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Abstract. Let A be a finite-dimensional k-algebra and K/k be a finite separable field
extension. We prove that A is derived equivalent to a hereditary algebra if and only if so is
A⊗k K.
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1. Introduction

Let A be a finite-dimensional algebra over a field k and A-mod be the category

of finitely generated left A-modules. Recall that A is called piecewise hereditary

if there is a hereditary abelian category H such that the bounded derived cate-

gory Db(A-mod) is equivalent to Db(H) as triangulated categories.

Piecewise hereditary algebras are important and well-studied in representation

theory. A homological characteristic via strong global dimensions of piecewise hered-

itary algebras was given by Happel and Zacharia in [5]. Using this characteristic,

Li proved in [8] that the piecewise hereditary property is compatible under certain

skew group algebra extensions. Similarly, we prove that it is also compatible under

finite separable field extensions (see Corollary 3.3), which is a special case of [7],

Proposition 5.1.

According to [4], a connected piecewise hereditary k-algebra is derived equivalent

to either a hereditary k-algebra or a canonical k-algebra. Notice that the homological

characteristic and hence the compatibilities mentioned above do not distinguish these

two situations. In this paper, we look for a refinement. We prove that these two

kinds of piecewise hereditary algebras are closed under certain base field change.

More precisely, we obtain the following result.

c© Institute of Mathematics, Czech Academy of Sciences 2021.
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Main Theorem. Let K/k be a finite separable filed extension and A a k-algebra.

Then A is derived equivalent to a hereditary algebra if and only if so is A⊗k K.

As a corollary, A is derived equivalent to a canonical algebra if and only if so

is A⊗k K. We also prove that A is a tilted algebra if and only if so is A⊗k K.

By [3], if an algebra is derived equivalent to a hereditary algebra (or a canonical

algebra), then so is its skew group algebra extension under certain condition. How-

ever, the converse of this statement has not been proved. Our theorem is the field

extension version of this statement with a confirmation of the converse.

Our proof of the main theorem is based on the description of hereditary triangu-

lated categories by directing objects; see [2], Corollary 5.5. We are inspired by the

proof of Theorem 1.1 in [9] saying that tilted algebras are compatible under certain

skew group algebra extensions.

2. Derived categories and Galois extensions

2.1. Derived categories and field extensions. We fix a finite separable field

extension K/k and consider a finite-dimensional k-algebra A and its scale exten-

sion A⊗kK. The algebra extension A→ A⊗kK induces an adjoint pair (−⊗kK,F )

between finitely generated left module categories A-mod and A⊗k K-mod, where

−⊗k K : A-mod→ A⊗k K-mod, M 7→M ⊗k K ∀M ∈ A-mod

is the scale extension functor and

F : A⊗k K-mod→ A-mod

is the forgetful functor.

Denote by Kb(A-proj) the bounded homotopy category of finitely generated pro-

jective left A-modules and Db(A-mod) the bounded derived category. Since −⊗kK

and F map projective modules to projective modules, they can be extended in

a natural manner to an adjoint pair between K
b(A-proj) and K

b(A ⊗k K-proj).

These two functors are also exact, so they can be extended to an adjoint pair be-

tween D
b(A-mod) and D

b(A ⊗k K-mod). We still denote these two adjoint pairs

by (− ⊗k K,F ) for convenience.

Recall from [10] that a functor G : C → D is called separable if for any X , Y in C

there is a map

HX,Y : HomD(G(X), G(Y )) → HomC(X,Y )

such that HX,Y (G(f)) = f for any f ∈ HomC(X,Y ), and HX,Y is natural in X

and Y .
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The functors (− ⊗k K,F ) defined above for module categories, homotopy cate-

gories and derived categories are separable since the field extension K/k is separable,

see [7], Example 3.6. Hence, each object X in A-mod, Kb(A-proj) or Db(A-mod)

is a direct summand of F (X ⊗k K) and each Y in A ⊗k K-mod, K
b(A ⊗k K-proj)

or Db(A⊗k K-mod) is a direct summand of F (Y )⊗k K, see [7], [11].

