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The Golomb space is topologically rigid

Taras Banakh, Dario Spirito, S lawomir Turek

Abstract. The Golomb space Nτ is the set N of positive integers endowed with the
topology τ generated by the base consisting of arithmetic progressions {a + bn:
n ≥ 0} with coprime a, b. We prove that the Golomb space Nτ is topologi-
cally rigid in the sense that its homeomorphism group is trivial. This resolves
a problem posed by T. Banakh at Mathoverflow in 2017.
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Classification: 11A99, 54G15

1. Introduction

In the AMS Meeting announcement [3] M. Brown introduced an amusing topol-

ogy τ on the set N of positive integers turning it into a connected Hausdorff

space. The topology τ is generated by the base consisting of arithmetic progres-

sions a + bN0 := {a + bn : n ∈ N0} with coprime parameters a, b ∈ N. Here by

N0 = {0} ∪ N we denote the set of nonnegative integer numbers.

In [15] the topology τ is called the relatively prime integer topology. This

topology was popularized by S. Golomb in [7], [8], who observed that the classical

Dirichlet theorem on primes in arithmetic progressions is equivalent to the density

of the set Π of prime numbers in the topological space (N, τ). As a by-product of

such popularization efforts, the topological space Nτ := (N, τ) is known in general

topology as the Golomb space, see [16], [17].

The topological structure of the Golomb space Nτ was studied by T. Banakh,

J. Mioduszewski and S. Turek in [2], who proved that the space Nτ is not topo-

logically homogeneous (by showing that 1 is a fixed point of any homeomorphism

of N). Motivated by this results, the authors of [2] posed a problem of the topo-

logical rigidity of the Golomb space. This problem was also repeated by the

first author at Mathoverflow, see [1]. A topological space X is defined to be

topologically rigid if its homeomorphism group is trivial.

The main result of this note is the following theorem answering the above

problem.
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Theorem 1. The Golomb space Nτ is topologically rigid.

The proof of this theorem will be presented in Section 5 after some preparatory

work made in Sections 3 and 4. The idea of the proof belongs to the second

author who studied in [13] the rigidity properties of the Golomb topology on

a Dedekind ring with removed zero, and established in [13, Theorem 6.7] that

the homeomorphism group of the Golomb topology on Z \ {0} consists of two

homeomorphisms. The proof of Theorem 1 is a modified (and simplified) version

of the proof of Theorem 6.7 given in [13]. It should be mentioned that the Golomb

topology on Dedekind rings with removed zero was studied by J. Knopfmacher,

Š. Porubský in [11], P. L. Clark, N. Lebowitz-Lockard, P. Pollack in [4], and

D. Spirito in [13], [14].

2. Preliminaries and notations

In this section we fix some notation and recall some known results on the

Golomb topology. For a subset A of a topological space X , by Ā we denote the

closure of A in X .

A poset is a set X endowed with a partial order “≤”. A subset L of a partially

ordered set (X,≤) is called

◦ linearly ordered (or else a chain) if any points x, y ∈ L are comparable in

the sense that x ≤ y or y ≤ x;

◦ an antichain if any two distinct elements x, y ∈ A are not comparable.

By Π we denote the set of prime numbers. For a number x ∈ N we denote

by Πx the set of all prime divisors of x. Two numbers x, y ∈ N are coprime if

and only if Πx ∩ Πy = ∅. For a number x ∈ N let xN := {xn : n ∈ N} be the set

of all powers of x.

For a number x ∈ N and a prime number p let lp(x) be the largest integer

number such that plp(x) divides x. The function lp(x) plays the role of logarithm

with base p.

The following formula for the closures of basic open sets in the Golomb topology

was established in [2, 2.2].

Lemma 2 (T. Banakh, J. Mioduszewski, S. Turek). For any a, b ∈ N

a+ bN0 = N ∩
⋂

p∈Πb

(

pN ∪ (a+ plp(b)Z)
)

.

Also we shall heavily exploit the following lemma, proved in [2, 5.1].

Lemma 3 (T. Banakh, J. Mioduszewski, S. Turek). Each homeomorphism h :

Nτ
// Nτ of the Golomb space has the following properties:
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(1) h(1) = 1;

(2) h(Π) = Π;

(3) Πh(x) = h(Πx) for every x ∈ N;

(4) h(xN) = h(x)N for every x ∈ N.

