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Abstract. We show that there exist infinitely many consecutive square-free numbers of
the form n? + 1, n? + 2. We also establish an asymptotic formula for the number of such
square-free pairs when n does not exceed given sufficiently large positive number.
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1. NOTATIONS

Let X be a sufficiently large positive number. By ¢ we denote an arbitrary small
positive number, not necessarily the same, in different occurrences. As usual, u(n)
is Mobius’ function and 7(n) denotes the number of positive divisors of n. Fur-
ther, [¢t] and {t} denote the integer part and the fractional part of ¢, respectively.
We shall use the convention that a congruence m = n (mod d) will be written
as m = n(d). As usual, (m,n) is the greatest common divisor of m and n. The
letter p will always denote prime number. We put

(1) ORTOSES

Moreover e(t) = exp(2nit). For 2,y € R we write z = y(1) when z —y € Z. For
any n and ¢ such that (n,¢) = 1 we denote by 7, the inverse of n modulo ¢. The
number of distinct prime factors of a natural number n we denote by w(n). For any
odd prime number p we denote by (5) the Legendre symbol. By K(r, h) we shall
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denote the incomplete Kloosterman sum

(1.2) K(r,h) = Z e(%),

where

h,reZ, hr#0, 0<p—a<2r|.

2. INTRODUCTION AND STATEMENT OF THE RESULT

In 1931 Estermann in [6] proved that there exist infinitely many square-free num-
bers of the form n? + 1. More precisely, he proved that for X > 2 the asymptotic
formula

Z p2(n® +1) = coX + O(X*3log X)
n<X

holds. Here

co = H (1—%).

p=1(4)

Afterwards, Heath-Brown in [8] used a variant of the determinant method and im-
proved the remainder term in the formula of Estermann with O(X7/12+¢),

On the other hand, in 1932 Carlitz in [1] showed that there exist infinitely many
pairs of consecutive square-free numbers. More precisely, he proved the asymptotic
formula

(2.1) > 1) =[] (1= %)X +0(x" ),

n<X P

where 6§ = 2/3. Formula (2.1) was sharpened by Heath-Brown (see [7]) to § = &
and by Reuss (see [10]) to 0 = (26 + /433).

The existence of infinitely many consecutive square-free numbers of a special form
was demonstrated by the author in [2], [3], [4], [5]. In particular, in [5] he proved that
there exist infinitely many consecutive square-free numbers of the form z2 + y? + 1,
22+ y%+2. While in [5] the main role was played by the properties of Gauss sums, in
this paper we use a surjective correspondence between the number of representations
of numbers by binary quadratic form and the incongruent solutions of quadratic
congruence.
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(2.2) PX) = 3 w20+ )p2(n® +2),
1<n<X

(2.3) S(q1,q2) ={neN: 1< n<qige, n?4+1= 0(q1), n?4+2= 0(g2)}

(2.4) Mag)= > L

n€S(q1,q92)

We establish our result by combining the tasks of Estermann and Carlitz. Thus, we

prove the following theorem.
Theorem 2.1. For the sum I'(X) defined by (2.2), the asymptotic formula
(2.5) [(X) =0X + O(X¥%%)

holds. Here

> H(1 (=1 +(=2/p) + 2).

(2.6) .

p>2

From Theorem 2.1 it follows that there exist infinitely many consecutive square-
free numbers of the form n? + 1, n? + 2, where n runs over naturals.

3. LEMMAS
The first lemma we need gives us important expansions.

Lemma 3.1. For any M > 2 we have

v =— 3 0 o),
1<jml<M

where fa(t) is a positive function of t which is infinitely many times differentiable
and periodic with period 1. It can be expanded into the Fourier series

Ity =3 bar(m)e(mi)

m=—0o0
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with coefficients bys(m) such that

log M
M

b]\[(m) < V'm

and

Z [bar(m)| < M4,

[m|>M1+e

Here A > 0 is arbitrarily large and the constant in the < symbol depends on A
and €.

Proof. See[11], Theorem 1. O

The next lemma we need is well-known.

