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Decomposition of Cartesian product of complete

graphs into paths and stars with four edges

Arockiajeyaraj P. Ezhilarasi, Appu Muthusamy

Abstract. Let Pk and Sk denote a path and a star, respectively, on k vertices. We
give necessary and sufficient conditions for the existence of a complete {P5, S5}-
decomposition of Cartesian product of complete graphs.

Keywords: graph decomposition; path; star graph; product graph

Classification: 05C51, 05C70

1. Introduction

Unless stated otherwise, all graphs considered here are finite, simple, and undi-

rected. For the standard graph-theoretic terminology, the readers are referred to

J.A. Bondy and U. S.R. Murty, see [5]. Let Pk, Sk, Ck,Kk denote a path, star,

cycle and complete graph, respectively, on k vertices, and let Km,n denote the

complete bipartite graph containing m vertices in one partite set and n vertices

in the other partite set. A graph whose vertex set is partitioned into subsets

V1, . . . , Vt with edge set
⋃

i6=j∈[t] Vi×Vj is a complete t-partite graph, denoted by

Kn1,...,nt
, when |Vi| = ni for all i. For G = K2n or Kn,n, the graph G− I denotes

G with a 1-factor I removed. For any integer λ > 0, λG and G(λ) respectively

denote the graph consisting of λ edge-disjoint copies of G and a multigraph G

with uniform edge multiplicity λ. Moreover υ(G) and ε(G) denote the number of

vertices and number, respectively, of edges in G. The complement of the graph G

is denoted by G. For two graphs G and H , we define their Cartesian product,

denoted by G�H , with vertex set V (G�H) = V (G)× V (H) and edge set

E(G�H) = {(g, h)(g′, h′) : g = g′, hh′ ∈ E(H), or gg′ ∈ E(G), h = h′}.
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It is well known that the Cartesian product is commutative and associative.

For a graph G, if E(G) can be partitioned into E1, . . . , Ek such that the sub-

graph of G induced by Ei is Hi for all 1 ≤ i ≤ k, then we say that H1, . . . , Hk

decompose G, and we write G = H1⊕· · ·⊕Hk , since H1, . . . , Hk are edge-disjoint

subgraphs of G. If for 1 ≤ i ≤ k, Hi
∼= H , we say that G has a H-decomposition.

If G has a decomposition into p copies of H1 and q copies of H2, then we say

that G has a {pH1, qH2}-decomposition. If such a decomposition exists for all

values of p and q satisfying trivial necessary conditions, then we say that G has

a {H1, H2}{p,q}-decomposition or has a complete {H1, H2}-decomposition.

Study on {H1, H2}{p,q}-decomposition of graphs is not new. A. A. Abueida

et al. in [1], [3] completely determined the values of n for which Kn(λ) admits

a {pH1, qH2}-decomposition such that H1∪H2
∼= Kt, when λ ≥ 1 and |V (H1)| =

|V (H2)| = t, where t ∈ {4, 5}. A.A. Abueida and M. Daven in [2] proved that

there exists a {pKk, qSk+1}-decomposition of Kn for k ≥ 3 and n ≡ 0, 1 (mod k).

A.A. Abueida and T. O’Neil in [4] proved that for k ∈ {3, 4, 5}, there exists

a {pCk, qSk}-decomposition of Kn(λ), whenever n ≥ k+1 except for the ordered

triples (k, n, λ) ∈ {(3, 4, 1), (4, 5, 1), (5, 6, 1), (5, 6, 2), (5, 6, 4), (5, 7, 1), (5, 8, 1)}.

T.-W. Shyu in [9], [10] obtained a necessary and sufficient condition on (p, q)

for the existence of {P4, S4}{p,q}-decomposition of Kn and Km,n. H.M. Priyad-

harsini and A. Muthusamy in [8] established necessary and sufficient conditions

for the existence of the (Gn, Hn)-multidecomposition of Kn(λ), where Gn, Hn ∈

{Cn, Pn−1, Sn−1}. A. P. Ezhilarasi and A. Muthusamy in [6] have obtained nec-

essary and sufficient conditions for the existence of a decomposition of product

graphs into paths and stars with three edges. S. Jeevadoss and A. Muthusamy

in [7] have obtained necessary and sufficient conditions for {P5, C4}{p,q}-decom-

position of product graphs.

In this paper, we show that the necessary conditionmn(m+n−2) ≡ 0 (mod 8)

is sufficient for the existence of a complete {P5, S5}-decomposition of Km�Kn.

Notations. A star Sk+1 with center at x0 and end vertices x1, . . . , xk is de-

noted by (x0;x1, . . . , xk) and a path on k+1 vertices x0, x1, . . . , xk is denoted by

x0x1 · · ·xk. We abbreviate the complete {Pk+1, Sk+1}-decomposition as (4; p, q)-

decomposition. In a (4; p, q)-decomposition of a graph G, we mean p and q are

integers with 0 ≤ p, q ≤ ε(G)/4 and p+ q = ε(G)/4.

To prove our results we state the following:

Theorem 1.1 ([10]). Let p, q ≥ 0, m ≥ k > 0, be integers. There exists a (k; p, q)-

decomposition of Kk,m if and only if the following conditions are fulfilled:

1. k(p+ q) = ε(Kk,m);

2. p ≤
⌈

k
2

⌉

− 1 ⇒ (p ≡ 0 (mod 2) ∧m ≥ k + p);

3.
(⌈

k
2

⌉

≤ p ≤ k − 1 ∧ k ≡ 1 (mod 2) ∧ p ≡ 1 (mod 2)
)

⇒ m ≥ k + 1.
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Theorem 1.2 ([10]). Let p, q ≥ 0, and m > k > 0, n ≥ 2, be integers. There

exists a (k; p, q)-decomposition of Km,nk if and only if k(p+ q) = ε(Km,nk).

Theorem 1.3 ([10]). Let p, q ≥ 0, and k > m > 0, n > 0, be integers. There

exists a (k; p, q)-decomposition of Knk,m if and only if the following conditions

are fulfilled:

1. k(p+ q) = ε(Knk,m);

2. there is a t ∈ {0, . . . , n} such that
⌈

tk
2

⌉

≤ p ≤ tm;

3. (k ≡ 1 (mod 2) ∧ n = 1) ⇒ p ≡ 0 (mod 2).

Theorem 1.4 ([10]). Let p, q ≥ 0 and n ≥ 4k > 0 be integers. There exists

a (k; p, q)-decomposition of Kn if and only if k(p+ q) = ε(Kn).

Remark 1.1. If G and H each have a (4; p, q)-decomposition, then G ∪ H has

such a decomposition. In this paper, we denote G ∪H as G⊕H .

Remark 1.2. If two stars S1
5 and S2

5 with distinct centers share at least two pen-

dant vertices, then S1
5 ⊕ S2

5 can be decomposed into 2P5. i.e. if S1
5 = (x0; y0,y1,

y2, y3) and S2
5 = (y4; y0,y1,x1, x2) are two stars, then the 2P5 are P 1

5 =

y2x0y1y4x1, P
2
5 = y3x0y0y4x2 (one can easily understand that the edges of stars

with bold vertices and ordinary vertices give a required number of paths from

stars). We denote such a pair of star as {(x0; y0,y1,y2, y3), (y4; y0,y1,x1, x2)}.