Let p be a prime number and k ∈ N. Let Z be the ring of integer numbers,

Zpk be the residue ring Z/pkZ, and Z×
pk be the multiplicative group of invertible

elements of the ring Zpk . It is well-known that |Z×
pk | = ϕ(pk) = pk−1(p− 1). The

structure of the group Z×
pk was described by Gauss in [6, art. 52–56] (see also

Theorems 2 and 2’ in Chapter 4 of [9]).

Lemma 4 (C. F. Gauss). Let p be a prime number and k ∈ N.

(1) If p is odd, then the group Z×
pk is cyclic.

(2) If p = 2 and k ≥ 2, then the element −1 + 2kZ generates a two-element

cyclic group C2 in Z×
2k

and the element 5+2kZ generates a cyclic subgroup

C2k−2 of order 2k−2 in Z×
2k

such that Z×
2k

= C2 ⊕ C2k−2 .

Lemma 5. If H is a non-cyclic subgroup of the multiplicative group Z×
2k

for

some k ≥ 3, then H contains the Boolean subgroup

V = {1 + 2kZ,−1 + 2kZ, 1 + 2k−1 + 2kZ,−1 + 2k−1 + 2kZ}.

Proof: Observe that the multiplicative group Z×
2k

has order 2k−1, which implies

that the order of every element of Z×
2k

is a power of 2. The Gauss Lemma 4

implies that the multiplicative group Z×
2k

has exactly 4 elements of order less

than or equal to 2 and those elements form the 4-element Boolean subgroup V .

Applying the Frobenius–Stickelberger theorem 4.2.6, see [12], we conclude that

the finite subgroup H ⊆ Z×
2k

is the direct sum of finite cyclic groups whose orders

are powers of 2. Since H is not cyclic, at least two cyclic groups in this direct sum

are not trivial, which implies that H contains at least four element of order less

than or equal to 2. Taking into account that the elements of the subgroup V are

the only elements of order less than or equal to 2 in the group Z×
2k
, we conclude

that V ⊆ H . �

3. Golomb topology versus the p-adic topologies on N

Let p be any prime number. Let us recall that the p-adic topology on Z is

generated by the base consisting of the sets x + pnZ, where x ∈ Z and n ∈ N.

This topology induces the p-adic topology on the subset N of Z. It is gener-

ated by the base consisting of the sets x + pnN0 where x, n ∈ N. It is easy to

see that N endowed with the p-adic topology is a regular second-countable space
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without isolated points. So, by Sierpiński theorem, see [5, 6.2.A (d)], this space is

homeomorphic to the space of rationals and hence is topologically homogeneous.

Consequently, any nonempty open subspace of N with the p-adic topology (in

particular, N \ pN) also is homeomorphic to Q and hence is topologically homo-

geneous.

The following lemma is a special case of Proposition 3.1 in [13].

Lemma 6. For any clopen subset Ω of Nτ \ pN, and any x ∈ Ω, there exists

n ∈ N such that x+ pnN0 ⊆ Ω.

Proof: Since the set pN is closed in Nτ , the set Ω is open in Nτ and hence

x + pnbN0 ⊆ Ω for some n ∈ N and b ∈ N which is coprime with px. We claim

that x+ pnN0 ⊆ Ω. To derive a contradiction, assume that x+ pnN0 \Ω contains

some number y. Since Ω is closed in Nτ \pN, there existm ≥ n and d ∈ N such that

d is coprime with p and y, and (y+ pmdN0) ∩ Ω = ∅. It follows that y+ pmN0 ⊆

(x + pnN0) + pmN0 ⊆ x + pnN0. Since p /∈ Πb ∪ Πd, we can apply the Chinese

remainder theorem [10, 3.12] and conclude that ∅ 6= (y + pmN) ∩
⋂

q∈Πb∪Πd
qN.