Lemma 3.2. Let A,B € Z\ {0} and (A, B) = 1. Then

Bl  Bla _ 1
5 T4 - agW

Proof. See[12], Lemma 17.5.1. O
Lemma 3.3. For the sum denoted by (1.2) the estimate
K (rh) < |r|/25= (e, 1) 2

holds.

Proof. Follows easily from Weil’s estimate for the Kloosterman sum. See [9],
Chapter 11, Corollary 11.12. O

Lemma 3.4. Let n > 5. There exists a surjective function from the solution set
of the equation

(3.1) 2 +2y% =n, (r,y)=1, zeN, yeZ\{0}
to the incongruent solutions modulo n of the congruence

(3.2) 22 4+2=0(n).
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Proof. Let F denote the set of ordered pairs (z,y) satisfying (3.1) and E denote
the set of solutions of the congruence (3.2). We consider each residue class modulo n
with representatives satisfying (3.2) as one solution of (3.2).

Let (z,y) € F. From (3.1) it follows that (n,y) = 1. Therefore, there exists
a unique residue class z modulo n such that

(3.3) zy = z(n).
For this class we have
(z2 + 2)y2 = (zy)2 +22 =22 422 = (n).

From the last congruence and (n,y) = 1 we deduce 22 + 2 = 0(n) which means that
z € E. We define the map

(3.4) 8: F—FE

that associates to each pair (z,y) € F' the residue class z = z7,, satisfying (3.3).
We shall prove that the map (3.4) is a surjection. Let z € E. From Dirichlet’s
approximation theorem it follows that there exist integers a and ¢ such that

(3.5) ‘2—%‘<ﬁ, 1<q¢<vn, (a,q) =1
Replace

(3.6) r=zq—an.

Hence

(3.7) r? +2¢% = 22¢° — 2zqan + a*n® + 2¢* = (22 + 2)¢*(n).

From (3.2) and (3.7) it follows

(3.8) r? +2¢% = 0(n).
By (3.5) and (3.6) we deduce

(3.9) Ir| < v/n.
Using (3.5) and (3.9) we obtain

(3.10) 0 < r?+2¢* < 3n.
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Bearing in mind (3.8) and (3.10) we conclude that 72 + 2¢®> = n or 72 + 2¢ = 2n.
Consider two cases.
Case 1:

(3.11) 4 2¢* = n.
From (3.6) and (3.11) we get
2

n = (zq—an)* 4 2¢* = (2q — an)zq — (2q — an)an + 2¢*> = (2q — an)zq — ran + 2q

and therefore

(3.12) ra+1=kq,
where

2
(3.13) k=2 +2q—az.

By (3.2) and (3.13) it follows that k € Z and taking into account (3.12) we deduce
(3.14) (r,q) = 1.

Using (3.11), (3.14) and n > 5 we establish that r # 0.
Consider first » > 0. Replace

(3.15) r=r, Yy=q.

From (3.11), (3.14) and (3.15) it follows that (z,y) € F. Also (3.6) and (3.15) give
us (3.3). Consequently 5(z,y) = z.
Next we consider 7 < 0. Put

(3.16) r=-r y=—q

Again (3.11), (3.14) and (3.16) lead to (x,y) € F. As well from (3.6) and (3.16)
follows (3.3). Therefore (z,y) = z.
Case 2:

(3.17) 2 +2¢% = 2n.
From (3.6) and (3.17) we find
2n = (2q — an)® + 2¢® = (2q — an)zq — (2q — an)an + 2¢*> = (2q — an)zq — ran + 2¢>
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and thus

(3.18) ra+2 = kq,
where k is defined by (3.13). From (3.18) we conclude
(3.19) (r,q) < 2.

By (3.17), (3.19) and n > 5 we deduce that r # 0.
On the other hand, from (3.17) it follows that r is even. We replace r = 2rg
in (3.17) and obtain

(3.20) @+ 22 =n.
We shall verify that

(3.21) (ro,q) = 1.
If we assume that (rg,q) > 1, then (3.19) gives us
(3.22) (ro,q) = 2.
From (3.20) and (3.22) it follows

(3.23) n=0(4).