Example 1.1. There exists a (4; p, q)-decomposition of K8.

Solution: Let V (K8) = {x1, x2, . . . , x8}. First we decomposeK8 into {2P5, 5S5}

as follows:

x7x1x8x6x2, x2x7x8x4x3, (x5;x2, x1, x7, x8), {(x3;x1,x7, x5, x8),

(x4;x1, x5,x6,x7)}, {(x2;x1,x3,x4, x8), (x6;x5,x3,x7, x1)}.

Now, we decompose the first 2P5 and a S5 into 3P5 as follows:

{x2x5x7x1x8, x1x5x8x6x2, x2x7x8x4x3}.

Hence from the above decompositions and Remark 1.2 we have a (4; p, q)-

decomposition of K8 except for the values p = 0, 1. For p = 0, 1, we have the fol-

lowing sets of paths and stars: {(x1;x5, x6, x7, x8), (x2;x1, x3, x4, x8),

(x3;x1, x4, x5, x8), (x4;x1, x5, x6, x8), (x5;x2, x6, x7, x8), (x6;x2, x3, x7, x8),

(x7;x2, x3, x4, x8)} and {x7x1x8x6x2, (x2;x1, x3, x4, x8), (x3;x1, x4, x5, x8),

(x4;x1, x5, x6, x8), (x5;x2, x1, x7, x8), (x6;x5, x3, x7, x1), (x7;x2, x3, x4, x8)}. �

Example 1.2. There exists a (4; p, q)-decomposition of K9.
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Solution: Let V (K9) = {x1, x2, · · · , x9} and G = K9. Then G = K8 ⊕

(x9;x1, x2, x3, x4) ⊕ (x9;x5, x6, x7, x8) and by Example 1.1, K9 has a (4; p, q)-

decomposition except for the values p = 8 and 9. For p = 8, 9, we have the follow-

ing sets of paths and stars: {x7x1x8x6x2, x2x7x8x4x3, x4x2x1x6x5, x3x2x8x5x1,

x2x5x7x6x3, x1x3x5x4x6, x1x4x7x9x6, x5x9x8x3x7, (x9;x1, x2, x3, x4)} and

{x7x1x8x6x2, x2x7x8x4x3, x4x2x1x6x5, x2x5x7x6x3, x1x3x5x4x6, x1x4x7x9x6,

x5x9x8x3x7, x2x9x1x5x8, x8x2x3x9x4}. �

Example 1.3. There exists a (4; p, q)-decomposition of K6,6.

Solution: Let V (K6,6) = {x1, x2, . . . , x6}∪{y1, y2, . . . , y6}. First we decompose

K6,6 into {0P5, 9S5} and {P5, 9S5} as follows:

{(x1; y1, y2, y3, y4), {(x2; y1,y2,y5, y6), (x3;y5,y4, y3, y6)},

{(y1;x3,x4, x5, x6), (y3;x2,x4,x5, x6)},

{(y2;x3,x4, x5, x6), (y5;x1,x4,x5, x6)},

{(y4;x2,x4, x5, x6), (y6;x1,x4,x5, x6)}}

and {y1x1y2x2y5, {(x2;y1,y3, y4, y6), (x3;y3,y4, y5, y6)},

{(y1;x3,x4, x5, x6), (y3;x1,x4,x5, x6)},

{(y4;x1,x4, x5, x6), (y2;x3,x4,x5, x6)},

{(y5;x1,x4, x5, x6), (y6;x1,x4,x5, x6)}}.

By Remark 1.2, we obtain a required even number of paths from {0P5, 9S5}

and a required odd number of paths from {P5, 8S5}. �

2. (4; p, q)-decomposition of Km�Kn

In this section we investigate the existence of (4; p, q)-decomposition of Carte-

sian product of complete graphs. To prove our results we need the following

lemmas.

Lemma 2.1. There exists a (4; p, q)-decomposition of K4�K2 with p ≥ 2.

Proof: Let V (K4�K2) = {xi,j : 1 ≤ i ≤ 4, 1 ≤ j ≤ 2}. First we decompose

K4�K2 into {2P5, 2S5} as follows:

x2,1x4,1x3,1x3,2x2,2, x3,1x2,1x2,2x1,2x3,2,

{(x1,1;x3,1, x4,1,x2,1,x1,2), (x4,2;x1,2,x2,2, x3,2, x4,1)}.

By Remark 1.2, we have a {4P5, 0S5}-decomposition ofK4�K2 from {2P5, 2S5}.

Now, the {3P5, S5}-decomposition of K4�K2 is given by x1,2x2,2x2,1x4,1x3,1,

x1,2x4,2x3,2x3,1x2,1, x1,2x3,2x2,2x4,2x4,1, (x1,1;x1,2, x3,1, x4,1, x2,1). �

Lemma 2.2. There exists a (4; p, q)-decomposition of K6�K2, p 6= 0.
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Proof: Let V (K6�K2) = {xi,j : 1 ≤ i ≤ 6, 1 ≤ j ≤ 2}. First we decompose

K6�K2 into {P5, 8S5} and {2P5, 7S5} as follows:

{x5,1x2,1x4,1x4,2x3,2, {(x1,1;x2,1, x3,1,x4,1,x1,2), (x2,2;x2,1,x1,2,x3,2, x4,2)},

{(x3,1;x3,2, x2,1,x4,1,x6,1), (x6,2;x6,1,x2,2, x3,2, x4,2)},

(x5,1;x5,2, x1,1, x3,1, x4,1), (x6,1;x2,1, x1,1, x4,1, x5,1),

(x1,2;x3,2, x4,2, x5,2, x6,2), (x5,2;x2,2, x3,2, x4,2, x6,2)}

and {x5,1x2,1x4,1x4,2x3,2, x1,1x3,1x4,1x5,1x5,2,

{(x1,1;x2,1, x4,1,x5,1,x1,2), (x2,2;x2,1,x1,2,x3,2, x4,2)},

{(x3,1;x3,2, x2,1,x5,1,x6,1), (x6,2;x6,1,x2,2, x3,2, x4,2)},

(x6,1;x2,1, x1,1, x4,1, x5,1), (x1,2;x3,2, x4,2, x5,2, x6,2), (x5,2;x2,2, x3,2, x4,2, x6,2)}.

By Remark 1.2, we obtain a required even number of paths from {2P5, 7S5}

except p = 8 and we obtain a required odd number of paths from {P5, 8S5} except

p = 7, 9. Now,

{x5,2x4,2x2,2x1,2x3,2, x3,2x6,2x4,2x1,2x5,2, x3,2x2,2x6,2x1,2x1,1,

x4,1x5,1x3,1x2,1x2,2, x6,1x2,1x5,1x1,1x3,1, x3,1x3,2x4,2x4,1x2,1,

x2,1x1,1x4,1x3,1x6,1, {(x6,1;x6,2, x1,1,x4,1,x5,1), (x5,2;x5,1,x2,2, x3,2, x6,2)}}

and {x5,1x2,1x4,1x4,2x3,2, x4,2x2,2x1,2x1,1x3,1, x2,1x1,1x4,1x3,1x6,1,

x6,1x6,2x2,2x5,2x4,2, x3,2x1,2x4,2x6,2x5,2, x4,1x5,1x5,2x1,2x6,2,

x6,2x3,2x3,1x5,1x1,1, x5,2x3,2x2,2x2,1x3,1, (x6,1;x2,1, x1,1, x4,1, x5,1)}

gives the remaining number of paths and stars of K6�K2. �

Lemma 2.3. There exists a (4; p, q)-decomposition of K8�K2.