Applying Lemma 2 and taking into account that the set Ω is clopen in Nτ \ pN,

we conclude that

∅ 6= (y + pmN0) ∩

(

⋂

q∈Πb∪Πd

qN

)

= (x+ pnN0) ∩

(

⋂

q∈Πb

qN

)

∩ (y + pmN0) ∩

(

⋂

q∈Πd

qN

)

⊆ x+ pnbN0 ∩ y + pmdN0 ⊆ Ω ∩ (N \ pN) \ Ω ⊆ pN,

which is not possible as the sets x+ pnN0 and pN are disjoint. This contradiction

shows that x+ pnN0 ⊆ Ω. �

A subset of a topological space is clopen if it is closed and open. By the

zero-dimensional reflection of a topological space X we understand the space X

endowed with the topology generated by the base consisting of clopen subsets of

the space X .

Lemma 7. The p-adic topology on N \ pN coincides with the zero-dimensional

reflection of the subspace Nτ \ pN of the Golomb space Nτ .

Proof: Lemma 6 implies that the p-adic topology τp on N \ pN is stronger than

the topology ζ of zero-dimensional reflection on Nτ \ pN. To see that the τp
coincides with ζ, it suffices to show that for every x ∈ N \ pN and n ∈ N the basic

open set N ∩ (x+ pnZ) in the p-adic topology is clopen in the subspace topology

of Nτ \ pN ⊂ Nτ . By the definition, the set N ∩ (x+ pnZ) is open in the Golomb



The Golomb space is topologically rigid 351

topology. To see that it is closed in Nτ \pN, take any point y ∈ (N\pN)\(x+pnZ)

and observe that the Golomb-open neighborhood y + pnN0 of y is disjoint with

the set N ∩ (x+ pnZ). �

For every prime number p, consider the countable family

Xp =
{

aN : a ∈ N \ pN, a 6= 1
}

,

where the closure aN is taken in the p-adic topology on N \ pN, which coincides

with the topology of zero-dimensional reflection of the Golomb topology on N\pN

according to Lemma 7.

The family Xp is endowed with the partial order “≤” defined by X ≤ Y if and

only if Y ⊆ X . So, Xp is a poset carrying the partial order of reverse inclusion.

Lemma 8. For any prime number p, any homeomorphism h of the Golomb

space Nτ induces an order isomorphism

h : Xp
// Xh(p), h : aN 7→ h(aN) = h(a)N

of the posets Xp and Xh(p).

Proof: By Lemma 3, h(1) = 1 and h(p) is a prime number. First we show

that h(pN) = h(p)N. Indeed, for any x ∈ pN we have p ∈ Πx and by Lemma 3,

h(p) ∈ h(Πx) = Πh(x) and hence h(x) ∈ h(p)N and h(pN) ⊆ h(p)N. Applying the

same argument to the homeomorphism h−1, we obtain h−1(h(p)N) ⊆ pN, which

implies the desired equality h(pN) = h(p)N. The bijectivity of h ensures that h

maps homeomorphically the space Nτ \ pN onto the space Nτ \ h(p)N.

Then h also is a homeomorphism of the spaces N \ pN and N \ h(p)N endowed

with the zero-dimensional reflections of their subspace topologies inherited from

the Golomb topology of Nτ . By Lemma 7, these reflection topologies on N \ pN

and N \ h(p)N coincide with the p-adic and h(p)-adic topologies on N \ pN and

N \ h(p)N, respectively.

By Lemma 3, for any a ∈ N \ ({1} ∪ pN) we have

h(a)N = h(aN) ⊆ h(N \ pN) = N \ h(p)N

and by the fact that h : N \ pN // N \ h(p)N is a homeomorphism in the topolo-

gies of zero-dimensional reflections, we get h(aN) = h(aN) = h(a)N. The same

argument applies to the homeomorphism h−1. This implies that

h : Xp
// Xh(p), h : aN 7→ h(aN) = h(a)N,

is a well-defined bijection. It is clear that this bijection preserves the inclusion

order and hence it is an order isomorphism between the posets Xp and Xh(p). �
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4. The order structure of the posets Xp

In this section, given a prime number p, we investigate the order-theoretic

structure of the poset Xp.

For every n ∈ N denote by πn : N // Zpn the homomorphism assigning to each

number x ∈ N the residue class x+ pnZ. Also for n ≤ m let

πm,n : Zpm // Zpn

be the ring homomorphism assigning to each residue class x + pmZ the residue

class x+pnZ. It is easy to see that πn = πm,n◦πm. Observe that the multiplicative

group Z×
pn of invertible elements of the ring Zpn coincides with the set Zpn \pZpn

and hence has cardinality pn − pn−1 = pn−1(p − 1). Observe that for every

a ∈ N \ pZ the set πn(a
N) = πn(a)

N is a multiplicative subgroup of the finite

group Z×
pn .