Finally (3.2) and (3.23) imply
22 4+2=0(4),

which is impossible. This proves (3.21).
No matter whether r is positive or negative we replace

(3.24) r=gq, Yy=-—ro.

Using (3.20), (3.21) and (3.24) we deduce that (z,y) € F.
By (3.6) and (3.24) we get

(3.25) 2zy —x) = —2(2r0 + q) = —2r — 2¢ = —(2* + 2)q + zan.
From (3.2) and (3.25) we conclude

(3.26) 2(zy — z) = 0(n).

If n is odd, then (3.26) gives us (3.3). Consequently S(z,y) = z.

997



Let n be even. Since (3.23) is impossible,
(3.27) n=2ng, ng isodd.
By (3.20) and (3.27) it follows
(3.28) = 0(),

i.e., q is even.

On the other hand, (3.2) and (3.27) imply that
(3.29) z =0(2),

i.e., z is even.

Now (3.24), (3.28) and (3.29) give us
(3.30) zy —x = 0(2),

i.e., zy — x is even.
Finally from (3.26), (3.27) and (3.30) we obtain (3.3). Therefore 8(x,y) = .
The lemma is proved. ]

4. PROOF OF THE THEOREM

Using (2.2) and the well-known identity p?(n) = > u(d) we get

d2|n
(4.1) D(X)= Y wld)u(ds) Y 1=Ti(X)+T(X),
di1,d2 1<n<X
(d1,d2)=1 n?4+1=0(d?)
n?+2=0(d3)
where
(4.2) (X)) = Y pld)u(da)S(X, d7, d3),
d1d2<2
(dy,d2)=1
(43) La(X)= 3 pld)ulde)S(X, &3, d3),
dydo>z
(d1,d2)=1
(4.4) S(X,dhd) = Y,
1<n<X
n?4+1=0(d?)
n?4+2=0(d2)
(4.5) VX <z < X,

where z is to be chosen later.
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4.1. Estimation of I';(X). Suppose that q; = d?, g2 = d3, where d; and do are
square-free, (¢1,¢2) = 1 and dyds < z.

Denote
(46) Q(X7 q15q27n) = Z L.
m<X
m=n(q192)

Using (2.3), (4.4) and (4.6) we obtain upon partitioning sum (4.4) into residue classes
modulo ¢1¢2

(47) E(Xa (I17CI2) = Z Q(Xv qlanvn)'
n€S(q1,92)

It is easy to see that

X
(48) Q(X7 Q1aCI27n) = +O(1)
4142

From (2.4), (4.7) and (4.8) we find

(4.9) (X, q1,q2) = X% + O(Aq1,q2))-

Taking into account (2.3), (2.4), Chinese remainder theorem and that the number of
solutions of the congruence n? = a(q1q2) is less than or equal to 7(q1¢2), we get

(4.10) a1, ¢2) < T(quq2).

From (4.9), (4.10) and the inequalities

T(q1g2) < (q1g2)® < X°

it follows

/\(QbQQ)

(411) Z()(7 ql,qQ) :X
192

+O(X?).

Bearing in mind (4.2), (4.5) and (4.11) we obtain

(d1)p(do)A\(d3, d3)

(4.12) nx=x Y ~ o +O(2X7)
dida<z 172
((11,d2)=1
2 12
dida>z d1d2
((11,(12):1

999



where

pu(dr) p(da)\(dF, d3)
4.1 = E .
( 3) g Pl d2d2
(dyda)=1

Using (4.10) we find

2
(414) Z ‘u dl de;\(dl’dQ) < Z (d1d2 Z

dida>z dida>z n>z
(d1,d2)=1 (d1,d2)=1

It remains to see that product (2.6) and sum (4.13) coincide. From definition (2.4)
it follows that the function A(q1, ¢2) is multiplicative, i.e. if

(0162, 93q4) = (q1,q2) = (g3, q4) = 1,
then
(4.15) X192, q391) = Aq1, ¢3) (g2, 4)-

The proof is elementary and we leave it to the reader.
From property (4.15) and (dy,dz) = 1 it follows

(4.16) MNd?,d3) = MNd?, 1)\(1,d3).