Proof: Let V (K8�K2) = {xi,j : 1 ≤ i ≤ 8, 1 ≤ j ≤ 2} and Ki
2 (Kj

8 , respec-

tively) be K2 in the ith row (K8 in the jth column, respectively) of K8�K2.

We can write K8�K2 = G1 ⊕ G2, where G1 = K1
8 ⊕ K1

2 ⊕ K3
2 ⊕ · · · ⊕ K7

2 and

G2 = K2
8 ⊕K2

2 ⊕K4
2 ⊕ · · · ⊕K8

2 . Since G1
∼= G2, it is enough to prove without

loss of generality that G1 has a (4; p, q)-decomposition. First decompose G1 into

{0P5, 8S5} as follows:

{(x1,1;x1,2,x5,1,x7,1, x8,1), (x3,1;x3,2,x4,1,x7,1, x8,1)},

{(x5,1;x5,2,x3,1,x6,1, x8,1), (x7,1;x7,2,x5,1,x6,1, x8,1)},

(x1,1;x2,1, x3,1, x4,1, x6,1), (x4,1;x2,1, x5,1, x7,1, x8,1),

(x2,1;x3,1, x5,1, x7,1, x8,1), (x6,1;x2,1, x3,1, x4,1, x8,1).

Now, we decompose the last 4S5 into either {1P5, 3S5}, {2P5, 2S5}, {3P5, S5}

or {4P5} as follows:

{x4,1x5,1x2,1x3,1x1,1, (x2,1;x1,1, x6,1, x7,1, x8,1),

(x4,1;x1,1, x2,1, x7,1, x8,1), (x6,1;x1,1, x3,1, x4,1, x8,1)}
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{x3,1x1,1x6,1x8,1x2,1, x7,1x2,1x3,1x6,1x4,1,

(x2,1;x1,1, x4,1, x5,1, x6,1), (x4,1;x1,1, x5,1, x7,1, x8,1)},

{x2,1x1,1x6,1x4,1x5,1, x7,1x4,1x8,1x6,1x3,1,

x3,1x1,1x4,1x2,1x6,1, (x2,1;x3,1, x5,1, x7,1, x8,1)}

or {x2,1x1,1x6,1x4,1x5,1, x3,1x1,1x4,1x2,1x8,1,

x6,1x2,1x7,1x4,1x8,1, x8,1x6,1x3,1x2,1x5,1}.

Now, from {4P5} and the paired stars given above we can obtain an even number

of paths and from {3P5, S5} and the paired stars given above we can obtain an

odd number of paths (see Remark 1.2). �

Lemma 2.4. There exists a (4; p, q)-decomposition of K10�K2.

Proof: Let V (K10�K2) = {xi,j : 1 ≤ i ≤ 10, 1 ≤ j ≤ 2}. We can write

K10�K2 = (K6�K2)⊕ (K4�K2)⊕ 2K6,4. By Lemmas 2.1 and 2.2, K4�K2 has

a (4; p, q)-decomposition with p ≥ 2 and K6�K2 has a (4; p, q)-decomposition

with p 6= 0. Also, by Theorem 1.1, K6,4 has a (4; p, q)-decomposition. Hence by

Remark 1.1, K10�K2 has a (4; p, q)-decomposition with p ≥ 3. Now, the following

{25S5} gives us the {0P5, 25S5} and {2P5, 23S5}-decomposition of K10�K2 (use

Remark 1.2)

(x8,1;x1,1, x7,1, x9,1, x10,1), (x9,1;x2,1, x4,1, x7,1, x10,1), (x10,1;x2,1, x4,1, x5,1, x7,1),

{(x2,1;x5,1,x6,1, x4,1, x2,2), (x3,1;x4,1, x5,1,x6,1,x3,2)},

(x1,1;x5,1, x6,1, x9,1, x1,2), (x4,2;x2,2, x3,2, x9,2, x4,1), (x5,2;x1,2, x2,2, x3,2, x5,1),

(x6,2;x1,2, x2,2, x3,2, x6,1), (x7,2;x8,2, x9,2, x10,2, x7,1), (x8,2;x1,2, x9,2, x10,2, x8,1),

(x9,2;x1,2, x2,2, x10,2, x9,1), (x10,2;x2,2, x4,2, x5,2, x10,1),

(x1,j ;x3,j , x4,j , x7,j , x10,j), (x3,j ;x7,j , x8,j , x9,j , x10,j), (x2,j ;x1,j , x3,j , x8,j , x7,j),

(x4,j ;x5,j , x6,j , x7,j , x8,j), (x5,j ;x6,j , x7,j , x8,j , x9,j), (x6,j ;x7,j , x8,j , x9,j , x10,j),

j = 1, 2. For p = 1, decompose the first 3S5 into {P5, 2S5} as follows:

{x1,1x8,1x7,1x10,1x5,1, (x9,1;x2,1, x4,1, x7,1, x8,1), (x10,1;x2,1, x4,1, x8,1, x9,1)}.

This {P5, 2S5} together with the remaining stars in the above {25S5} will give

a required decomposition of K10�K2. �

Lemma 2.5. There exists a (4; p, q)-decomposition of K12�K2.

Proof: Let V (K12�K2) = {xi,j : 1 ≤ i ≤ 12, 1 ≤ j ≤ 2}. We can write

K12�K2 = G ⊕ (K8�K2), where G = (K12�K2)\E(K8�K2) and G = (K4�

K2)⊕ 2K8,4. By Theorem 1.1 and Lemma 2.1, K8,4 has a (4; p, q)-decomposition

and K4�K2 has a (4; p, q)-decomposition with p ≥ 2. Hence by Remark 1.1,

G has a (4; p, q)-decomposition with p ≥ 2. Now, for p = 0 we have the following

20S5 of G
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(x1,1;x2,1, x11,1, x12,1, x1,2), (x2,1;x3,1, x4,1, x11,1, x12,1),

(x3,1;x1,1, x4,1, x11,1, x12,1), (x4,1;x4,2, x1,1, x11,1, x12,1),

(x1,2;x2,2, x3,2, x11,2, x12,2), (x2,2;x2,1, x3,2, x11,2, x12,2),

(x3,2;x3,1, x4,2, x11,2, x12,2), (x4,2;x1,2, x2,2, x11,2, x12,2),

(xi,j ;x1,j , x2,j , x3,j , x4,j)

for 5 ≤ i ≤ 10 and j = 1, 2. For p = 1, decompose the first 4S5 into {P5, 3S5} as

follows:
{x11,1x2,1x12,1x1,1x1,2, (x1,1;x2,1, x3,1, x4,1, x11,1),

(x3,1;x2,1, x4,1, x11,1, x12,1), (x4,1;x4,2, x2,1, x11,1, x12,1)}.

This {P5, 3S5} together with the remaining stars in the above stars will give

a required decomposition of G. Now, by Remark 1.1, K12�K2 has a (4; p, q)-

decomposition. �

Lemma 2.6. There exists a (4; p, q)-decomposition of K14�K2.