First we establish the structure of the elements aN of the family Xp.

Lemma 9. If for some a ∈ N \ pZ and n ∈ N the element πn(a) has order

greater than or equal to max{p, 3} in the multiplicative group Z×
pn , then aN =

π−1
n (πn(a)

N).

Proof: Let B = bN be the cyclic group generated by the element b = πn(a) in

the multiplicative group Z×
pn . Since |Z×

pn | = pn−1(p− 1), and b has order greater

than or equal to max{p, 3}, the cardinality of the group B is equal to pkd for

some k ∈ {1, . . . , n − 1} and some divisor d of the number p − 1. Moreover, if

p = 2, then 2k ≥ 3 and hence k ≥ 2 and n ≥ 3.

For any number m ≥ n, consider the quotient homomorphism

πm,n : Zpm // Zpn , πm,n : x+ pmZ 7→ x+ pnZ.

We claim that the subgroup H = π−1
m,n(B) of the multiplicative group Z×

pm is

cyclic. For odd p this follows from the cyclicity of the group Z×
pn , see Lemma 4.

For p = 2, by Lemma 4, the multiplicative group Z×
2m is isomorphic to the

additive group Z2×Z2m−2 . Assuming that H is not cyclic and applying Lemma 5,

we conclude that H contains the 4-element Boolean subgroup

V = {1 + 2mZ,−1 + 2mZ, 1 + 2m−1 + 2mZ,−1 + 2m−1 + 2mZ}

of Z×
2m . Then B = πm,n(H) ⊇ πm,n(V ) ∋ −1 + 2nZ. Taking into account

that −1 + 2nZ has order 2 in the cyclic group B, we conclude that −1 + 2nZ =

a2
k−1

+2nZ. Since k ≥ 2, the odd number c = a2
k−2

is well-defined and c2+4Z =

a2
k−1

+4Z = −1+4Z, which is not possible (as squares of odd numbers are equal

to 1 modulo 4). This contradiction shows that the group H is cyclic.



The Golomb space is topologically rigid 353

By [12, 1.5.5], the number of generators of the cyclic group H can be calculated

using the Euler totient function as

ϕ(|H |) = ϕ(pm−n|B|) = ϕ(pm−npkd) = ϕ(pm−n+k)ϕ(d)

= pm−n+k−1(p− 1)ϕ(d) = pm−nϕ(pk)ϕ(d) = pm−nϕ(pkd)

= pm−nϕ(|B|),

which implies that for every generator g of the group B, every element of the

set π−1
m,n(g) is a generator of the group H . In particular, the element πm(a) ∈

π−1
m,n(πn(a)) is a generator of the group H . By the definition of p-adic topology,

aN =
⋂

m≥n

π−1
m (πm(a)N) =

⋂

m≥n

π−1
m (π−1

m,n(B))

=
⋂

m≥n

π−1
n (B) = π−1

n (B) = π−1
n (πn(a)

N).

�

Lemma 10. (1) For every X ∈ Xp there exists n ∈ N and a cyclic sub-

group H of the multiplicative group Z×
pn such that X = π−1

n (H) and

|H | ≥ max{p, 3}.

(2) For every n ∈ N and cyclic subgroup H of Z×
pn of order |H | ≥ max{p, 3},

there exists a number a ∈ N \ pN such that π−1
n (H) = aN ∈ Xp.

Proof: (1) Given any X ∈ Xp, find a number a ∈ N \ ({1} ∪ pN) such that

X = aN. Choose any n ∈ N with pn > ap and observe that the cyclic subgroup

H ⊆ Z×
pn , generated by the element πn(a) = a + pnZ, has order |H | ≥ p + 1 ≥

max{p, 3}.

(2) Fix n ∈ N and a cyclic subgroup H of Z×
pn of order |H | ≥ max{p, 3}. Find

a number a ∈ N such that the residue class πn(a) = a+ pnZ is a generator of the

cyclic group H . Then πn(a) has order |H | ≥ max{p, 3}, Lemma 9 ensures that

π−1
n (H) = π−1

n (πn(a)
N) = aN ∈ Xp. �

For any X ∈ Xp, let

n(X) = min{n ∈ N : X = π−1
n (πn(X)), |πn(X)| ≥ max{p, 3}}.

