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Abstract. Comparing the bounded derived categories of an algebra and of the endomor-
phism algebra of a given support τ -tilting module, we find a relation between the derived
dimensions of an algebra and of the endomorphism algebra of a given τ -tilting module.
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1. Introduction

The dimension of a triangulated category, which is a measure of the complexity

of the category, was introduced in [11]. It also gives a new invariant for algebras

and algebraic varieties under derived equivalences. The dimension of the bounded

derived category of a finite-dimensional algebra is called the derived dimension of this

algebra, see [6]. Note that there is a close relation between the derived dimension

and some other important notions, such as Loewy length, global dimension and

representation dimension. Especially, the derived dimension of a finite-dimensional

algebra is finite, see [11]. Usually it is very difficult to give the precise value of the

derived dimension of an algebra. Many algebraists investigated the upper bound of

the derived dimension of an algebra, see [5], [7], [10], [11], [14].

Tilting theory aims at comparing the representation theory of an algebra with

that of the endomorphism algebra of a tilting module over that algebra. Also tilting

theory is a rich source of derived equivalences. τ -tilting theory, which completes

tilting theory from the viewpoint of mutation, was introduced by Adachi, Iyama,

Reiten, see [1]. Support τ -tilting modules are very closely related with some other

important notions, such as torsion classes, silting modules, silting complexes and

cluster-tilting objects, see [1], [2] for details.
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From [1] we know that tilting modules are exactly faithful support τ -tilting mod-

ules. Hence, extending results from tilting theory to τ -tilting theory increases the

amount of algebras that can be compared to a given one. Treffinger in [13] compared

the module categories of an algebra and of the endomorphism algebra of a given sup-

port τ -tilting module, and then gave a generalization of tilting theorem in the frame-

work of τ -tilting theory. Suarez investigated the relation between the global dimen-

sions of an algebra and of the endomorphism algebra of a τ -tilting module, see [12].

In this paper, we deal with the comparison between the bounded derived category

of a given algebra and the bounded derived category of the endomorphism algebra

of a given support τ -tilting module. Our first result is the following.

Theorem 1.1 (Theorem 3.1). Let A be a finite-dimensional algebra and T a sup-

port τ -tilting A-module, B = EndA(T ) be its endomorphism algebra and C =

A/annT the factor algebra of A modulo the annihilator of T .

(1) The derived functors

RHomA(T,−) : Db (mod A)
//
Db (mod B) : L(T ⊗B −)oo

are inverse triangle-equivalences if and only if T is a tilting module.

(2) The derived functors

RHomA(T,−) : Db (mod C)
//
Db (mod B) : L(T ⊗B −)oo

are inverse triangle-equivalences.

Applying the above result, we find a relation between the derived dimensions of

an algebra and of the endomorphism algebra of a given τ -tilting module.

Theorem 1.2 (Theorem 3.2). Let A be a finite-dimensional algebra and T

a τ -tilting A-module, B = EndA(T ) be its endomorphism algebra. Then we have

der.dim(A) 6 r(1 + der.dim(B))− 1, where the annihilator of T is a nilpotent ideal

with (annT )r = 0.

Notation. LetK be an algebraically closed field and A a finite-dimensional basic

K-algebra. We denote by modA the category of finitely generated right A-modules,

and byDb (mod A) the bounded derived category. The Auslander-Reiten translation

of A is denoted by τ . The annihilator of A-module T is denoted by annT .
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2. Preliminaries

In this section, we collect some basic materials that will be used later.

2.1. τ-titing theory. First, we recall the definition of support τ -tilting modules

from [1].

Definition 2.1. Let X ∈ modA.

(1) We call X in modA τ -rigid if HomA(X, τX) = 0.

(2) We call X in modA τ -tilting if X is τ -rigid and |X | = |A|, where |X | denotes

the number of nonisomorphic indecomposable direct summands of X .

(3) We call X in modA support τ-tilting if there exists an idempotent e of A such

that X is a τ -tilting (A/〈e〉)-module.

We recall some properties of support τ -tilting modules associated with τ -tilting

modules and tilting modules.

Proposition 2.2 ([1], Proposition 2.2).

(1) τ -tilting modules are precisely sincere support τ -tilting modules.

(2) Tilting modules are precisely faithful support τ -tilting modules.

(3) Any τ -tilting A-module T is a tilting C-module, where C = A/annT .

2.2. Derived dimension. We recall some notions from [9], [10], [11]. Let T be

a triangulated category and I ⊆ ObT . Let 〈I〉 be the smallest full subcategory

of T containing I and closed under finite direct sums, direct summands and shifts.

Given two subclasses I1, I2 ⊆ ObT , we denote by I1 ∗ I2 the full subcategory of all

extensions between them, that is,

I1 ∗ I2 = {X : X1 → X → X2 → X1[1] with X1 ∈ I1 andX2 ∈ I2}.