The following lemma due to [13] and [6] will be frequently used.

Lemma 2.1. Given two objects X and Y inDb(A-mod), we have an isomorphism

of vector spaces

HomDb(A⊗kK-mod)(X ⊗k K,Y ⊗k K) ≃ HomDb(A-mod)(X,Y )⊗k K.

In particular, we have an isomorphism of K-algebras

EndDb(A⊗kK-mod)(X ⊗k K) ≃ EndDb(A-mod)(X)⊗k K,

and an isomorphism of vector spaces

rad(A⊗k K) ≃ (radA)⊗k K.

Recall from [12] that a complex T in D
b(A-mod) is called a tilting complex of A

if, viewing Db(A-mod) as K−,b(A-proj),

(1) T ∈ K
b(A-proj);

(2) HomDb(A-mod)(T, T [i]) = 0 for all i 6= 0;

(3) 〈T 〉 = K
b(A-proj), where 〈T 〉 is the triangulated category generated by direct

summands of T .

Notice that the shift functor [1] is commutative with −⊗k K.

Lemma 2.2. If T is a tilting complex of A, then T ⊗k K is a tilting complex

of A⊗k K.

P r o o f. We check the three conditions of tilting complexes for T ⊗k K. The

first one is obvious and the second one is by the isomorphisms

HomDb(A⊗kK-mod)(T ⊗k K,T ⊗k K[i]) ≃ HomDb(A⊗kK-mod)(T ⊗k K,T [i]⊗k K)

≃ HomDb(A-mod)(T, T [i])⊗k K = 0.

As for the last condition, for each Y in Kb(A⊗kK-proj), F (Y ) ∈ K
b(A-proj) can

be generated by direct summands of T because T is a tilting complex. Since −⊗kK

is an additive functor and maps a triangle in K
b(A-proj) into a triangle in

K
b(A ⊗k K-proj), F (Y ) ⊗k K can be generated by direct summands of T ⊗k K.

Hence, as a direct summand of F (Y )⊗kK, Y can be generated by direct summands

of T ⊗k K. �
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Recall that two algebras A and B are derived equivalent if and only if there is

a tilting complex T in D
b(A-mod) such that EndDb(A-mod)(T )

op ≃ B, see [12].

Lemma 2.3. If A is derived equivalent to B, then A⊗k K is derived equivalent

to B ⊗k K.

P r o o f. Let T be a tilting complex of A such that EndDb(A-mod)(T )
op ≃ B.

By Lemma 2.2, T ⊗k K is a tilting complex of A ⊗k K. Then A ⊗k K is derived

equivalent to B ⊗k K by the following isomorphisms of algebras:

EndDb(A⊗kK-mod)(T ⊗k K)op ≃ EndDb(A-mod)(T )
op ⊗k K ≃ B ⊗k K.

�

Remark 2.4. The converse of the above lemma is not true. For example, take k

as the field of real numbers and K as the field of complex numbers. Let A be k

and B be the quaternion algebra over k. Then A⊗kK and B⊗kK are both derived

equivalent to K, while A and B are not derived equivalent.

2.2. Action of the Galois group. In this subsection we further assume thatK/k

is a finite Galois extension. Let G be the Galois group of K/k. For each g in G and λ

in K, denote by gλ the action of g on λ.

For each g in G and M in A⊗k K-mod, define
gM ∈ A⊗k K-mod as follows. As

a set, gM is identified with M . The action of A⊗k K on
gM is given by

(a⊗ λ) ·m = (a⊗ gλ)m ∀ a⊗ λ ∈ A⊗k K, m ∈ gM.

Then g induces a k-linear (not K-linear) automorphism of A⊗k K-mod:

g(−) : A⊗k K-mod→ A⊗k K-mod, M 7→ gM.

For each homomorphism f : M → N in A⊗k K-mod,
gf : gM → gN is given by

(gf)(m) = f(m) ∀m ∈M.