Proof: Let V (K14�K2) = {xi,j : 1 ≤ i ≤ 14, 1 ≤ j ≤ 2}. We can write

K14�K2 = (K8�K2) ⊕ (K6�K2) ⊕ 2K8,6. By Theorem 1.2 and Lemmas 2.3

and 2.2, K8,6 and K8�K2 each have a (4; p, q)-decomposition and K6�K2 has

a (4; p, q)-decomposition with p 6= 0. Hence by Remark 1.1,K14�K2 has a (4; p, q)-

decomposition with p 6= 0. Now, consider K14�K2 as K10�K2 ⊕ G, where

G = (K14�K2)\E(K10�K2). Since K10�K2 has a (4; p, q)-decomposition (by

Lemma 2.4), it is enough to prove that G has a {24S5}-decomposition and the

required {24S5}-decomposition is as follows:

(x1,1;x2,1, x13,1, x14,1, x1,2), (x2,1;x3,1, x4,1, x13,1, x14,1),

(x3,1;x1,1, x4,1, x13,1, x14,1), (x4,1;x4,2, x1,1, x13,1, x14,1),

(x1,2;x2,2, x3,2, x13,2, x14,2), (x2,2;x2,1, x3,2, x13,2, x14,2),

(x3,2;x3,1, x4,2, x13,2, x14,2), (x4,2;x1,2, x2,2, x13,2, x14,2), (xi,j ;x1,j , x2,j , x3,j , x4,j)

for 5 ≤ i ≤ 12 and j = 1, 2. Hence K14�K2 has a (4; p, q)-decomposition. �

Lemma 2.7. There exists a (4; p, q)-decomposition of K4�K4.

Proof: Let V (K4�K4) = {xi,j : 1 ≤ i, j ≤ 4}. First we decompose K4�K4 into

{0P5, 12S5} and {P5, 11S5} as follows:

{(x2,3;x2,1, x2,2, x3,3, x4,3), (x4,4;x4,1, x4,3, x3,4, x1,4),

{(x1,1;x3,1,x2,1, x1,2, x1,4), (x2,4;x1,4,x2,1,x2,3, x4,4)},

{(x1,2;x3,2, x2,2,x1,3,x1,4), (x3,4;x1,4,x2,4, x3,3, x3,2)},

{(x1,3;x1,4,x1,1, x2,3, x4,3), (x4,1;x1,1,x2,1, x4,2, x4,3)},

{(x2,2;x2,1,x2,4,x3,2, x4,2), (x3,1;x2,1, x4,1,x3,2,x3,4)},

{(x3,3;x3,1, x3,2,x1,3,x4,3), (x4,2;x1,2, x3,2,x4,3,x4,4)}}

and {x2,1x2,3x4,3x4,4x4,2,
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{(x1,1;x3,1,x2,1, x1,2, x1,4), (x2,4;x1,4,x2,1,x2,3, x2,2)},

{(x1,2;x3,2, x2,2,x1,3,x1,4), (x3,4;x1,4,x2,4, x3,3, x3,2)},

{(x1,3;x1,4,x1,1, x2,3, x4,3), (x4,1;x1,1,x2,1, x3,1, x4,3)},

{(x2,2;x2,1,x2,3,x3,2, x4,2), (x3,1;x2,1, x3,3,x3,2,x3,4)},

{(x3,3;x2,3, x3,2,x1,3,x4,3), (x4,2;x1,2, x3,2,x4,3,x4,1)},

(x4,4;x4,1, x1,4, x2,4, x3,4)}.

By Remark 1.2, we obtain a required even number of paths from {0P5, 12S5}

except p = 12 and we obtain a required odd number of paths from {P5, 11S5}.

For p = 12, the required paths are

x1,4x4,4x4,1x3,1x3,2, x4,4x4,2x3,2x3,4x2,4, x4,4x2,4x2,1x2,3x2,2, x2,2x2,4x2,3x3,3x1,3,

x2,4x1,4x1,1x3,1x3,4, x1,4x1,2x3,2x3,3x3,1, x3,1x2,1x1,1x1,2x1,3, x2,1x4,1x1,1x1,3x2,3,

x2,3x4,3x1,3x1,4x3,4, x2,1x2,2x4,2x4,3x4,4, x3,2x2,2x1,2x4,2x4,1, x4,1x4,3x3,3x3,4x4,4.

�

Lemma 2.8. There exists a (4; p, q)-decomposition of K4�K6.

Proof: Let V (K4�K6) = {xi,j : 1 ≤ i ≤ 4, 1 ≤ j ≤ 6}. First we decompose

K4�K6 into {0P5, 24S5} as follows:

{(x3,2;x1,2,x4,2, x3,1, x3,4), (x4,1;x2,1, x3,1,x4,2,x4,3)},

{(x2,2;x2,3,x2,4,x2,5, x4,2), (x2,6;x1,6,x2,1,x2,4, x2,3)},

{(x3,1;x2,1,x3,4,x3,5, x3,6), (x3,3;x3,2,x2,3,x3,5, x3,6)},

{(x4,4;x4,2, x4,3,x4,1,x2,4), (x4,5;x2,5,x3,5,x4,1, x4,3)},

{(x1,1;x1,3,x1,4, x4,1, x1,2), (x1,5;x1,2,x1,3,x3,5, x4,5)},

{(x3,3;x1,3,x3,4, x4,3, x3,1), (x2,3;x2,1,x2,4,x1,3, x4,3)},

{(x2,4;x2,1,x2,5,x1,4, x3,4), (x3,5;x3,2, x3,4,x3,6,x2,5)},

{(x2,2;x1,2,x3,2,x2,6, x2,1), (x2,5;x1,5, x2,1,x2,3,x2,6)},

{(x4,4;x1,4,x4,5,x4,6, x3,4), (x3,6;x2,6,x3,2,x4,6, x3,4)},

{(x1,1;x2,1,x3,1,x1,5, x1,6), (x1,4;x1,2, x1,6,x3,4,x1,5)},

{(x4,2;x1,2,x4,3,x4,5, x4,6), (x1,3;x1,2, x1,4,x1,6,x4,3)},

(x1,6;x1,2, x1,5, x3,6, x4,6), (x4,6;x2,6, x4,1, x4,3, x4,5).

By Remark 1.2, we obtain a required even number of paths from the paired

stars except p = 24. For p = 24, the 18P5 can be obtained from the first nine

paired stars (see Remark 1.2) and the remaining paths can be obtained from the

last 6S5 as follows:

{x3,1x1,1x1,6x1,4x1,5, x2,1x1,1x1,5x1,6x3,6, x4,3x4,2x4,5x4,6x4,1,

x2,6x4,6x1,6x1,3x1,4, x3,4x1,4x1,2x1,3x4,3, x4,3x4,6x4,2x1,2x1,6}.