Lemmas 9 and 10 imply that the number n(X) is well-defined and πn(X)(X) is

a cyclic subgroup of order greater than or equal to max{p, 3} in the multiplicative

group Z×
pn(X) . Let i(X) be the index of the cyclic subgroup πn(X)(X) in Z×

pn(X) .

Lemma 11. Let p = 2, a > 1 be an odd integer, and X = aN be the closure

of the set aN in the 2-adic topology of N \ 2N. The cyclic subgroup πn(X)(X) of

Z×
2n(X) has order 4 and index i(X) = 2n(X)−3 ≥ 2.
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Proof: By definition of n(X) and Lemma 9, n(X) is the smallest number such

that the cyclic subgroup πn(X)(X) = πn(X)(a
N) of Z×

2n(X) has order greater than

or equal to 3. Then |πn(X)(a
N)| = 2k for some k ≥ 2. If k 6= 2, then we

can consider the projection πn(X)−1(X) = πn(X),n(X)−1(πn(X)(X)) and conclude

that |πn(X)−1(X)| ≥ |πn(X)(X)|/2 ≥ 2k−1 ≥ 4 ≥ 3 (since the homomorphism

πn(X),n(X)−1 : Z2n(X)
// Z2n(X)−1 has kernel of cardinality 2), but this contradicts

the minimality of n(X). This contradiction shows that |πn(X)(X)| = 4.

The group Z×
2n(X) has cardinality |Z×

2n(X) | ≥ |πn(X)(X)| = 4 and therefore

n(X) ≥ 3. By Lemma 4 (2), the multiplicative group Z×
2n(X) is not cyclic, which

implies πn(X)(X) 6= Z×
2n(X) and hence i(X) ≥ |Z×

2n(X)/πn(X)(X)| = 2n(X)−3 ≥ 2.

�

Lemma 12. For any odd prime number p and two sets X,Y ∈ Xp, the inclusion

X ⊆ Y holds if and only if i(Y ) divides i(X).

Proof: Let m = max{n(X), n(Y )}. Then X = π−1
m (πm(X)), Y = π−1

m (πm(Y ))

and πm(X), πm(Y ) are subgroups of the multiplicative group Z×
pm , which is cyclic

by the Gauss Lemma 4 (1). It follows that the subgroups πm(X) and πm(Y ) have

indexes i(X) and i(Y ) in Z×
pm , respectively. Let g be a generator of the cyclic

group Z×
pm . It follows that the subgroups πm(X) and πm(Y ) are generated by

the elements gi(X) and gi(Y ), respectively. Now we see that X ⊆ Y if and only

if πm(X) ⊆ πm(Y ) if and only if gi(X) ∈ (gi(Y ))N if and only if i(Y ) divides

i(X). �

Lemma 13. For any odd prime number p, any n ∈ N, and the number a = 1+pn

we have aN = 1 + pnN0 and i(aN) = pn−1(p− 1).

Proof: Observe that for any k < p we have ak = (1+ pn)k ∈ 1+ kpn+ pn+1Z 6=

1+pn+1Z and ap = (1+pn)p ∈ 1+pn+1Z, which means that the element πn+1(a)

has order p in the group Z×
pn+1 . By Lemma 9,

aN = π−1
n+1({a

k + pn+1Z : 0 ≤ k < p}) =

p−1
⋃

k=0

(ak + pn+1N0) = 1 + pnN0.

Also i(aN) = |Z×
pn+1 |/p = pn−1(p− 1). �

Lemmas 10 and 12 imply that for an odd prime number p, the poset Xp is

order isomorphic to the set

Dp = {d ∈ N : d divides pn(p− 1) for some n ∈ N0},

endowed with the divisibility relation.

An element t of a partially ordered set (X,≤) is called ↑-chain if its upper

set ↑t = {x ∈ X : x ≥ t} is a chain. It is easy to see that the set of ↑-chain
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elements of the poset Dp coincides with the set {pn(p− 1): n ∈ N0} and hence is

a well-ordered chain with the smallest element (p− 1).

