with the DC PF problem only from application point of view [14],

[11], [18], [10] and without mentioning the solvability of the problem or uniqueness of

the solution. Regardless, the majority of these works succeeded with utilizing Gauss-
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Seidel or Newton-Raphson methods to solve a well-defined system (i.e. system with

well-defined operative conditions given by suitable values of variables) of DC PF

non-linear equations. In recent years, the DC PF problem receives more attention

in literature, since it is connected to low voltage DC grids, an appealing concept in

the field of smart grids and microgrids.

Garces proves uniqueness [5] of the solution of the DC PF problem (using Banach

fixed-point theorem), and even convergence of Gauss-Seidel and Newton-Raphson

methods [6], [5], both under a set of reasonable and not much restricting assumptions

but enforcing sufficiently low power demands. Further, Taylor’s series expansion was

used to linearize the DC PF problem in [13]. Taheri and Kekatos [16] proposed

three various approaches to solve the DC PF problem assuming bounded power

demands, and suggested a decision tree to select the proper method with guaranteed

convergence. The DC PF problem was also reformulated as an optimization task

[17], [7] and its solvability was discussed.

However, the existence of the solution of the DC PF problem generally heavily

depends on the power demands [4]. Even for a primitive circuit (Figure 2), none,

one, or two real-valued solutions of the DC PF problem may exist, depending on

the value of the power demand. For the simple DC circuit on the left-hand side of

Figure 2, the DC PF problem amounts to determining the unknown potential ϕ2.

The voltage ϕ1 = V of the source, resistance R of the resistor element, and requested

power load P are known. Using the Kirchhoff’s law RI2 = V − ϕ2, and the electric

power equation P = I2ϕ2, we conclude that the unknown potential ϕ2 is the solution

of quadratic equation ϕ2
2 − V ϕ2 + PR = 0. Therefore, there exists a critical value

of power demand Pcrit = V 2/4R and the existence of the DC PF problem’s solution

depends on the ratio between the demanded power and the critical power value. If

the demanded power is higher than the critical power value, the DC PF problem has

no solution (see the graph on the right-hand side of Figure 2). In such situations,

the demanded power cannot be supplied in real-world conditions due to physical

restrictions.

ϕ1 = V ϕ2

R

I2 P = I2ϕ2V

Power load (P )

V
o
lt
a
g
e

ϕ2

Pload Pcrit

Figure 2. Simple DC circuit (left) with unknown physical values emphasized with red color,
and its solution (right).
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In this manuscript, we test the limitation of overhead wire infrastructure and

simulate scenarios close to physical limits and even behind them. For this rea-

son, a method solving the DC PF problem with large power loads is neces-

sary. We introduce a scaling parameter that uniformly decreases the original

demanded power values. We then propose a method to find a critical value of

power demand where the overhead wire circuit is already solvable. Such de-

creased power values can be seen as the maximal suppliable power loads. This

corresponds to finding a maximal value of the scaling parameter. We propose a

two-stage strategy, where the first phase searches for the scaling parameter, while

the second stage verifies the solvability of the overhead wire circuit. Since the

scaling parameter is one-dimensional, this allows us to use a combination of a

bisection method in the first stage and Newton-Raphson method in the second

stage.

This paper is organized as follows. We revisit the mathematical formulation of

the DC PF problem in Section 2, and we introduce a method for seeking maximal

suppliable power demands to ensure the existence of the solution in Section 3. The

theoretical analysis of the proposed approach is carried out in Section 4, where we

show that our method is convergent under mild assumptions. A solution procedure

employing introduced theoretical results and an efficient algorithm to find the solu-

tion with lower time requirements are proposed in Section 5. Finally, a numerical

insight into the problem, a comparison with standard non-linear solver in Matlab,

and a simulation of a city trolleybus network are presented in Section 6.

2. Mathematical formulation

The DC PF problem corresponds to finding unknown potentials of nodes and

branch currents in an electric circuit with defined voltage and power loads/sources.

