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Abstract. We introduce and study various discontinuous Galerkin (DG) finite element
approximations for a parabolic variational inequality associated with a general obstacle
problem in RZ (d = 2,3). For the fully-discrete DG scheme, we employ a piecewise linear
finite element space for spatial discretization, whereas the time discretization is carried out
with the implicit backward Euler method. We present a unified error analysis for all well
known symmetric and non-symmetric DG fully discrete schemes, and derive error estimate
of optimal order O(h+ At) in an energy norm. Moreover, the analysis is performed without
any assumptions on the speed of propagation of the free boundary and only the realistic
regularity u; € £2(0,T; £%(€2)) is assumed. Further, we present some numerical experiments
to illustrate the performance of the proposed methods.
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1. INTRODUCTION

A parabolic obstacle problem is basically studied as a prototype model for
parabolic variational inequalities. The numerical analysis of obstacle problems has
become an effective and powerful technique for studying a wide class of problems
arising in various branches of mathematical and engineering sciences in a uni-
fied and general framework. The numerical approximation of variational inequal-
ities poses several challenges in handling the constraints, devising interpolation
operators that obey the constraints, analysis with the limited regularity of the
solution and implementations. Some enormous application of parabolic obstacle
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problems are American option problem, Stefan problem and electrochemical ma-
chining problem, etc. The finite element method seems to be the most widely
used numerical method in applied mathematics. In particular, there has been an
active growth of discontinuous Galerkin (DG) methods in the past decades, due
to the fact that DG methods disagree from the usual finite element methods. In
DG methods, functions are allowed to be discontinuous over the element bound-
aries. Taking the full advantage of non requirement of inter element continuity,
DG methods permit general meshes with hanging nodes and element of different
shapes, and create more flexibility in mesh refinement. There exist several DG
methods for the discretization of partial differential equations, variational inequal-
ities, etc. Here we mention various well known DG methods, for example, SIPG
method [1], [43], NIPG method [38], IIPG method [13], [24], [19], LDG method
[12], [17], Bassi et al. [5], Brezzi et al. [10], Babuska-Zlamal [3], Brezzi et al. [11],
WOPSIP [7], etc. These methods can be extended for solving parabolic obstacle
problems.

In this article we derive a unified a priori error analysis for various symmetric and
non-symmetric DG methods of parabolic variational inequality. Let [0,7] C R be
the time interval and Q C R? (d = 2, 3) the bounded convex polygonal domain with
boundary 0f2. Convexity of the domain is essential in the analysis in order to have
H?(Q) regularity of the solution of model problem which has been used in the error
analysis. Let us denote by H™({2) the Sobolev space for p = 2 and by H}(Q) the
subspace of H!(£2) with zero trace. We denote by H~1(£2) the dual space of H ().
We use the notation (-, -) for the duality pairing between H~1(Q) and H}(£2). Also,
the inner product in £2(f2) is denoted by (-,-). For 1 < p < oo, let us consider
L?(0,T;Y) as the spaces of all Lebesgue measurable functions A: [0,7] — ) with

bounded norm
T 1/p
(/ A2, dt) 1< p< oo,
0

esssup ||A(t)|ly if p = 0.
te(0,T)

Al Leo,7;y) =

Let C([0,T];)) denote the space of all continuous functions A: [0,7] — Y. We
also introduce the space BV(0,T; V) of Y-valued functions of bounded variation ([9],
Definition A.2)

N
Vary® i s%p{z () — <1><Tn_1>||y} < o0,
n=1

where the supremum is taken over all partitions f = {0 =7 < ... < 7, < ... <
7~ = T} of the time interval [0,7]. It is well known that if & € BV(0,T;)), then
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at every point so € [0,7) there exists the right limit & (so) = liim O(s) (cf. [9],
S4S0

Definition A.2). Let us define a bilinear form a by a(w,v) = (Vw, Vv). We consider
the obstacle x € H%(Q) with x|oo < 0. Let us define the closed convex set by

Ky i={veHQ): v>xae in Q}.

For given initial condition wy € Ky, and g € £2(0,T;H~1(f)), the parabolic obstacle
problem is to find w: [0,7] — K, such that

(L1) @—Tf(w - w<t>> T a(w(t),v - w(t)) > (g(t), v — w(t)

Vv € Ky, a.e. on (0,7T),
(1.2) w(0,z) = wo(x) z €.

The obstacle problem (1.1)-(1.2) has a unique solution w € C([0,7]; £3(R2)) N
L£2(0,T;HL(Y)).  Further, if g € £2(0,T;£3(Q)), then w € C([0,T]; H3(Q)) N
£2(0,T;H*(Q)) and 22 € £2(0,T;L%(9)) (cf. [8]). The constraint w(t) > x yields
free boundary, which is the boundary of the contact set Q°(t) := {x € Q: w(t) = x}
and non-contact set QF(t) := {z € Q: w(t) > x}.