So g(−) is a functor with inverse g−1

(−).

The functor g(−) is exact and can be extended naturally to a k-liner autofunctor

ofDb(A⊗kK-mod). We still denote its derived functor by
g(−). The notation X | Y

means that X is a direct summand of Y .
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Lemma 2.5. Keeping the notations above, we have:

(1) For each M ∈ D
b(A⊗k K-mod), F (M)⊗k K ≃

⊕
g∈G

gM in D
b(A⊗k K-mod).

(2) For each indecomposable object M ∈ D
b(A ⊗k K-mod) there is an indecom-

posable object X ∈ D
b(A-mod) such that X | F (M) and M | X ⊗k K.

(3) For each indecomposable object X ∈ D
b(A-mod) there is an indecomposable

object M ∈ D
b(A ⊗k K-mod) such that X | F (M) and M | X ⊗k K. If

there is another indecomposable object N ∈ D
b(A ⊗k K-mod) satisfying that

N | X ⊗k K, then there is a g ∈ G such that N ≃ gM .

P r o o f. (1) For eachM = (M i, di) ∈ D
b(A⊗kK-mod) we have an isomorphism

of A⊗k K-modules for each i ∈ Z:

ϕi : F (M i)⊗k K →
⊕

g∈G

g(M i), m⊗ λ 7→ ((gλ)m)g∈G ∀m ∈M i, λ ∈ K.

Since the following diagram is commutative,

F (M i)⊗k K
di

⊗Id
//

ϕi

��

F (M i+1)⊗k K

ϕi+1

��⊕
g∈G

g(M i) diag((g(di))g∈G)
//

⊕
g∈G

g(M i+1)

we obtain an isomorphism

ϕ = (ϕi)i∈Z : F (M)⊗k K ≃
⊕

g∈G

gM

in D
b(A⊗k K-mod).

(2) Since the functor F is separable, we haveM | F (M)⊗kK inD
b(A⊗kK-mod).

Thus, there is an indecomposable direct summand X of F (M) such thatM | X⊗kK.

(3) Since the functor −⊗kK is separable, we have X | F (X⊗kK) in Db(A-mod).

Thus, there is an indecomposable direct summandM ofX⊗kK such that X | F (M).

If N ∈ D
b(A⊗kK-mod) is another indecomposable object such that N | X⊗kK,

then N | F (M) ⊗k K ≃
⊕
g∈G

gM by (1). Since Db(A ⊗k K-mod) is Krull-Schmidt,

there is a g ∈ G such that N ≃ gM . �

Definition 2.6. Given an indecomposable object X in D
b(A-mod) and an in-

decomposable object M in D
b(A ⊗k K-mod), we say that M and X are relative if

X | F (M) and M | X ⊗k K.
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Lemma 2.7. Let X and Y be two indecomposable objects in D
b(A-mod). As-

sume that M and N are indecomposable objects in D
b(A ⊗k K-mod) and relative

withX and Y , respectively. Then for each nonzero nonisomorphism ϕ : X → Y there

is a nonzero nonisomorphism ψ : M → gN in D
b(A⊗k K-mod) for some g in G.

P r o o f. By Lemma 2.5 (3), up to isomorphism, each indecomposable direct

summand of X ⊗k K and Y ⊗k K belongs to {gM | g ∈ G} and {gN | g ∈ G},

respectively. Since

ϕ⊗ Id: X ⊗k K → Y ⊗k K

is nonzero, there exist h and l in G such that πlN ◦ (ϕ ⊗ Id) ◦ inchM 6= 0, where

inchM : hM → X ⊗k K is the embedding morphism and πlN : X ⊗k K → lN the

projection morphism.

Let

ψ := h−1

(πlN ◦ (ϕ⊗ Id) ◦ inchM ) : M → h−1lN.

Since h−1

(−) is an isomorphism, ψ is nonzero.