Below on the Hasse diagrams of the posets D3 and D5 (showing that these

posets are not order isomorphic) the ↑-chain elements are drawn with the bold

font.

D3 D5

...
...

...
...

...

27

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
18 125

⑥⑥⑥⑥⑥⑥⑥⑥⑥

50

⑦⑦⑦⑦⑦⑦⑦⑦⑦

20

9

♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠
6 25

③③③③③③③③

10

④④④④④④④④

4

3

♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠
2 5

③③③③③③③③③
2

④④④④④④④④④

1

♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠
1

③③③③③③③③③

Lemmas 12 and 13 and the isomorphness of the posets Xp and Dp imply the

following lemma.

Lemma 14. For an odd prime number p, the family {1+pnN0 : n ∈ N} coincides

with the well-ordered set of ↑-chain elements of the poset Xp.

Now we reveal the order structure of the poset X2. This poset consists of the

closures aN in the 2-adic topology of the sets aN for odd numbers a > 1.

Lemma 15. Let a > 1 be an odd integer and X = aN be the closure of aN in

the 2-adic topology on N \ 2N.

(1) If a ∈ 1 + 4N, then aN = 1 + 2n(X)−2N0.

(2) If a ∈ 3+4N0, then aN = (1+2n(X)−1N0)∪ (−1+2n(X)−2+2n(X)−1N0).

In both cases, i(X) = 2n(X)−3 ≥ 2.

Proof: By Lemma 11, the projection CX := πn(X)(X) = πn(X)(a
N) is a cyclic

subgroup of order 4 and index i(X) = 2n(X)−3 ≥ 2 in the group Z×
2n(X) .

By Lemma 4 (2), the coset 5 + 2n(X)Z generates a maximal cyclic subgroup

MX = {1 + 4k + 2n(X)Z : 0 ≤ k < 2n(X)−2}
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of cardinality 2n(X)−2 in Z×
2n(X) . If a ∈ 1 + 4N, the subgroup generated by

πn(X)(a) is contained in MX . Then CX = {1 + k · 2n(X)−2 + 2n(X)Z : 0 ≤ k < 4}

and X = π−1
n(X)(CX) = 1 + 2n(X)−2N0.

If a ∈ 3 + 4N0, then CX is not contained in MX . By the Gauss Lemma 4 (2),

there are two cyclic subgroups of Z×
2n(X) of order 4: one generated by g = (5 +

2n(X)Z)n(X)−2 (which is contained in MX) and the other is generated by −g,

which is not contained in MX but contains −1 + 2n(X). Therefore, CX must be

equal to CX = {(−1)k + k · 2n(X)−2 + 2n(X)Z : 0 ≤ k < 4} and

X = π−1
n(X)(CX) =

3
⋃

k=0

π−1
n(X)

(

(−1)k + k · 2n(X)−2 + 2n(X)Z
)

= (1 + 2n(X)−1N0) ∪ (−1 + 2n(X)−2 + 2n(X)−1N0).

�

Lemma 16. For every n ≥ 2,

(1) the set X = (1 + 2n)N ∈ X2 coincides with 1+2nN0 and has i(X) = 2n−1;

(2) the set Y = (−1 + 2n)N ∈ X2 coincides with (1 + 2n+1N0) ∪ (2n − 1 +

2n+1N0) and has i(Y ) = 2n−1.

Proof: (1) Observe that for every positive k < 4 we have (1 + 2n)k ∈ 1 +

k2n + 2n+2Z 6= 1 + 2n+2Z and (1 + 2n)4 ∈ 1 + 2n+2Z, which means that the

element (1 + 2n) + 2n+2Z has order 4 in the group Z×
2n+2 . Then the element

X = (1 + 2n)N ∈ X2 has n(X) = n + 2 and hence X = 1 + 2nN0 and i(X) =

2n(X)−3 = 2n−1 by Lemma 15.