To get an odd number of paths we decompose the last 6S5 into either {P5, 5S5},

{3P5, 3S5} or {5P5, S5} as follows:
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{x1,5x1,6x1,2x1,3x4,3, (x1,6;x1,4, x1,3, x3,6, x4,6), (x4,6;x2,6, x4,1, x4,3, x4,5),

(x4,2;x1,2, x4,3, x4,5, x4,6), (x1,4;x1,2, x1,3, x3,4, x1,5), (x1,1;x2,1, x3,1, x1,5, x1,6)},

{x2,1x1,1x1,6x1,3x4,3, x4,3x4,2x4,5x4,6x4,1, x3,1x1,1x1,5x1,6x3,6,

(x1,2;x4,2, x1,3, x1,4, x1,6), (x1,4;x1,6, x1,3, x3,4, x1,5), (x4,6;x2,6, x4,2, x4,3, x1,6)}

or {x3,4x1,4x1,2x1,3x4,3, x4,2x1,2x1,6x1,3x1,4, x3,1x1,1x1,6x1,4x1,5,

x2,1x1,1x1,5x1,6x3,6, x4,3x4,2x4,5x4,6x4,1, (x4,6;x2,6, x4,2, x4,3, x1,6)}.

Now, the remaining number of paths can be obtained from the first nine paired

stars (see Remark 1.2). Hence K4�K6 has a (4; p, q)-decomposition. �

Lemma 2.9. There exists a (4; p, q)-decomposition of K6�K6.

Proof: Let V (K6�K6) = {xi,j : 1 ≤ i, j ≤ 6}. Now, we can write K6�K6 =

(K4�K6) ⊕ (K2�K6) ⊕ 6K4,2. By Lemma 2.8 and Theorem 1.3, K4�K6 and

K4,2 each have a (4; p, q)-decomposition. Also, K2�K6 (∼= K6�K2) has a (4; p, q)-

decomposition with p 6= 0, by Lemma 2.2. Hence K6�K6 has a (4; p, q)-decompo-

sition with p 6= 0. For p = 0, we have the following {45S5}.

(x1,1;x1,2, x1,3, x2,1, x3,1), (x1,1;x1,4, x1,5, x4,1, x6,1), (x6,1;x5,1, x4,1, x6,2, x6,3),

(x3,4;x3,3, x3,5, x2,4, x4,4), (x6,6;x5,6, x4,6, x6,4, x6,5), (x2,2;x2,1, x2,3, x1,2, x3,2),

(x1,6;x1,5, x1,4, x2,6, x3,6), (x4,4;x4,3, x4,5, x6,4, x1,4), (x6,2;x5,2, x4,2, x6,3, x6,4),

(x6,6;x6,1, x6,2, x1,6, x2,6), (x2,5;x2,4, x2,6, x1,5, x3,5), (x3,4;x3,2, x3,6, x1,4, x5,4),

(x1,6;x1,1, x1,3, x4,6, x5,6), (x2,2;x2,4, x2,6, x4,2, x6,2), (x5,5;x5,1, x5,4, x4,5, x1,5),

(x1,3;x1,4, x1,5, x3,3, x4,3), (x2,5;x2,2, x2,3, x4,5, x6,5), (x6,4;x6,1, x6,3, x3,4, x1,4),

(x2,1;x2,6, x2,5, x6,1, x5,1), (x5,5;x3,5, x2,5, x5,2, x5,3), (x1,2;x1,3, x1,6, x5,2, x6,2),

(x6,3;x5,3, x1,3, x6,5, x6,6), (x3,5;x3,1, x3,6, x4,5, x6,5), (x3,3;x3,1, x3,2, x5,3, x6,3),

(x4,4;x2,4, x5,4, x4,1, x4,6), (x1,4;x1,2, x1,5, x2,4, x5,4), (x4,2;x1,2, x3,2, x4,3, x4,4),

(x3,3;x2,3, x4,3, x3,5, x3,6), (x1,5;x1,2, x3,5, x4,5, x6,5), (x2,4;x2,1, x2,6, x5,4, x6,4),

(x2,3;x1,3, x6,3, x2,1, x2,4), (x3,6;x3,2, x4,6, x5,6, x6,6), (x5,4;x5,1, x5,2, x5,6, x6,4),

(x5,2;x4,2, x3,2, x2,2, x5,3), (x4,3;x4,1, x4,5, x2,3, x6,3), (x6,5;x6,1, x6,2, x6,4, x5,5),

(x4,5;x4,6, x4,1, x4,2, x6,5), (x5,3;x4,3, x1,3, x2,3, x5,4), (x3,1;x2,1, x3,4, x3,6, x6,1),

(x4,6;x4,1, x4,2, x4,3, x5,6), (x3,2;x3,1, x3,5, x1,2, x6,2), (x5,6;x5,1, x5,2, x5,3, x5,5),

(x2,6;x2,3, x3,6, x4,6, x5,6), (x4,1;x2,1, x3,1, x5,1, x4,2), (x5,1;x3,1, x1,1, x5,2, x5,3).

�

Lemma 2.10. There exists a (4; p, q)-decomposition of K5�K5.

Proof: Let V (K5�K5) = {xi,j : 1 ≤ i, j ≤ 5}. First we decompose K5�K5 into

{0P5, 25S5} as follows:

{(x1,1;x2,1,x1,3, x3,1, x1,5), (x1,4;x1,3,x3,4, x1,5, x5,4)},

{(x1,1;x1,2,x1,4,x4,1, x5,1), (x2,1;x3,1,x4,1, x5,1, x2,5)},

{(x5,5;x1,5, x2,5,x5,4,x4,5), (x3,5;x2,5,x4,5,x3,4, x3,1)},
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{(x3,3;x5,3,x3,2, x3,4, x3,5), (x3,1;x4,1,x5,1,x3,2, x3,4)},

{(x2,2;x2,1,x2,3,x4,2, x5,2), (x1,2;x1,3,x1,4,x4,2, x5,2)},

{(x3,3;x1,3,x2,3,x4,3, x3,1), (x5,3;x5,1,x5,4,x2,3, x1,3)},

{(x2,2;x1,2,x3,2,x2,4, x2,5), (x2,3;x2,1,x1,3,x2,4, x2,5)},

{(x4,4;x1,4,x4,2,x3,4, x5,4), (x2,4;x2,5,x3,4, x1,4, x2,1)},

{(x5,5;x5,1,x5,2,x5,3, x3,5), (x5,4;x2,4,x3,4,x5,2, x5,1)},

{(x3,2;x1,2, x4,2,x3,4,x3,5), (x1,5;x1,3, x1,2,x2,5,x3,5)},

{(x5,2;x4,2, x3,2,x5,1,x5,3), (x4,3;x4,2, x2,3,x1,3,x5,3)},

(x4,4;x4,1, x2,4, x4,3, x4,5), (x4,5;x4,2, x4,3, x1,5, x2,5), (x4,1;x4,2, x4,3, x4,5, x5,1).

Now, we decompose the last 3S5 into either {1P5, 2S5}, {2P5, 1S5} or {3P5} as

follows:

{x2,4x4,4x4,3x4,5x4,1, (x4,5;x4,2, x4,4, x1,5, x2,5), (x4,1;x4,2, x4,3, x4,4, x5,1)},

{x2,4x4,4x4,3x4,1x4,2, x4,2x4,5x4,4x4,1x5,1, (x4,5;x4,1, x4,3, x1,5, x2,5)}

or {x2,4x4,4x4,1x4,5x4,3, x2,5x4,5x4,4x4,3x4,1, x1,5x4,5x4,2x4,1x5,1}.