Write I1 ⋄I2 := 〈I1 ∗I2〉. Then (I1 ⋄I2)⋄I3 = I1 ⋄ (I2 ⋄I3) for any subclasses I1, I2

and I3 of T by the octahedral axiom. Write

〈I〉0 := 0, 〈I〉1 := 〈I〉 and 〈I〉n+1 := 〈I〉n ⋄ 〈I〉1 for any n > 1.

Definition 2.3 ([11], Definition 3.2). The dimension dim T of a triangulated cat-

egory T is the minimal d such that there exists an object M ∈ T with T = 〈M〉d+1.

If no such M exists for any d, then we set dim T =∞.

Now we give the definition of derived dimension of an algebra.
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Definition 2.4 ([6]). The derived dimension of A is the dimension of the trian-

gulated category Db (mod A), denoted by der.dim(A).

A finite-dimensional algebra A is said to be derived finite if up to shift and iso-

morphism there is only a finite number of indecomposable objects in Db (mod A),

see [4], Definition 1. Clearly, der.dim(A) = 0 if and only if A is derived finite. By [6],

a finite-dimensional algebra over an algebraically closed field is derived finite if and

only if it is an iterated tilted algebra of Dynkin type.

The following result establishes a relation between derived dimensions of an algebra

and of its factor algebra.

Proposition 2.5 ([10], Lemma 7.35). Let A be an algebra and I a nilpotent ideal

of A with Ir = 0. We have der.dim(A) 6 r(1 + der.dim(A/I)) − 1.

3. Main results

Given an algebra A and a support τ -tilting A-module T , we consider the algebras

B = EndA(T ) and C = A/annT . Treffinger in [13] compared the module categories

of A and B, and gave a generalization of the Brenner-Butler’s tilting theorem in

the framework of τ -tilting theory. We replace the module categories by their derived

categories, and adapt the conditions accordingly. We obtain the following statement.

Theorem 3.1. Let T be a support τ -tilting A-module, B = EndA(T ) be its

endomorphism algebra and C = A/annT .

(1) The derived functors

RHomA(T,−) : Db (mod A)
//
Db (mod B) : L(T ⊗B −)oo

are inverse triangle-equivalences if and only if T is a tilting module.

(2) The derived functors

RHomA(T,−) : Db (mod C)
//
Db (mod B) : L(T ⊗B −)oo

are inverse triangle-equivalences.

P r o o f. (1) By [8], the derived functorsRHomA(T,−) and L(T ⊗B−) are inverse

triangle-equivalences if and only if T is a tilting module of finite projective dimension.

Thus, T is a faithful support τ -tilting module. It follows that T is a tilting module

by Proposition 2.2 (2).

(2) Because of Proposition 2.2 (3) and [1], Proposition 1.1 and Theorem 2.7, T is

a tilting C-module. Moreover, since modC is a full subcategory of modA, we have

that EndC(T ) ∼= EndA(T ) = B. Therefore it follows from [8] that C is derived

equivalent to B. �
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Assume that T is a τ -tilting module. Suarez investigated the relation between the

global dimensions of A and of B in [12]. Here we replace the global dimensions by

their derived dimensions and get the following result.

Theorem 3.2. Let A be an algebra and T a τ -tilting A-module, B = EndA(T )

be its endomorphism algebra. Then we have der.dim(A) 6 r(1 + der.dim(B)) − 1,

where annT is a nilpotent ideal with (annT )r = 0.

P r o o f. Since T is a τ -tilting module, by Proposition 2.2 (1) T is sincere. It

follows from [3] that annT is a nilpotent ideal. By Theorem 3.1 (2), der.dim(B) =

der.dim(A/annT ). Applying Proposition 2.5, we have

der.dim(A) 6 r(1 + der.dim(A/annT ))− 1.

�

Remark 3.3.

(1) It is obvious that the equality holds if T is a tilting module.

(2) The derived dimension of A can be strictly less than r(1+der.dim(B))− 1. For

example, let A be an iterated tilted algebra of Dynkin type and T a τ -tilting

module which is not tilting.

In fact, the bound of Theorem 3.2 is sharp, even T is τ -tilting which is not tilting.

We illustrate this on a simple but non trivial example.

Example 3.4. Let A be a radical square zero algebra with the following quiverQ:

1
α // 2 βdd

Observe that der.dim(A) = 1. The support τ -tilting quiver of A is the following:

1 2

2 2
//

��

1

2
1 // 1

��2

2
// 0

Consider T = 1

2
1 a unique τ -tilting A-module which is not tilting. In this case,

annT = 〈β〉 and (annT )2 = 0, i.e., r = 2.

The endomorphism algebra B = EndA(T ) is the hereditary algebra with quiver

1← 2. Then der.dim(B) = 0.

Therefore 1 = der.dim(A) 6 r(1 + der.dim(B))− 1 = 1.
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