There are various methods to formulate the corresponding set of equations. Since

the fundamental electrical laws (Kirchhoff’s circuit laws, Ohm’s law, Power law)

need to be always employed, the resulting formulations are naturally equivalent.

We use modified nodal analysis [8] to form the system of equations for the electric

circuit. Hence, given the specific application in overhead wire circuit modeling,

the system (a connected electric circuit with voltage sources and power loads) can

be described by three types of equations. Each equation describes currents going

through a selected node with unknown potentials or assigns known voltage sources

to adjacent nodes.

If node i is not adjacent to any voltage source or power loads (i.e. the adjacent

nodes are connected only through resistor elements), the Kirchhoff’s current law

states that the sum of currents flowing in and out of this node must be zero. Since
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current equals to voltage (difference of potentials) divided by resistance, this law

amounts to

(2.1)
∑

j∈N(i)

1

Rij

(ϕi − ϕj) = 0, i ∈ I,

where Rij is the resistance between the ith and jth nodes, ϕi is the potential of the

ith node, N(i) is the set of adjacent nodes to the ith nodes through resistor elements,

and I is an index set of nodes connected only by resistor elements.

If node i is adjacent to a power load, we again use the Kirchoff’s law. The left-

hand side stays the same as in (2.1), but the right-hand side equals to the source

current at the power load. Since this source current is Pi/ϕi, the equation reads

(2.2)
∑

j∈N(i)

1

Rij

(ϕi − ϕj) =
Pi

ϕi

, i ∈ J,

where Pi is the demanded power by the power load adjacent to the ith node and J

is an index set of nodes adjacent to any power load. Note that in the case of zero

power demand Pi, (2.2) reduces to (2.1) and i is reassigned to set I.

The rest of nodes are connected to voltage sources, so their potentials equal to

(2.3) ϕi = Ui, i ∈ I0,

where Ui is a known voltage level of voltage source at the ith node and I0 is an index

set of nodes adjacent to any voltage source.

The DC PF problem then amounts to finding the unknown potentials ϕi, i ∈
{I, J, I0}. If we solve equations (2.1)–(2.3) for unknown potentials, currents through
the circuit can be found by Ohm’s and Power laws.

System (2.1)–(2.3) can be rewritten in a compact form introducing a square ma-

trix A and a vector b(ϕ):

(2.4) Aϕ = b(ϕ) ≡




0

P

ϕJ

U


,

where

Ai,j =





∑

k∈N(i)

1

Rik

if i = j ∧ i ∈ I ∪ J,

− 1

Rij

if i 6= j ∧ i ∈ I ∪ J ∧ j ∈ N(i),

1 if i = j ∧ i ∈ I0,

0 otherwise.
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Here, ϕ is an ordered vector of unknown potentials ϕi, i ∈ {I, J, I0}, 0 is a zero
vector, P is a vector of power demands with non-zero components Pi, i ∈ J , ϕJ

is a vector with components ϕi, i ∈ J , P /ϕJ is the element-wise division and the

vector U consists of components Ui, i ∈ I0.

3. Reduction of power demands to ensure solvability

To find a solution of equation (2.4), we can employ numerical methods as the

Gauss-Seidel method or Newton-Raphson method. However, as it has been dis-

cussed in Section 1, the existence of the solution is not guaranteed in all situations.

Especially if the power demands are too high, the solution of the problem does not

exist. In such a situation, the power demands of trolleybuses cannot be fully satisfied

due to physical limits or due to over-current protections of traction substation.

To find the maximal suppliable values of power and to guarantee the existence of

a solution, we adjust (2.2) by introducing a vector α of scaling parameters αi by

(3.1)
∑

j∈N(i)

1

Rij

(ϕi − ϕj) =
αiPi

ϕi

, i ∈ J.

Equations (2.1) and (2.3) are without any change. To simplify matters, parameter

vector α is considered as all-ones vector multiplied by a scalar value, i.e. α = α1.