Now, from {2P5, 1S5} and the paired stars given above we can obtain an even

number of paths and from {3P5} and the paired stars given above we can obtain

an odd number of paths (see Remark 1.2). �

Lemma 2.11. There exists a (4; p, q)-decomposition of K3�K7.

Proof: Let V (K3�K7) = {xi,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 7} and Ki
7 (Kj

3 , respec-

tively) be a K7 in the ith row (K3 in the jth column, respectively) of K3�K7.

For i = 1, 2, 3, let Fi = {xi,1xi+1,1, . . . , xi,7xi+1,7}, where the first coordinate

of the subscripts of x are taken modulo 3 with residues 1, 2, 3. We can write

K3�K7 = G1 ⊕G2 ⊕G3, where Gi = Fi ⊕Ki
7. Since G1

∼= G2
∼= G3, it is enough

to prove without loss of generality that G1 has a (4; p, q)-decomposition. Now,

G1 has a (4; p, q)-decomposition as follows:

1. For p = 0, q = 7, the required stars are (x1,1;x2,1, x1,2, x1,3, x1,4),

(x1,2;x2,2, x1,5, x1,3, x1,4), (x1,3;x2,3, x1,4, x1,5, x1,6), (x1,4;x2,4, x1,6, x1,7, x1,5),

(x1,5;x2,5, x1,1, x1,6, x1,7), (x1,6;x2,6, x1,1, x1,2, x1,7), (x1,7;x2,7, x1,1, x1,3, x1,2).

2. For p = 1, q = 6, the required path and stars are x2,1x1,1x1,4x1,3x1,2,

(x1,2;x2,2, x1,5, x1,1, x1,4), (x1,3;x2,3, x1,1, x1,5, x1,6), (x1,4;x2,4, x1,6, x1,7, x1,5),

(x1,5;x2,5, x1,1, x1,6, x1,7), (x1,6;x2,6, x1,1, x1,2, x1,7), (x1,7;x2,7, x1,1, x1,3, x1,2).

3. For p = 2, q = 5, the required paths and stars are x2,1x1,1x1,4x1,3x1,2,

x2,3x1,3x1,1x1,6x1,5, (x1,2;x2,2, x1,5, x1,1, x1,4), (x1,4;x2,4, x1,6, x1,7, x1,5),

(x1,5;x2,5, x1,1, x1,3, x1,7), (x1,6;x2,6, x1,3, x1,2, x1,7), (x1,7;x2,7, x1,1, x1,3, x1,2).

4. For p = 3, q = 4, the required paths and stars are x2,1x1,1x1,4x1,3x1,2,

x2,3x1,3x1,1x1,2x1,4, x1,1x1,6x1,5x1,2x2,2, (x1,4;x2,4, x1,6, x1,7, x1,5),

(x1,5;x2,5, x1,1, x1,3, x1,7), (x1,6;x2,6, x1,3, x1,2, x1,7), (x1,7;x2,7, x1,1, x1,3, x1,2).
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5. For p = 4, q = 3, the required paths and stars are x2,7x1,7x1,1x1,4x1,3,

x2,3x1,3x1,7x1,2x1,5, x2,2x1,2x1,1x1,6x1,5, x2,1x1,1x1,3x1,2x1,4,

(x1,4;x2,4, x1,6, x1,7, x1,5), (x1,5;x2,5, x1,1, x1,3, x1,7), (x1,6;x2,6, x1,3, x1,2, x1,7).

6. For p = 5, q = 2, the required paths and stars are x2,1x1,1x1,4x1,3x1,2,

x2,3x1,3x1,1x1,2x1,4, x1,1x1,6x1,5x1,2x2,2, x2,5x1,5x1,7x1,6x1,2, x2,6x1,6x1,3x1,5x1,1,

(x1,4;x2,4, x1,6, x1,7, x1,5), (x1,7;x2,7, x1,1, x1,3, x1,2).

7. For p = 6, q = 1, the require paths and stars are x2,7x1,7x1,1x1,4x1,3,

x2,3x1,3x1,7x1,2x1,5, x2,2x1,2x1,1x1,6x1,5, x2,1x1,1x1,3x1,2x1,4, x2,5x1,5x1,7x1,6x1,2,

x2,6x1,6x1,3x1,5x1,1, (x1,4;x2,4, x1,6, x1,7, x1,5).

8. For p = 7, q = 0, the required paths are x2,1x1,1x1,2x1,3x1,4,

x2,2x1,2x1,4x1,6x1,7, x2,3x1,3x1,1x1,7x1,5, x2,4x1,4x1,1x1,5x1,3, x2,5x1,5x1,2x1,6x1,1,

x2,6x1,6x1,3x1,7x1,2, x2,7x1,7x1,4x1,5x1,6.

Hence by Remark 1.1, K3�K7 has a (4; p, q)-decomposition. �

Lemma 2.12. There exists a (4; p, q)-decomposition of K3�K8.

Proof: Let V (K3�K8) = {xi,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 8} and Ki
8 (Kj

3 , respec-

tively) be a K8 in the ith row (K3 in the jth column, respectively) of K3�K8.

For i = 1, 2, 3, let Fi = {xi,1xi+1,1, . . . , xi,8xi+1,8}, where the first subscripts of x

are taken modulo 3 with residues 1, 2, 3. We can write K3�K8 = G1 ⊕G2 ⊕G3,

where Gi = Fi ⊕Ki
8. Since G1

∼= G2
∼= G3, it is enough to prove without loss of

generality that G1 has a (4; p, q)-decomposition. Now,

G1 = F ′
1 ⊕K1

7 ⊕ (x1,8;x2,8, x1,1, x1,3, x1,2)⊕ (x1,8;x1,4, x1,5, x1,6, x1,7),

where F ′
1 = {xi,1xi+1,1, . . . , xi,7xi+1,7} and it has a (4; p, q)-decomposition except

for the values p = 8 and 9 (see Lemma 2.11). For p = 8, 9, we have the following

sets of paths and stars:

{x2,1x1,1x1,2x1,3x1,4, x2,2x1,2x1,4x1,6x1,7, x2,3x1,3x1,1x1,7x1,5,

x2,4x1,4x1,1x1,5x1,3, x1,2x1,6x1,1x1,8x2,8, x2,5x1,5x1,2x1,8x1,3,

x2,6x1,6x1,3x1,7x1,2, x2,7x1,7x1,4x1,5x1,6, (x1,8;x1,4, x1,5, x1,6, x1,7)}

and {x2,1x1,1x1,2x1,3x1,4, x2,3x1,3x1,1x1,7x1,5, x2,4x1,4x1,1x1,5x1,3,

x1,2x1,6x1,1x1,8x2,8, x2,5x1,5x1,2x1,8x1,3, x2,6x1,6x1,3x1,7x1,2,

x1,5x1,8x1,6x1,7x2,7, x1,4x1,8x1,7x1,4x1,5, x2,2x1,2x1,4x1,6x1,5}.

Hence by Remark 1.1, K3�K8 has a (4; p, q)-decomposition. �

Lemma 2.13. There exists a (4; p, q)-decomposition of K5�K8.