(2) Also for every positive k < 4 we have (−1 + 2n)k ∈ (−1)k(1 − k2n) +

2n+2Z 6= 1 + 2n+2Z and (−1 + 2n)4 ∈ 1 + 2n+2Z, which means that the element

(−1 + 2n) + 2n+2Z has order 4 in the group Z×
2n+2 . Then the element Y =

(−1 + 2n)N ∈ X2 has n(Y ) = n+2 and hence Y = (1+2n+1N0)∪(2n−1+2n+1N0)

and i(Y ) = 2n(Y )−3 = 2n−1 by Lemma 15. �

Lemma 17. For distinct sets X,Y ∈ X2, the strict embedding X ⊂ Y holds if

and only if X ⊆ 1 + 4N0 and i(Y ) < i(X).

Proof: If X ⊆ 1+4N0, then by Lemma 15, X = 1+2n(X)−2N0. If i(Y ) < i(X),

then n(Y ) < n(X) (see Lemma 15). If Y ⊆ 1 + 4N0, then Lemma 15 implies

X = 1 + 2n(X)−2N0 ⊂ 1 + 2n(Y )−2N0 = Y.

If Y 6⊆ 1 + 4N0, then Lemma 15 ensures that

X = 1+ 2n(X)−2N0 ⊂ 1 + (2n(Y )−1N0) ∪ (−1 + 2n(Y )−2 + 2n(Y )−1N0) = Y.

In both cases we have the strict embedding X ⊂ Y .
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Conversely, assume that X ⊂ Y . We should prove thatX ⊆ 1+4N0 and i(Y ) <

i(X). To derive a contradiction, assume that X 6⊆ 1 + 4N0. Applying Lemma 15

and taking into account that X ⊂ Y , we conclude that X = (1 + 2n(X)−1N0) ∪

(−1+2n(X)−2+2n(X)−1N0), Y = (1+2n(Y )−1N0)∪(−1+2n(Y )−2+2n(Y )−1N0) and

n(X) > n(Y ). Then −1 + 2n(X)−2 ∈ X ⊆ Y implies that −1 + 2n(X)−2 belongs

either to 1+2n(Y )−1N0 or to−1+2n(Y )−2+2n(Y )−1N0. In the first case we conclude

that 2 ∈ 2n(Y )−1Z and hence n(Y ) ≤ 2, which contradicts Lemma 11. In the

second case, we obtain that 2n(X)−2 ∈ 2n(Y )−2 +2n(Y )−1N0. Since n(X) > n(Y ),

this implies 2n(Y )−2 ∈ 2n(Y )−1Z, which is the final contradiction showing that

X ⊆ 1 + 4N0. Then X = 1 + 2n(X)−2N0 according to Lemma 15.

Next, we prove that i(Y ) < i(X). By Lemma 15, two cases are possible:

Y = 1 + 2n(Y )−2N0 or Y = (1 + 2n(Y )−1N0) ∪ (−1 + 2n(Y )−2 + 2n(Y )−1N0). In

both cases the strict inclusion 1+2n(X)−2N0 = X ⊂ Y implies that n(X) > n(Y )

and hence i(X) = 2n(X)−3 > 2n(Y )−3 = i(Y ). �

Lemmas 16 and 17 imply:

Lemma 18. The family minX2 = {X ∈ X2 : X 6⊆ 1 + 8N0} coincides with the

set of minimal elements of the poset X2 and the set X2 \minX2 = {X ∈ X2 : X ⊆

1 + 8N0} is well-ordered and coincides with the set {1 + 2nN0 : n ≥ 3}.

...

❆❆
❆❆

❆❆
❆❆

❆

...

33N

❈❈
❈❈

❈❈
❈❈

31N

17N

❈❈
❈❈

❈❈
❈❈

❈ 15N

9N

❈❈
❈❈

❈❈
❈❈

❈ 7N

5N 3N

The Hasse diagram of the poset X2.

Lemma 19. For any homeomorphism h of the Golomb space Nτ and any n ∈

{1, 2, 3} we have h(n) = n.
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Proof: 1. The equality h(1) = 1 follows from Lemma 3 (1).

2. By Lemma 8, h induces an order isomorphism of the posets X2 and Xh(2).

By Lemmas 16 and 18, the set {(−1 + 2n)N : n ≥ 2} is an infinite antichain in the

poset X2. Consequently, the poset Xh(2) also contains an infinite antichain. On

the other hand, for any odd prime number p the poset Xp is order-isomorphic to

the poset Dp, which contain no infinite antichains. Consequently, Xh(2) cannot

be order isomorphic to Xp, and hence h(2) = 2.