While this formulation does not fully correspond to the physical equilibrium of the

system, the scalar approximation makes the system computationally tractable. Note

that α = 1 corresponds to the original problem and α = 0 to the situation when

no demanded power is supplied. Again, the problem can be reformulated into the

compact form similar to (2.4),

(3.2) f(ϕ(α), α) := Aϕ(α) − b(ϕ(α), α) := Aϕ(α) −




0

αP

ϕ(α)J
U


 = 0,

where we denote the dependency of ϕ on the scalar parameter α by ϕ(α).

The value of α can be seen as an overload rate of the investigated electric circuit, or

in other words, as a power demand satisfaction rate. If equation (3.2) has the solution

for α = 1 (i.e. the original problem), the investigated circuit is not overloaded and

all power loads are fully supplied by the circuit. For α = 0, i.e. the power demands

are completely disregarded, (3.2) has always a trivial solution with zero currents and

with nominal voltage of traction substation at all nodes in the circuit.

The idea of the proposed method is to find some α0 ∈ [0, 1] such that (3.2) has

a solution for α ∈ [0, α0] and does not have a solution for α ∈ (α0, 1]. Since the
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scaling parameter evenly decreases values of the demanded power, α0 can be also

defined as a maximal α ∈ [0, 1], for which (3.2) has a solution. The optimal α0 then

determines the maximal power threshold which can be provided by the circuit and

determines the circuit overload rate in some sense. Finding such α0 corresponds to

an optimization task

(3.3) α0 = argmax
α,ϕ

α subject to Aϕ(α) = b(ϕ(α), α), α ∈ [0, 1].

The optimal α0 smaller than one gives us the information that the overhead wire is

overloaded and determines the rate of this overload.

4. Theoretical analysis

The theoretical analysis justifying the proposed approach needs to make four as-

sumptions. The first one reads:

(A1) If system (2.1), (3.1), (2.3) has a solution ϕ(1) for some P , then it has a solution

for all αP with α ∈ [0, 1].

This assumption says that if the system can be satisfied for a power demand P ,

it can be satisfied for all smaller power demands. This assumption also has a dual

interpretation. Consider the solution ϕ(1) of (2.1), (3.1), (2.3) with α = 1, fix an

arbitrary α ∈ [0, 1] and define θ(α) =
√
αϕ(1). Then θ solves (2.1) and (3.1) and it

satisfies (2.3) with the reduced source voltage Ûi =
√
αUi 6 Ui. Since the solvability

problem arises due to the inability to provide enough energy for the requested power

demand (Figure 2), we conjecture that a power demand that can be satisfied by√
αUi can be also satisfied by full voltage Ui.

The second assumption requires topology of the network:

(A2) The network is connected and there exists at least one voltage source in the

network.

For the last two assumptions, consider the set of equations

(4.1) f(ϕ(α),α) := Aϕ(α) − b(ϕ(α),α) := Aϕ(α) −




0

α ◦ P
ϕ(α)J
U


 = 0

to allow reducing the power demands in an unequal manner. The notation α ◦ P

denotes the Hadamard (component-wise) product of two vectors, and the fraction

of two vectors is considered also in component-wise manner. Define the solution

mapping of (4.1) by

S(α) := {ϕ | ϕ solves (4.1) for α}
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and its domain by

D := {α | S(α) is nonempty} ∩ [0, 1]|α|.

Then we impose the third assumption:

(A3) There exists some M such that ‖y‖ 6 M for all α ∈ D and y ∈ S(α).

This says that the electric potential cannot be infinite. The last assumption states:

(A4) The solution mapping S has continuously differentiable single-valued localiza-

tion around each point from the interior of D.
This assumption is also natural and makes sense from physical point of view. We

explain its meaning at the simple example from Figure 2 with P = Pcrit. This figure

depicts the scaled graph of the solution mapping S. Whenever α ∈ [0, 1), there are

two solutions to the system. Therefore, S(α) contains two points and we have to work

with single-valued localizations, which select either the upper or the lower branch in

Figure 2. These localizations are continuously differentiable, which is precisely what

Assumption (A4) states.

To summarize, all assumptions (A1)–(A4) are well justified and always satisfied

in real-world electrical systems. We start with the following two lemmas.