We claim that ψ is a nonisomorphism. Recall that in a Krull-Schmidt category,

a morphism between two indecomposable objects is a nonisomorphism if and only if

it belongs to the radical of the category, see [1], A.3 Proposition 3.5. For each

f ⊗ λ ∈ HomDb(A-mod)(Y,X)⊗k K ≃ HomDb(A⊗kK-mod)(Y ⊗k K,X ⊗k K),

f ◦ ϕ is a nonisomorphism, which implies that

(f ⊗ λ) ◦ (ϕ ⊗ Id) ∈ radDb(A-mod)(X,X)⊗k K

= rad(EndDb(A-mod)(X))⊗k K

≃ rad(EndDb(A⊗kK-mod)(X ⊗k K)).

According to [1], A.3 Definition 3.3, ϕ ⊗ Id ∈ radDb(A⊗kK-mod)(X ⊗k K,Y ⊗k K).

By [1], A.3 Lemma 3.4, we have that

ψ ∈ radDb(A⊗kK-mod)(M, h
−1lN).

Therefore ψ is a nonisomorphism. �
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3. Piecewise hereditary algebras under field extensions

3.1. Piecewise hereditary algebras. In this section, we recall some knowledge

about piecewise hereditary algebras and investigate related properties under base

field extension.

According to [5], the strong global dimension of a k-algebra A is defined by

s.gl.dimA = sup{l(P ) | 0 6= P ∈ K
b(A-proj) indecomposable},

where

l(P = (P i, di)) = max{b− a | P b 6= 0, P a 6= 0}

is the length of P 6= 0.

Lemma 3.1. Let A be a k-algebra and K/k be a finite separable field extension.

Then

s.gl. dimA = s.gl.dimA⊗k K.

P r o o f. First, we prove that

s.gl. dimA 6 s.gl.dimA⊗k K.

Indeed, for each indecomposable P in Kb(A-proj), since F is separable, P is a direct

summand of F (P⊗kK) inKb(A-proj). The length of each direct summand of P⊗kK

inKb(A⊗kK-proj) is not larger than s.gl.dimA⊗kK. As l(F (P⊗kK)) = l(P⊗kK)

and each indecomposable direct summand does not have larger length, we have that

l(P ) 6 s.gl.dimA⊗k K.

Dually, we can prove that

s.gl. dimA > s.gl.dimA⊗k K.

So our statement holds. �

Recall again that a finite-dimensional k-algebra A is called piecewise hereditary

of type H if it is derived equivalent to a hereditary abelian k-category H ; A is

called quasi-tilted if there is ablelian k-category H with tilting object T such that

A ≃ EndH(T )op, see [5].

The following homological description is due to [4].

Lemma 3.2. Let A be a k-algebra.

(1) A is piecewise hereditary if and only if s.gl.dimA <∞.

(2) A is quasi-tilted if and only if s.gl. dimA 6 2.
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The above lemma and Lemma 3.1 immediately imply the following result.

Corollary 3.3. Let A be a k-algebra andK/k be a finite separable field extension.

(1) The algebra A is piecewise hereditary if and only if so is A⊗k K.

(2) The algebra A is quasi-tilted if and only if so is A⊗k K.

3.2. Directing objects and Galois extensions. In this subsection, we prove

our main theorem by using directing objects.

Let X and Y be two indecomposable objects in a triangulated category C. Recall

from [2] that a proper path fromX to Y with length n is defined as a sequence of inde-

composable objects X = X0, X1, . . . , Xn = Y in C, such that for each i ∈ {1, . . . , n},

either Xi = Xi−1[1] or there is a nonzero nonisomorphism in HomC(Xi−1, Xi). An

indecomposable object X in C is called directing if there is no proper paths from X

to X with length larger than zero.

The following theorem due to [2] is the main tool we used.

Theorem 3.4 ([2], Corollary 5.5). Let A be a connected finite-dimensional

k-algebra. Then A is derived equivalent to a hereditary algebra if and only if

D
b(A-mod) contains a directing object.