Bearing in mind (4.13) and (4.16) we get

0 2
(4.17) o= Z = dl)jl;(dl’ D) Z u(d2)2§1’d2)fd1(d2)7
di=1 da=1

where
if (d1,ds) =1,

1
fn(d2) = {o if (dy,ds) > 1.

d

is multiplicative with respect to ds and the series

Clearly the function
Jfa, (d2)

Z Mﬁﬂ@)

d2
da=1
is absolutely convergent.
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Applying the Euler product we obtain

(418) i M(dQ)jl‘Q(]-vd%)fdl (dg) _ H (1 _ )‘(LQPQ))

do=1 2 ptdy p
%) AL, p?)
I1(-252) [T (-2

From (4.17) and (4.18) it follows

e

di1=1 pldi
_ S d?, ) AP\ !
- £ e ey

Obviously the function

d)A(d?, 1 A1, p?)\ !
1( )d%( )H(l— (pf))
pld1

is multiplicative with respect to d; and the series

— (d)A(d], 1) AL, p?)\ 1
5 MO ()

di=1 1 pldy

is absolutely convergent.
Applying again the Euler product from (2.4) and (4.19) we find

(420)  o=]] (1 _ LQI?)) 1;[ (1 - A(z;Q, 1) (1 - A(zz)p ))—1)

p p

1;[( AP?, 1;;)\(1]7))[];[2(1_(—1/17)4'])(2—2/]))4-2).

Bearing in mind (4.5), (4.12), (4.14) and (4.20) we get
(4.21) I'(X)=0X +0(zX°),

where o is given by product (2.6).
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4.2. Estimation of I';(X). Using (4.3), (4.4) and splitting the range of d; and ds
into dyadic subintervals of the form Dy < di < 2Dq, Dy < dy < 2D we write

(4.22) Dy(X) < (logX)? > > oo

n<X Dy <d1<2Dy D2<d2<2D2
n24+1=0(d?) n?42=0(d2)

where

1
(4.23) 5<Di, D:<VX?+2 DiDy> Z.

On the one hand, (4.22) gives us
(4.24) [y(X) < X554,

where

(4.25) Si=). > L

n<X D1<d1<2D;
n?4+1=0(d?)

On the other hand, (4.22) implies
(4.26) I (X) < X%,

where

(4.27) Se=y. Y. L

n<X Da<da<2Ds
n?4+2=0(d32)

Estimation of X;. Define

(4.28) Ni(d)={neN: 1<n<d n*+1=0(d)},
(4.29) N/(d)={neN: 1<n<d* n*+1=0(d>)}.

By (4.25) and (4.29) we obtain

(4.30) Si= Y >y

D1<d1<2D1 neN(d1) m<X,
m=n(d?)

> > (F=H-1FD)

D1<d1<2D1 neN](d1)
—n X—n
> > (?er(?)_w(—cﬁ )
D1<d1<2D1 neN](dy) 1 ! !
< XDyt + |5+ |27,
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where

(431) B= Y Y w(F)

D1<d1<2D1 neN](d1)

(4.32) 2=y 3 w( )

D1<d1<2D1 neN](d1)

and 9 (t) is defined by (1.1).

Firstly, we consider the sum X’. We note that the sum over n in (4.31) does
not contain terms with n = lcl2 and n = d3. Moreover, for any n satisfying the
congruences n? + 1 = 0(d?) and such that 1 < n < 1d , the number d? — n satisfies
the same congruence and we have,

o(G) + () =0

Bearing in mind these arguments for the sum X’ denoted by (4.31) we have that
(4.33) S =0.