Lemma 4.1. Let Assumption (A2) be satisfied. If ϕi are fixed for all i ∈ J ∪ I0,

then (2.1) has a unique solution ϕi with i ∈ I.

P r o o f. We define AII as the restriction of A to rows and columns I. Similarly,

we define AII0 . To prove the statement, we need to show that AII is a non-singular

matrix. We define

B =

(
AII AII0

0 E

)

to be the restriction of A to rows and columns I ∪ I0. Here, E denotes the identity

matrix.

We will use some results from graph theory. We recall that the matrix B is strictly

diagonally dominant if

|bii| >
∑

j 6=i

|bij |

for each i. The matrixB is weakly diagonally dominant if the inequalities are replaced

by >, and weakly chained diagonally dominant if it is weakly diagonally dominant

and each node i is connected via a path to a strictly diagonally dominant node. Due

to the construction of the matrix A, all nodes of B are weakly diagonally dominant,

and all nodes corresponding to voltage sources are strictly diagonally dominant. Then

Assumption (A2) implies that B is weakly chained diagonally dominant. Since every

such matrix is non-singular, B is non-singular and therefore, AII is non-singular as

well. This finishes the proof of the lemma. �
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Lemma 4.2. Let Assumption (A3) be satisfied. Then the domain D is a closed
set.

P r o o f. Consider any sequence αk → α such that αk ∈ D for all k. We need
to show that α ∈ D. There are some ϕk ∈ S(αk). Due to Assumption (A3), they

are bounded and we may select a convergent subsequence, denoted without loss of

generality by the same indices, ϕk → ϕ. Since f from (4.1) is continuous with

respect to both variables, we have ϕ ∈ S(α), which implies α ∈ D. �

Now we are able to prove the following theorem.

Theorem 4.1. Let Assumptions (A1)–(A4) be satisfied. Then there are two

possibilities:

⊲ System (3.2) has a solution for all α ∈ [0, 1].

⊲ System (3.2) has a solution for all α ∈ [0, α0] but no solution for any α ∈ (α0, 1] for

some α0 ∈ [0, 1). In such a case, the Jacobian matrix∇ϕf(ϕ(α), α) is non-singular

for all α ∈ [0, α0) but ∇ϕf(ϕ(α0), α0) is singular.

P r o o f. We realize that due to Assumption (A1), either system (3.2) has a solu-

tion for all α ∈ [0, 1] or there is some α0 ∈ [0, 1) such that the system has a solution

on [0, α0) and no solution on (α0, 1]. Lemma 4.2 and the existence of the trivial

solution for α = 0 imply that (3.2) has a solution even for α0 in the second case.

It remains to show in which cases the Jacobians are non-singular. Fix any α ∈
[0, α0] and define its vector version α = α1. We write (4.1) in a more compact form

(4.2)




AII AIJ AII0

AJI AJJ AJI0

0 0 E






ϕI

ϕJ

ϕI0


 =




0

1

ϕJ

(α ◦ P )

U


,

where E stands for the identity matrix. The matrix on the left-hand side does not

depend on the potentials ϕ. Due to Lemma 4.1, the square matrixAII is non-singular

and we have

ϕI = A−1
II (−AIJϕJ −AII0ϕI0).

Plugging this back to (4.2) yields

AJJϕJ +AJIA
−1
II (−AIJϕJ −AII0ϕI0) +AJI0ϕI0 =

1

ϕJ

(α ◦ P )

and in a simpler form

(4.3) g(ϕJ) := ϕJ◦(AJJ−AJIA
−1
II AIJ)ϕJ−ϕJ◦(AJIA

−1
II AII0U−AJI0U) = α◦P .
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Now we perturb the right-hand side of (4.3) by some r to get

(4.4) ϕJ ◦ (AJJ −AJIA
−1
II AIJ )ϕJ −ϕJ ◦ (AJIA

−1
II AII0U −AJI0U) = α ◦ P + r

and define S̃ : r 7→ ϕJ as a solution mapping of (4.4). We consider α as a fixed

parameter and perturb only r. Equality (4.4) amounts to

ϕJ ◦ (AJJ −AJIA
−1
II AIJ)ϕJ −ϕJ ◦ (AJIA

−1
II AII0U −AJI0U) =

(
α+

r

P

)
◦ P .