Proof: Let V (K5�K8) = {xi,j : 1 ≤ i ≤ 5, 1 ≤ j ≤ 8}. We can write K5�K8 =

(K5�K8\E(K3�K8)) ⊕ (K3�K8). First we decompose (K5�K8)\E(K3�K8)

into {0P5, 28S5} as follows:
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{(x1,1;x3,1,x4,1,x5,1, x1,2), (x2,1;x3,1, x4,1,x5,1,x2,8)},

{(x1,2;x3,2,x4,2,x5,2, x1,3), (x2,2;x3,2, x4,2,x5,2,x2,3)},

{(x1,3;x3,3,x4,3,x5,3, x1,4), (x2,3;x3,3, x4,3,x5,3,x2,4)},

{(x1,4;x3,4,x4,4,x5,4, x1,5), (x2,4;x3,4, x4,4,x5,4,x2,5)},

{(x1,5;x3,5,x4,5,x5,5, x1,6), (x2,5;x3,5, x4,5,x5,5,x2,7)},

{(x1,6;x3,6,x4,6,x5,6, x1,7), (x2,6;x3,6, x4,6,x5,6,x2,1)},

{(x1,7;x3,7,x4,7,x5,7, x1,8), (x2,7;x3,7, x4,7,x5,7,x2,6)},

{(x1,8;x3,8,x4,8,x5,8, x1,1), (x2,8;x3,8, x4,8,x5,8,x2,2)},

{(x1,7;x1,2,x1,3,x1,4, x1,5), (x1,8;x1,2, x1,3,x1,4,x1,5)},

{(x1,2;x1,5,x1,4,x1,6, x2,2), (x1,3;x1,1, x1,5,x1,6,x2,3)},

{(x1,1;x1,4,x1,5,x1,7, x2,1), (x2,7;x2,1, x2,4,x1,7,x2,8)},

{(x1,6;x1,1,x1,4,x1,8, x2,6), (x2,8;x2,3, x2,6,x1,8, x2,4)},

{(x2,4;x2,1,x2,2,x2,6, x1,4), (x2,5;x2,1, x2,8,x2,6,x1,5)},

{(x2,2;x2,1,x2,5,x2,6, x2,7), (x2,3;x2,1, x2,5,x2,6,x2,7)}.

By Remark 1.2, we obtain a required even number of paths and stars from the

paired stars given above. To obtain an odd number of paths consider the last 4S5

and decompose it into either {1P5, 3S5} or {3P5, 1S5} as follows:

{x1,4x2,4x2,2x2,7x2,3, (x2,1;x2,4, x2,2, x2,3, x2,5),

(x2,6;x2,2, x2,3, x2,4, x2,5), (x2,5;x2,2, x2,3, x2,8, x1,5)}

or {x1,4x2,4x2,2x2,7x2,3, x2,3x2,6x2,2x2,1x2,4,

x2,3x2,1x2,5x2,6x2,4, (x2,5;x2,2, x2,3, x2,8, x1,5)}.

The remaining choices for odd number of paths can be obtained from the remain-

ing paired stars (see Remark 1.2). Also, by Lemma 2.12, K3�K8 has a (4; p, q)-

decomposition. Hence by Remark 1.1, K5�K8 has a (4; p, q)-decomposition. �

Lemma 2.14. There exists a (4; p, q)-decomposition of K7�K8.

Proof: Let V (K7�K8) = {xi,j : 1 ≤ i ≤ 7, 1 ≤ j ≤ 8}. We can write K7�K8 =

(K7�K8\E(K2�K8)) ⊕ (K2�K8) and (K7�K8)\E(K2�K8) = 8(K7\E(K2)) ⊕

5K8. By Lemma 2.3 and Example 1.1,K2�K8 (∼= K8�K2) andK8 have a (4; p, q)-

decomposition. So, it is enough to prove that K7\E(K2) has a (4; p, q)-decomposi-

tion Let V (K7) = {xi : 1 ≤ i ≤ 7}. Now, K7\E(K2) has a (4; p, q)-decomposition

as follows:

1. For p = 0, q = 5, the required stars are (x1;x4, x5, x6, x7), (x2;x1, x5, x6, x7),

(x3;x1, x2, x6, x7), (x4;x2, x3, x6, x7), (x5;x3, x4, x6, x7).

2. For p = 1, q = 4, the required paths and stars are x6x1x7x5x2,

(x2;x1, x4, x6, x7), (x3;x1, x2, x6, x7), (x4;x1, x3, x6, x7), (x5;x3, x4, x6, x1).

3. For p = 2, q = 3, the required paths and stars are x1x4x7x5x2, x3x4x6x1x7,

(x2;x1, x4, x6, x7), (x3;x1, x2, x6, x7), (x5;x3, x4, x6, x1).
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4. For p = 3, q = 2, the required paths and stars are x6x1x7x5x2, x3x5x4x2x6,

x6x5x1x2x7, (x3;x1, x2, x6, x7), (x4;x1, x3, x6, x7).

5. For p = 4, q = 1, the required paths and stars are x1x4x7x5x2, x3x4x6x1x7,

x3x5x4x2x6, x6x5x1x2x7, (x3;x1, x2, x6, x7).

6. For p = 5, q = 0, the required paths are x2x3x1x4x7, x6x3x7x5x2,

x3x4x6x1x7, x3x5x4x2x6, x6x5x1x2x7. �

Lemma 2.15. There exists a (4; p, q)-decomposition of Kn\E(Ki), when n ≡

i (mod 8), i ∈ {3, 5, 7}.

Proof: Let n ≡ i (mod 8) and n = 8k + i, where k is a positive integer

and i ∈ {3, 5, 7}. The graph Kn\E(Ki) can be viewed as edge-disjoint union

of K8k and K8k,i. By Theorems 1.2 to 1.4, both the graphs K8k and K8k,i

have a (4; p, q)-decomposition. Hence by Remark 1.1, the graph Kn\E(Ki) has

a (4; p, q)-decomposition. �

Theorem 2.1. Km�Kn has a (4; p, q)-decomposition if and only if mn(m +

n− 2) ≡ 0 (mod 8).

Proof: Necessity. Since Km�Kn is (m + n − 2)-regular and has mn vertices,

Km�Kn has mn(m+ n− 2)/2 edges. Now, assume that Km�Kn has a (4; p, q)-

decomposition. Then the number of edges in the graph must be divisible by 4, i.e.,

8|mn(m+n−2) and hence mn(m+n−2) ≡ 0 (mod 8), this condition is satisfied

precisely when one of the following holds: (i) m,n ≡ 0 (mod 2), (ii) m,n ≡

1 (mod 8), (iii) m,n ≡ 5 (mod 8), (iv) m ≡ 3 (mod 8), n ≡ 7 (mod 8), (v) m ≡

0 (mod 8), n ≡ 1 (mod 2).

Sufficiency. We construct the required decomposition in five cases.

Case 1. Let m,n ≡ 0 (mod 2). We construct the required decomposition in

three subcases separately.

(a) Let m,n ≡ 0 (mod 4). Let m = 4k and n = 4l, k, l ∈ Z
+. We can write

Km�Kn = kl(K4�K4) ⊕ 2kl(l + k − 2)K4,4. By Lemma 2.7 and Theorem 1.1,

K4�K4 and K4,4 each have a (4; p, q)-decomposition. Hence by Remark 1.1,

Km�Kn has a (4; p, q)-decomposition.