Next, we consider the sum ¥” denoted by (4.32). Let D; < X'/2. The trivial

estimation gives us

(4.34) S Y ds < XV
D;1<d1<2D;

Let

(4.35) Dy > X1/2,

From the theory of the quadratic congruences we know that when #N](d) # 0,
then d is odd and

(4.36) #N(d) = #N(d) = 29,
Denote

(4.37) k=2v@)

(4.38) ni,...,ng € Ni(d), nj,...,n) € N{(d).
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From (4.28), (4.29), (4.35)—(4.38) and d > D; > X'/ it follows

w3 (- 3 ()

neN!(d 1 neN (dy)

B Z (X 1) ny Ay (dE =)+ (d] -y ,)
- 2 9 ) 2
neN!(dy) i 2 di
- (X ]_) n1+...+nk/2—|—(d1—nl)—i—...—l—(dl—nk/g)
— -
neNi(dy) dl 2 i
B (X 1) n
— - -
2
neN; (d1) dy neNi (di1)
_ (X \/Y Z \/Y -n 1)
= = - S
neN: (1) di d nEN (d1) h 2
- (E_E)+ > w(@)
5 )
neN: (dr) di d neN (d1) !
By (4.32), (4.35) and (4.39) we obtain
(4.40) v < XVHE 45,
where
VX —n
(4.41) =Y 3 w(T).

D1<d1<2D1 neN7(dq)

Using (4.41) and Lemma 3.1 with
(4.42) M, = xX'/?

we find
SIS v (- y e(m(\/)_(—n)/dl)+O(fMl(@))>.

2nim d
D1<d1<2D1 neN: (d1) ©  1<|m|<M; 1

Arguing as in [12], Theorem 17.1.1 we deduce

(4.43) N3 < XO(Dy M+ D¥* 4 X2 Dy MY,
Bearing in mind (4.30), (4.33), (4.34), (4.40), (4.42) and (4.43) we get
1/4

(4.44 Y < XD,
1

Estimation of ;. Our argument is a modification of Tolev (see [12], Theo-
rem 17.1.1) argument.
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Define
(4.45) No(d)={neN: 1<n<d n*+2=0(d)}.
Working as in ¥y, from (4.27) and (4.45) we find
(4.46) 5, < XDyt

for Dy < XY2 and

(4.47) Yo < XV/2He |5y
for

(4.48) Dy > X1'/2,
where

(4.49) L= Y 3 w(ﬁ_”).

d
D><d2<2D2 neN3(d2) 2

From (4.49) and Lemma 3.1 with
(4.50) My = X1/?

we obtain
(4.51)

5, — Z Z B Z e(m((VX —n)/dy)) _'_O(sz(\/Y—n)))

2mim
D2<d2<2D2 n€N> (d2) 1<|m|< M>

= X5 + X,
where
(C]
(4.52) Ss= ) o
1<|m| <Mz
X
s em Y (M) Y (o)
D2<d2<2D> neEN2(dz)
X —
(4.54) Se= Y > sz(\/_dQ n)

D2<d2<2D2 neN>(dz)
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By (4.53), (4.54) and Lemma 3.1 it follows

(455) Be= > > i bM2(m)e(\/Yd2—nm)

D2<d2<2D2 n€EN>(d2) m=—0o0

i bM2 (m)@m

m=—o00
log M. log M.
<« B2je+ =22 Y Ol Y an(m)]On]
? 2 igimi<mite > M+
log M. log M-
S D DI CHES L DR (D)
2 2 1<mgMyte |m|>MitTe
log My 4 log M,
6 2 plte p D02 Omml-
<D S ZHEI |
1<mE M,

Using (4.51), (4.52) and (4.55) we get

D2 |®m|
4. fl— — .
(4.56) 24<<X<M2+ > m)
1<mg Myt
Define
(4.57) F(d) = {(u,v): v>+2v* =d, (u,v) =1,uecN,ve7\{0}}.