3. By Lemma 3 (2), h(3) is a prime number, not equal to h(2) = 2. By

Lemma 8, h induces an order isomorphism of the posets X3 and Xh(3). Then the

posets D3 and Dh(3) also are order isomorphic. The smallest ↑-chain element of

the poset D3 is 2 and the set ↓2 = {d ∈ D3 : d divides 2} has cardinality 2. On

the other hand, the smallest ↑-chain element of the poset Dh(3) is h(3)− 1. Since

the sets D3 and Dh(3) are order-isomorphic, the set ↓(h(3) − 1) = {d ∈ Dh(3) :

d divides h(3) − 1} has cardinality 2, which means that the number h(3) − 1 is

prime. Observing that 3 is a unique odd prime number p such that p−1 is prime,

we conclude that h(3) = 3. �

Lemma 20. For any homeomorphism h of the Golomb space Nτ , and any prime

number p we have h(1 + pnN0) = 1 + h(p)nN0 for all n ∈ N.

Proof: By Lemma 8, the homeomorphism h induces an order isomorphism of

the posets Xp and Xh(p).

If p = 2, then h(p) = 2 by Lemma 19. Lemma 3 implies h(2N) = h(2)·N = 2N

and hence h(1 + 2N0) = h(N \ 2N) = N \ h(2N) = 1 + 2N0. By Lemma 8,

h induces an order automorphism of the poset X2 and hence h is identity on the

well-ordered set {1+2nN0 : n ≥ 3} of non-minimal elements of X2, see Lemma 18.

Consequently, h(1 + 2nN0) = 1 + 2nN0 for all n ≥ 3.

Next, we show that h(1 + 4N0) = 1 + 4N0. Observe that for the smallest non-

minimal element 9N = 1 + 8N0 of X2 there are only two elements, 5N = 1 + 4N0

and 3N = (1+8N0)∪ (3+8N0), which are strictly smaller than 9N in the poset X2.

Then h(5N) ∈ {3N, 5N}. By Lemma 19, h(3) = 3 and hence h(3N) = 3N, which

implies that h(1 + 4N0) = h(5N) = 5N = 1 + 4N0.

Now assume that p is an odd prime number. Since h(2) = 2, the prime

number h(p) 6= h(2) = 2 is odd. By Lemma 14, the well-ordered sets {1 + pnN0:

n ∈ N} and {1 + h(p)nN0 : n ∈ N} coincide with the sets of ↑-chain elements

of the posets Xp and Xh(p), respectively. Taking into account that h is an order

isomorphism, we conclude that h(1 + pnN0) = 1 + h(p)nN0 for every n ∈ N. �
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5. Proof of Theorem 1

In this section we present the proof of Theorem 1. Given any homeomorphism h

of the Golomb space Nτ , we need to prove that h(n) = n for all n ∈ N. This

equality will be proved by induction.

For n ≤ 3 the equality h(n) = n is proved in Lemma 19. Assume that for

some number n ≥ 4 we have proved that h(k) = k for all k < n. For every prime

number p let αp be the largest integer number such that pαp divides n − 1 (so,

αp = lp(n − 1)). For every p ∈ Πn−1 we have p ≤ n − 1 and hence h(p) = p (by

the inductive hypothesis). Then h(Πn−1) = Πn−1 and h(Π \Πn−1) = Π \Πn−1.

Observe that n is the unique element of the set

⋂

p∈Π

(1 + pαpN0) \ (1 + pαp+1N0).

By Lemma 20, h(n) coincides with the unique element of the set

⋂

p∈Π

(1 + h(p)αpN0) \ (1 + h(p)αp+1N0)

=

(

⋂

p∈Πn−1

(1+h(p)αpN0) \ (1+h(p)αp+1N0)

)

∩

(

⋂

p∈Π\Πn−1

N \ (1+h(p)N0)

)

=

(

⋂

p∈Πn−1

(1 + pαpN0) \ (1 + pαp+1N0)

)

∩

(

⋂

p∈Π\Πn−1

N \ (1 + pN0)

)

= {n}

and hence h(n) = n. �
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Poland

E-mail: t.o.banakh@gmail.com

D. Spirito:

Dipartimento di Matematica e Fisica, Università degli Studi “Roma Tre”,
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