This, due to the same reasons as above, is equivalent to f(ϕ(α̃), α̃) = 0 with

α̃i = αi + ri/Pi, i ∈ J . This implies S̃(r) = S(α + r/P ) and therefore, local

properties of S̃ around 0 correspond to those of S around α. In particular, the

existence of a continuously differentiable single-valued localization of S̃ around 0 is

equivalent to the existence of a continuously differentiable single-valued localization

of S around α. Due to [3], Theorem 1C.3, the existence of the former happens if

and only if ∇ϕg(ϕJ (α)), defined in (4.3), is non-singular. Combining these two facts

we obtain that S has a continuously differentiable single-valued localization at α if

and only if ∇ϕg(ϕJ(α)) is non-singular. Assumption (A4) ensures that this holds

true whenever α = α1 and α ∈ [0, α0). At the same time, it cannot happen for

α = α01, because this point is at the boundary of D. This whole paragraph implies
that ∇ϕg(ϕJ(α)) is non-singular for all α ∈ [0, α0) but ∇ϕg(ϕJ (α0)) is singular.

The non-singularity of ∇ϕg(ϕJ) is equivalent to the non-singularity of the Jaco-

bian of

ĝ(ϕJ ) := (AJJ −AJIA
−1
II AIJ )ϕJ − (AJIA

−1
II AII0U −AJI0U) − 1

ϕJ

(α ◦ P ).

We have

(4.5) ∇ϕĝ(ϕJ (α)) = AJJ −AJIA
−1
II AIJ + diag

( 1

ϕ2
J

(α ◦ P )
)
,

where diag(·) makes a diagonal matrix from a vector and ϕ2
J is understood

component-wise. Define now the function from (4.2) by

g̃(ϕ) :=




AII AIJ AII0

AJI AJJ AJI0

0 0 E






ϕI

ϕJ

ϕI0


−




0

1

ϕJ

(α ◦ P )

U


.

Then

∇ϕg̃(ϕ(α)) =




AII AIJ AII0

AJI AJJ + diag
( 1

ϕ2
J

(α ◦ P )
)

AJI0

0 0 E



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and therefore,

det∇ϕg̃(ϕ(α)) = det

(
AII AIJ

AJI AJJ + diag
( 1

ϕ2
J

(α ◦ P )
)
)

= detAII det
(
AJJ + diag

( 1

ϕ2
J

(α ◦ P )
)
−AJIA

−1
II AIJ

)

= detAII det∇ϕĝ(ϕJ (α)),

where the second equality follows from the theory of Schur’s complement, and

the third equality from (4.5). Lemma 4.1 says that detAII 6= 0 and therefore

det∇ϕg̃(ϕ(α)) 6= 0 if and only if det∇ϕĝ(ϕJ(α)) 6= 0. Combining this with

the other equivalence of non-singularity of Jacobians from the beginning of this

paragraph, yields that ∇ϕg̃(ϕ(α)) is non-singular if and only if ∇ϕg(ϕJ(α)) is

non-singular. Recalling the notation α = α1, we realize that f(ϕ(α), α) = g̃(ϕ(α)).

Since we have already shown that ∇ϕg(ϕJ (α)) is non-singular for all α ∈ [0, α0) but

∇ϕg(ϕJ(α0)) is singular, this implies the theorem statement. �

Assuming (A1)–(A4), Theorem 4.1 ensures that the optimization task (3.3) has

nice properties which we will utilize to suggest a solution algorithm in the next

section and to further investigate and numerically demonstrate it in Section 6.

Theorem 4.1 is closely connected with the homotopy method [1], which solves

a complicated system by linearly interpolating it with a simple system. In our case,

the simple system corresponds to α = 0, the difficult system to α = α0 and the linear

interpolation is governed by increasing α.