Proposition 3.5. Let K/k be a finite Galois extension and A a connected

k-algebra. If A⊗k K is derived equivalent to a hereditary algebra, then so is A.

P r o o f. We take a connected component of A⊗kK. By Theorem 3.4, let M be

a directing object inDb(A⊗kK-mod). By Lemma 2.5 (2), there is an indecomposable

object X ∈ D
b(A-mod) such that M and X are relative.

We claim that X is a directing object in D
b(A-mod), so our statement holds by

Theorem 3.4. If not, there is a proper path X = X0, X1, . . . , Xn = X inDb(A-mod).

By Lemma 2.5 (3), for each i, letMi be an indecomposable object inD
b(A⊗kK-mod)

which is relative with Xi.

For each nonzero nonisomorphism in HomDb(A-mod)(Xi−1, Xi), Lemma 2.7 im-

plies that there is some gi ∈ G (the Galois group) such that there is a nonzero

nonisomorphism in

HomDb(A⊗kK-mod)(M, giN).

Since g(−) is an isomorphism for each g ∈ G, there is also a nonzero nonisomor-

phism in

HomDb(A⊗kK-mod)(
gM, ggiN).

If Xi = Xi−1[1], we can assume that Mi = Mi−1[1] =
e(Mi−1[1]), where gi = e is

the unit of G.
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So in D
b(A⊗k K-mod) there is a proper path

M =M0,M
′
1 = g1M1,M

′
2 = g2g1M2, . . . ,M

′
n = hM,

where h = gngn−1 . . . g1 ∈ G. Since G is a finite group, there is a positive integer t

such that ht = e. So from M to M , there is a proper path

M,M ′
1,M

′
2, . . . ,M

′
n,M

′
n+1 = g1hM0, . . . ,M

′
2n = h2

M, . . . ,M ′
tn = ht

M =M,

which contradicts that M is a directing object. �

Theorem 3.6. Let K/k be a finite separable field extension and A a k-algebra.

Then A is derived equivalent to a hereditary algebra if and only if so is A⊗k K.

P r o o f. If A is derived equivalent to a hereditary algebra B, then by Lemma 2.3,

A is equivalent to B ⊗k K, which is also a hereditary algebra.

Conversely, there is a finite separable field extension L/K such that L/k is a Ga-

lois extension. If A ⊗k K is derived equivalent to a hereditary algebra B, then by

Lemma 2.3, A ⊗k L is derived equivalent to a hereditary algebra B ⊗K L. Hence,

(each connected component of) A is derived equivalent to a hereditary algebra by

Proposition 3.5. �

According to [4], a connected piecewise hereditary k-algebra is derived equivalent

to either a hereditary k-algebra or a canonical k-algebra. Hence, Corollary 3.3 and

the above theorem imply the following.

Corollary 3.7. Let K/k be a finite separable field extension and A a k-algebra.

Then A is derived equivalent to a canonical algebra if and only if so is A⊗k K.

Recall that a k-algebra A is called tilted if there is a hereditary algebra B and

a tilting B-module T such that A ≃ EndB(T )
op. The following result is the field

extension version compared to the skew group algebra extension version proved in [9].

Corollary 3.8. Let K/k be a finite separable field extension and A a k-algebra.

Then A is tilted if and only if so is A⊗k K.

P r o o f. Assume that A is tilted. Let T be a tilting module of a hereditary

k-algebra B such that EndB(T )
op ≃ A. Then T ⊗k K is a tilting B ⊗k K-module

and EndB⊗kK(T ⊗k K)op ≃ A ⊗k K. Since B ⊗k K is also hereditary, A ⊗k K is

a tilted algebra.

Conversely, assume that A⊗kK is tilted, so it is quasi-tilted and derived equivalent

to a hereditary algebra. By Corollary 3.3, A is quasi-tilted and derived equivalent

to a hereditary abelian category H . By Theorem 3.6, A is derived equivalent to

a hereditary algebra. Hence, H is a module category of a hereditary algebra and A

is tilted. �
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