According to Lemma 3.4 there exists a surjection
B: F(d) = Na(d)

from F(d) to N2(d) defined by (4.45) that associates to each couple (u,v) € F(d)
the element n € N>(d) satisfying

(4.58) nv = u(d).
Consequently, there exists a subset Fo(d) C F(d) such that the restriction
BlFoay: Fold) = Na(d)

of 5 to Fy(d) is bijection.
Let 8|7, (a) (%, v) = ny,p. Now (4.58) gives us

Ny,p = uTg(d)
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and therefore

Nu,v _ 61},2-{-21)2
(4.59) L = (),

Bearing in mind (4.59) and Lemma 3.2 we deduce

Nuw _ u Ul
4. = — 1
(4.60) d v(u? +20%) w (1),
Ny,v 2v Uy
4.61 = — —(1
(4.61) d u(u? + 202) M

From (4.53), (4.60) and (4.61) we find

(462)  On= > 6(W35Y) > e("iszg

Dy<da<2Dy (u,v)E€Fo(d2)
mvXxX mu M|y
= Z e( c\ié_) Z e(_v(u2+2v2)+ vl‘)
Dy<da<2Dy (u,v)E€Fo(d2)
o<u<|v|
m\/y 2mu MUy,
DI s D DR O
Dy<da<2Dy (u,v)€Fo(dz)
0<|v|<u

Z ( myv X mu n mam)
= e —
S, u?+ 202 v(u? 4 202) v
Do<u*42v°<2D>

0<u<|v|

(u,v)=1

L Z ( mv X 2mu mﬁu)
e _
, u? + 202 u(u? + 202) u
Da<u?+2v2<2D,
0<|v|<u
(u,v)=1
=0, +0.

Let us consider ©/,. Denote

mvX mu
(4.63) flu) = e(uz +202  w(u? + 21}2))’

(4.64) m(v) = v/max(0, Dy — 202), 1n2(v) = \{min(zﬂ, 2Dy — 202?),
(4.65) Kon()= 3 e(fﬁﬂﬂ).

v
M (v)Sust
(u,v)=1
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Using (4.62)—(4.65) and Abel’s summation formula we obtain

(4.66) O, = 3 3 f(u)e(@)

A /D2/3g\v|<¢ﬁ2n1(11()<ugﬁ2(v)

w,v)=1
n2(v) d
= Y (@ Eentn) - [ Kun@(50) )
V/D2/3<v|<vDz me)
mvX
< 2 (1+ v? )mwg%xm(v)'K”’Mt) :

v/ D2/3<|v|<+/Da2

We are now in a good position to apply Lemma 3.3 because the sum defined by (4.65)
is incomplete Kloosterman sum. Thus,

(4.67) Kym(t) < [o|Y2F2 (0, m)Y2.
By (4.66) and (4.67) we get
mv'X 1/2+4¢ 1/2
(4.68) 0, < 3 r(1+ 7)|v| 12+ (9, m)V/
v/ D2/3<|v|<v/D2

< XDy +mX 2Dy N (v,m)2
0<v<+/Da

On the other hand,

(4.69) S em)2> 2 N

0<v<+v/D2 llm v<v/Dz
v=0(1)
< D3 172 < Dy*r(m) < X°DY*.
llm

Estimations (4.68) and (4.69) imply

4.70 0!, < X°(Dy/* + mx/2D; MY
m 2 2

Proceeding in a similar way for ©! from (4.62) we deduce

471 0! < X°(Dy/* + mx'/2D, Y.
m 2 2

Now (4.62), (4.70) and (4.71) give us

(4.72) Om < X*(DY/* +mX/2Dy 1Y),
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From (4.56) and (4.72) it follows

(4.73) Sy < X°(DoM; ' + DY 4 XV20M,D; Y,
Taking into account (4.50) and (4.73) we find

(4.74) Ny < Xep A

Using (4.46), (4.47) and (4.74) we obtain

(4.75) Sy < X1tepy A,

Estimation of I';(X). Summarizing (4.23), (4.24), (4.26), (4.44) and (4.75)
we get

(4.76) [o(X) < X1Hep1/8,

4.3. The end of the proof. Bearing in mind (4.1), (4.21), (4.76) and choosing
z = X8/9 we establish the asymptotic formula (2.5).

The theorem is proved. |
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