A related result to our Theorem 4.1 appeared in [2], Theorem 3, where the au-

thors showed that the interpolation scheme results in a connected path for which

a solution exists for all α ∈ [0, α0]. This is our Assumption (A1). On the other

hand, their Assumption (G4) is precisely our conclusion about the non-singularity

of ∇ϕf(ϕ(α), α). In other words, these two results are inverse to each other.

5. Solution procedure

In this section, we propose a method with simple implementation and low compu-

tation requirements. Our method is based on Theorem 4.1, which states that there

is some α0 such that system (3.2) is solvable for all α ∈ [0, α0] but not solvable for

any larger α. Therefore, we start with α̃ = 0 and incrementally increase the value

of α̃ by some constant gain ∆α. After each update of the scaling parameter, the
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Newton-Raphson method is used to solve (3.2), with the kth iteration evaluated as

(5.1) ϕk+1 = ϕk − (∇ϕf(ϕk, α̃))
−1f(ϕk, α̃)

= ϕk − (A−∇ϕb(ϕk, α̃))
−1(Aϕk − b(ϕk, α̃)).

Theorem 4.1 also states that∇ϕf(ϕk, α̃) converges to a singular matrix as α̃ → α0.

Therefore, if we observe that the determinant of this matrix (which is the same as

the one in (5.1)) goes to zero, we imply that we are close to the optimal scaling

parameter α0. If this happens, the previous value of α̃ is declared as the optimal

value with tolerance equal to ∆α. This procedure is summarized in Algorithm 1.

Algorithm 1 Basic solution strategy

1: Set constant gain ∆α to a proper value and α̃ = 0.

2: Solve (3.2) for the fixed α̃ using the NR method.

3: If the NR method converges and α̃ < 1, set α̃ = α̃+∆α and GO TO line 2.

4: Else α̃−∆α is declared as the optimal value with the tolerance ∆α and with the

corresponding solution ϕ(α̃−∆α).

The suggested procedure is convergent under the assumptions of Theorem 4.1.

However, it has a significant drawback in the case when the original DC PF prob-

lem (2.4) is solvable (i.e. there exists solution of (3.2) for α = 1). Then, all discretized

values of α need to be passed before the optimal α0 = 1 is encountered. For this

reason, we propose an efficient solution procedure in the next subsection.

5.1. Efficient solution algorithm. This efficient procedure replaces the incre-

mental increase of α̃ by a variant of a bisection method. The complete proposed

pseudo-code is shown in Algorithm 2 and its C++ implementation can be found on

official Eclipse SUMO GitHub repository1.

The while loop determines the optimal value of the scaling parameter. It starts

with α̃ = 1 and makes use of the NR method to solve (3.2). The NR updates are

inside the for loop. If the NR method succeeds (within a tolerance ∆con), the lower

bound α̂ is updated. In the opposite case the buffer of failed candidate values Sα is

extended by the current scaling parameter α̃. If the buffer is empty (which happens if

the NR method converged for α̃ = 1), we found a solution of (3.2) and the algorithm

terminates.

If the buffer is not empty, it means that there are some scaling parameters for

which the solution does not exist. In most cases, we determine the new α̃ as an

1 https://github.com/eclipse/sumo/blob/master/src/utils/traction_wire/

Circuit.cpp
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Algorithm 2 Algorithm for solving the DC PF problem

1: Initialize ϕ := ϕ0, the scaling parameter α̃ := 1, the best found solution α̂ := 0,

and an empty buffer of non-admissible parameter values Sα := [ ].

2: Set tolerances ∆con := 10−8, ∆opt := 10−5, ∆act := 10−2, the maximal number of

NR iterations mNR := 10 and coefficient of bisection cbi := 0.5.