(b) Let m ≡ 0 (mod 4), n ≡ 2 (mod 4). When n = 2, by Lemmas 2.1,

2.3 and 2.5, Km�K2 has a (4; p, q)-decomposition for m = 4, 8, 12. If m > 12,

and m ≡ 0 (mod 8), let m = 8k, k > 1, be an integer. Then Km�K2 =

k(K8�K2) ⊕ k(k − 1)K8,8. By Lemma 2.3 and Theorem 1.2, K8�K2 and K8,8

each have a (4; p, q)-decomposition. Hence by Remark 1.1, Km�Kn has a (4; p, q)-

decomposition. If m ≡ 4 (mod 8), let m = 8k + 12, k ∈ Z
+. Then Km�K2 =

(K8k�K2) ⊕ (K12�K2) ⊕ 2K8k,12. By Lemma 2.5 and Theorem 1.2, K12�K2

and K8k,12 each have a (4; p, q)-decomposition. Also, we proved that K8k�K2
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Figure 1. Km�Kn.

has a (4; p, q)-decomposition in this case. Hence by Remark 1.1, Km�Kn has

a (4; p, q)-decomposition.

When n = 6, let m = 4k, k ∈ Z
+. Then Km�Kn = k(K4�K6) ⊕

3k(k − 1)K4,4. By Lemma 2.8 and Theorem 1.1, K4�K6 and K4,4 each have

a (4; p, q)-decomposition. Hence by Remark 1.1, Km�Kn has a (4; p, q)-decompo-

sition.

When n > 6, let m = 4k and n = 4l + 2, k, l ∈ Z
+. Then Km�Kn =

(K4k�K4(l−1)) ⊕ (K4k�K6) ⊕ 4kK4(l−1),6. By Case 1 (a), K4k�K4(l−1) has

a (4; p, q)-decomposition. Also, we proved that K4k�K6 has a (4; p, q)-decomposi-

tion in this case. Hence by Remark 1.1, Km�Kn has a (4; p, q)-decomposition.

(c) Let m,n ≡ 2 (mod 4). When n = 2, clearly there is no (4; p, q)-decom-

position for K2�K2 and hence m > 2. By Lemmas 2.2, 2.4 and 2.6, K6�K2,

K10�K2 and K14�K2 each have a (4; p, q)-decomposition.
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Figure 2. Km�Kn.

For m > 14, let m = 4k + 2, k > 3, be an integer. Then Km�K2 =

(K4(k−2)�K2) ⊕ (K10�K2) ⊕K4(k−2),10. By Lemma 2.4, Case 1 (b) and Theo-

rem 1.2,K10�K2, K4(k−2)�K2 andK4(k−2),10 each have a (4; p, q)-decomposition.

Hence by Remark 1.1, Km�Kn has a (4; p, q)-decomposition.

When n = 6, since K2�K6 (∼= K6�K2) and K6�K6 (by Lemmas 2.2, 2.9) each

have a (4; p, q)-decomposition, m > 6. Let m = 4k+2, k > 1, be an integer, then

Km�K6 = (K4(k−1)�K6)⊕(K6�K6)⊕6K4(k−1),6. By Lemma 2.9, Case 1 (b) and

Theorems 1.1 and 1.2, K6�K6, K4(k−1)�K6 and K4(k−1),6 each have a (4; p, q)-

decomposition. Hence by Remark 1.1, Km�Kn has a (4; p, q)-decomposition.

When m,n > 6, let m = 4k + 2 and n = 4l + 2, k, l > 1 are integers. We

can write Km�Kn = (K4k+2�K4(l−1)) ⊕ (K4k+2�K6) ⊕ (4k + 2)K4(l−1),6 =

(K4k+2�K4(l−1))⊕(k−1)(K4�K6)⊕(K6�K6)⊕3(k−1)(k−2)K4,4⊕6(k−1)K4,6⊕

(4k + 2)K4(l−1),6. By Lemmas 2.8 and 2.9 and Theorems 1.1 and 1.2, K4�K6,

K6�K6, K4,6, K4(l−1),6 and K4,4 each have a (4; p, q)-decomposition. Also by

Case 1 (b), K4k+2�K4(l−1) has a (4; p, q)-decomposition. Hence by Remark 1.1,

Km�Kn has a (4; p, q)-decomposition.
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Case 2. Let m,n ≡ 1 (mod 8). We can write Km�Kn = nKm ⊕ mKn. By

Theorem 1.4, Km and Kn each have a (4; p, q)-decomposition wheneverm,n ≥ 16.

Hence by Example 1.2 and Remark 1.1, Km�Kn has a (4; p, q)-decomposition.

Case 3. Let m,n ≡ 5 (mod 8). Let m = 8k+5 and n = 8l+5, k, l ≥ 0, be inte-

gers. We can write Km�Kn = nKm⊕mKn = 8l(Km\E(K5))⊕8k(Kn\E(K5))⊕

k(K8�K5) ⊕ l(K5�K8) ⊕
5
2 (k(k − 1) + l(l − 1))K8,8 ⊕ (K5�K5) ⊕ 5(k + l)K8,5

(see Figure 1 with i = j = 5). By Theorem 1.2 and Lemmas 2.10, 2.13 and 2.15,

K8,8, K8,5, Km\E(K5), Kn\E(K5), K5�K8 and K5�K5 each have a (4; p, q)-

decomposition. Hence by Remark 1.1, Km�Kn has a (4; p, q)-decomposition.

Case 4. Let m ≡ 3 (mod 8), n ≡ 7 (mod 8). Let m = 8k + 3, n = 8l + 7,

k, l ≥ 0, are integers. We can write Km�Kn = nKm ⊕mKn = 8k(Kn\E(K7))⊕

8l(Km\E(K3)) ⊕ l(K3�K8) ⊕ k(K7�K8) ⊕
(

(3l(l− 1) + 7k(k − 1))/2
)

K8,8 ⊕

(K3�K7)⊕ 7kK8,3 ⊕ 3lK8,7 (refer Figure 1 with i = 3, j = 7). By Lemmas 2.11,

2.12 and 2.14 and Theorems 1.2 and 1.3, K3�K8, K7�K8, K3�K7, K8,3, K8,7

and K8,8 each have a (4; p, q)-decomposition. Also by Lemma 2.15, Km\E(K3)

andKn\E(K7) each have a (4; p, q)-decomposition. Hence by Remark 1.1,Km�Kn

has a (4; p, q)-decomposition.

Case 5. Let m ≡ 0 (mod 8), n ≡ 1 (mod 2). If n ≡ 1 (mod 8), then Km

and Kn each have a (4; p, q)-decomposition, by Theorem 1.4 and Examples 1.1

and 1.2. Hence by Remark 1.1, Km�Kn has a (4; p, q)-decomposition.

When n ≡ i (mod 8) with i = 3, 5, 7, let m = 8k, k ∈ Z
+. We can write

Km�Kn = nKm ⊕ mKn = (n − i)Km ⊕ k(K8�Ki) ⊕ i(k(k − 1)/2)K8,8 ⊕

m(Kn\E(Ki)), i ∈ {3, 5, 7} (see Figure 2). By Lemmas 2.12 to 2.15, Theorem 1.2

and Remark 1.1, Km�Kn has a (4; p, q)-decomposition. �
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