3: while true do

4: for iter = 1, . . . ,mNR do

5: ϕ := ϕ− (∇ϕf(ϕ, α̃))
−1f(ϕ, α̃) {NR update}

6: if ‖f(ϕ, α̃)‖ < ∆con then {NR converged}
7: α̂ := α̃, ϕ̂ := ϕ

8: break

9: else if iter = mNR then {NR failed to converge}
10: Sα[end + 1] := α̃ {append α̃ to the buffer}
11: end if

12: end for

13: if Sα is empty then

14: return α̂, ϕ̂ {end of algorithm with optimal α̂ and corresponding ϕ(α̂)}
15: end if

16: if ‖α̂− Sα[end]‖ > ∆act then

17: α̃ := α̂+ cbi · (Sα[end]− α̂) {bisection at cbi}
18: else {moving towards ill-conditioned problem}
19: mNR := 2 ·mNR {progressive increase of maximal number of NR iters}
20: ∆act := ∆act/10 {progressive decrease of optimality tolerance}
21: if ∆act < ∆opt then

22: return α̂, ϕ̂ {end of algorithm with optimal α̂ and corresponding ϕ(α̂)}
23: end if

24: α̃ := Sα[end]

25: Sα := Sα[1 : end− 1] {remove the last element of Sα buffer}
26: end if

27: end while

interpolation between α̂ and the smallest value of the buffer Sα. However, if these

two values are close to each other (measured by the prescribed tolerance ∆act), the

NR may require more iterations to converge, since the problem is ill-conditioned due

to Theorem 4.1. In such a case, we double the allowed number of iterations for the

NR algorithm. This is depicted in the last few lines of Algorithm 2.

Since the convergence of the NR method also depends on the initial estimate, we

initialize it by assuming constant term b(U, 1) in (3.2), where U is the known nominal
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voltage of the traction substation, and then by solving the linear equation Aϕ0 =

b(U, 1) for ϕ0. In the numerical implementation, we also incorporate current limits

of traction substations (over-current protection) and voltage limits of the network in

a simple way. However, for the sake of simplicity we will ignore them here.

The proposed algorithm is simple to implement and its computation requirements

are lower than those required by classical approaches such as interior-point methods.

Furthermore, the initialization of α̃ = 1 is strongly beneficial as the proposed algo-

rithm solves the original unlimited DC PF problem within one iteration. Then the

solution is found quickly without any additional computational requirements.

6. Simulation and numerical results

For numerical validation, we consider toy examples as well as a simulation of

real-world traffic.

6.1. Toy examples. The two toy test cases of the DC PF problem are motivated

by a real trolleybus network. The first test case (Figure 3a) contains four vehicles

with defined power demands (260 kW, 20 kW, 30 kW and −5 kW due to regenerative

braking) running under overhead wire section connected to the traction substation

represented by voltage source of 600V using one connection point. The second test

case (Figure 3b) contains ten vehicles with uniform power demands of 250 kW and

two connection points to the traction substation on the voltage level 600V. The

mean distance between adjacent (neighboring) vehicles is in the order of hundreds

of metres in both test cases; this corresponds to the mean resistance of 0.023Ω to

0.23Ω of conductor wire between voltage nodes.

(a)

Traction

substation

Traction

substation

(b)

Figure 3. The scheme of the two toy test cases used for numerical analysis.
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Figure 4. Dependency of the condition number of Jacobian on the proposed scaling param-
eter for the first toy case (left) and the second toy case (right).

Figure 4 empirically confirms the statements of Lemma 4.2 and Theorem 4.1. The

left and right column of the figure show results for both toy cases introduced above.

The top row shows the residuum of the solution which is always smaller than the

threshold ∆con = 10−8. The middle row shows the condition number of the Jacobian

∇ϕf(ϕ(α), α) and the bottom row the number of iterations needed by the Newton-

Raphson method. We see that this number is small but it is rising up as the condition

number of Jacobian increases. The steep increase of the value of the condition

number of Jacobian∇ϕf(ϕ(α), α) in the middle row is apparently close to the critical

value α0. It exactly corresponds to the theoretical conclusion of Theorem 4.1 stating

that the interval of non-singularity of Jacobian matrix ∇ϕf(ϕ(α), α) is bounded by

the critical value α0. Finally, we can see that the results of Lemma 4.2 are also

numerically confirmed as the solution exists only on some interval.

Let us now compare Matlab implementation of our Algorithm 2 with the standard

Matlab built-in function fmincon for solving constrained non-linear optimization

problems using the interior-point method by default. The optimal scaling param-

eters α0 = 0.3715 for the first test case and α0 = 0.8849 for the second test case

were successfully found both by Algorithm 2 and by fmincon. The time require-

ments are compared in Table 1. Calculations were performed in Matlab on Intel

Core i5 processor and the time requirements are the average over 1000 evaluations.

Our Algorithm 2 gives the solution about one order of magnitude faster than fmin-

con. If we provide user-defined gradient to fmincon, the time requirements are still

approximately six times higher than for Algorithm 2.
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Test case 1 Test case 2

Algorithms mean t max t min t mean t max t min t

[s] [s] [s] [s] [s] [s]
fmincon 0.0266 0.0484 0.0221 0.0403 0.0913 0.0355

fmincon with gradients 0.0217 0.0412 0.0177 0.0261 0.0605 0.0219

proposed Algorithm 2 0.0032 0.0059 0.0027 0.0042 0.0096 0.0040

Table 1. Comparison of mean, maximal and minimal time requirements of proposed Al-
gorithm 2 and Matlab’s fmincon for solving the DC PF problem for both test
cases.

6.2. Simulation of a trolleybus network. In this section, we present numerical

simulations of a part of a real network. The simulations are performed in the Eclipse

SUMO simulator [12], [9]. We show two test cases, in both we employ our Algorithm 2

to solve the DC PF problem.
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Figure 5. Simulation of single trolleybus of 8 kilometers on a straight route with equally
distant (200m) intersections.

The first case is a simulation of a single trolleybus on a straight 8 kilometres long

route with equally distant (200m) intersections. The overhead wire network is pow-

ered by a traction substation at the beginning (position 0m) of the route. Figure 5

shows the results. In the top row, the actual value of parameter α is depicted. The

value depends on the requested power (depicted in the bottom row), which is period-

ically oscillating as the trolleybus accelerates after passing each intersection and uses

regenerative breaking before reaching the next one. The scaling parameter decreases
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(when accelerating) with the distance from the power source due to increased length

and therefore also resistance of the overhead power line. This driving behaviour with

the actual speed of the trolleybus is shown in the middle row. The last row shows the

requested power and the received power. The latter is the requested power times the

scaling constant. Note that the difference needs to be either covered by an additional

source such as an on-board battery (this is the depicted case), or it results in slower

acceleration.
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Figure 6. Large-scale stress analysis of two trolleybus lines in the city of Pilsen, Czech
Republic.

The second case is a large-scale simulation of two hybrid-trolleybus lines in the

city of Pilsen, Czech Republic. Figure 6 shows the frequency of application of the

proposed scaling parameter in simulations (it is smaller than one) and its mean value.

The results indicate sufficient dimensions of overhead wires in the city with an ex-

ception in the south side of the city. In this location, mean value of parameter α is

under 0.9 and the relative frequency of α < 1 is above 40%. This may indicate prob-

lems in the network operation and the necessity to add more substation connection

points and/or overhead wire clamps into the circuit in order to improve its electrical

parameters and decrease the demonstrated energy losses on the power line.

7. Conclusion

The formulation of the DC power flow problems leads to a system of non-linear

equations that is not always solvable in its given form, despite the fact that mea-

surements and experiments on its real-world counterpart suggest that the physical

system is able to reach a state for which a real solution exists. To ensure solvabil-

ity of the DC PF problem, we proposed to introduce a scaling parameter for power
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demands and presented a fast algorithm to maximise its value while keeping the

DC PF system solvable, together with theoretical and numerical verification. The

introduced strategy enables us to effectively find power demand thresholds and thus

to solve ill-defined DC PF problems.

The algorithm has been demonstrated on representative toy cases. The perfor-

mance of Matlab implementation of the proposed method has been compared to

Matlab’s fmincon; we demonstrated that our approach outperforms the standard

optimisation approach by a factor of 6 to 9. The viability of the algorithm and

its C++ implementation build into the open-source traffic simulator Eclipse SUMO

has been demonstrated on a real-world scenario. The C++ implementation is open-

sourced and is provided to the community by authors as a part of Eclipse SUMO.
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