The a priori error analysis for parabolic obstacle problem can be traced back to
1970’s, see e.g. [6], [28]. Subsequently, there are substantial works on apriori error
estimates for parabolic obstacle problems, see e.g. [6], [18], [34], [33], [35], [36], [39],
[42], [44]. Furthermore, some aposteriori error analysis are studied for parabolic
obstacle problems, see e.g. [32], [4]. Moreover, some related numerical analysis for
parabolic variational inequalities and their solvers may be found in [27], [26]. Re-
cently in [22], an error estimate of order

O(h + (1ogAit)1/4At3/4)

is derived for conforming finite element approximation of the parabolic obstacle prob-
lem in two dimensions with general obstacle (non-affine) generalizing the analysis
in [28] for zero obstacle problem. Also in [21], a conforming and discontinuous
Galerkin methods for the parabolic obstacle problem with general obstacle are pro-
posed and analyzed. In [21] we have derived an error estimate of order O(h + At) in
an energy norm, and thus improved the analysis in [22]. For a zero obstacle problem,
a similar error estimate is derived in [45] for conforming finite element approximation
and utilizing the time-discrete analysis in [34], Theorem 3.20 by incorporating the
obstacle constraints by using positivity preserving interpolation [14]. Further in [23],
we have studied an error analysis with order of convergence O(h + At) in an energy
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norm for non-conforming Crouzeix-Raviart approximation in dimension two. The
elements in Crouzeix-Raviart finite element space do not preserve the sign in the
interior of each triangle even though they have right sign at the nods, i.e. the mid-
points of the edges. But that is not the case for the conforming or the discontinuous
Galerkin methods, which differs the analysis of the conforming or the discontinuous
Galerkin methods from the analysis of the Crouzeix-Raviart non-conforming finite
element method.

In this article, we improve upon the error analysis in [21] by making use of the time
discrete analysis in [34], Theorem 3.20 or [33], [39] for time discretization and com-
bining it with the spatial discretization using the discontinuous Galerkin methods
for both two and three space dimensional parabolic obstacle problem. Particularly,
the error analysis in [21] has been proposed only for all the well known symmetric
DG methods. But the non-symmetric DG Methods are also equally important as the
symmetric DG methods. For example, NIPG method ensures coercivity of the corre-
sponding bilinear form of discrete problem, also a significant property of this method
is that it is unconditionally stable with respect to the choice of the penalty param-
eter. However, the symmetric methods as well as NIPG method are not suitable
for discretization of all problems as example quasilinear nonstationary convection-
diffusion problems, Navier-stokes equations. For this a suitable DG method is IIPG
method ([13], [24], [19] etc.), since some stabilization terms are missing, although
ITPG has not the favorable properties as SIPG and NIPG. In this article we take
care of all the well known symmetric and non-symmetric DG methods in a unified
analysis. By taking full advantage of the regularity result in [40], Theorem 4 and
the H!-stability and commutative property (with the time derivative) of the positive
preserving interpolation (which was introduced in [14]), we derive error estimate of
order O(h+ At) for all the symmetric and non-symmetric fully-discrete DG schemes,
in an energy norm defined precisely in the article. In our setting the obstacle y is
a general function in #2(£2) and need not be zero or affine function.

The structure of the article is as follows. In Section 2, we introduce the model
problem and the semi time-discrete problem. The fully discrete problems have been
introduced in Section 3. In Section 4, we present a unified a priori error analysis for
various symmetric and non-symmetric DG methods. Finally, Section 5 is devoted to
discussing some numerical experiments to illustrate the theoretical results.
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2. MODEL PROBLEM AND SEMI-DISCRETE PROBLEM

For some positive integer N let 0 = tg < t1 < to < ... < ty_1 < ty =T be
a partition of [0, 7] with variable step-size At =t,, —t,,—1 for n =1,..., N. Denote
by At := max A,t the largest time-step. Given a function g: [0,7] — Y, we

INX
denote g" = g(t,) € Y. On a discrete set {¢g°, g, 9%, ...,9"V} of N + 1 points we
define

n—1

g"—g
ot =2 —2
g At

For any sequence {F"}_, € ) we define the piecewise constant (in time) interpolant
F € L£>(0,T;Y) by

forn=1,2,...,N.

)

(2.1) F(t)=F" Vte (th-1,tn) forn=1,... N.

We also define the piecewise linear (in time) interpolant F € C([0,T]; )) by

~ t—1tp— tn, — 1
22)  F() = ~F +

n—1
Yt € [tno1,tn] forn=1,...,N.
Al Ant}— € [tn-1,tn]) for n

We note that

OF

(2.3) &

(t)=0F" Vte (th—1,t,) forn=1,... N.

Moreover, for any sequence {F"}_, C ) we notice that

N 1/p
H]:HLP(O,T;y) = (Z Ant||]-“n|§;) if1<p<oo,
n=1

and

H Hz: 0,T3)) H ||£ (0,T;Y) ne?loi).(,N}H Hy

Model problem: For the given initial condition wy € K, N H?(2) and g €
BV(0,T: £2(f)), the model problem is to find w: [0,7] — K, such that

(2.4) (%20, 0~ w(®)) + alw(t), v~ w(t)) > (o(2),0 ~ w(t)
Vv e Ky, a.e. on (0,7),
(2.5) w(z,0) =wo(z), =z €.

Here, we introduce the semi-discrete problem and state some well-known results,
which are crucial for the subsequent analysis.
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Semi-discrete problem: For any given g € BV(0,T; £%(Q2)) we define G" :=
g+ (tn). Then, for 1 <n < N we find W" € K, such that

(2.6) (OW™ v —=W") +aW"™, v —W") = (G",v—-W") Yve Kk,
(2'7) WO = Wy € ICX.

From Lions-Stampacchia theorem (cf. [30], [31]) the inequality (2.6)—(2.7) has
a unique solution for any 1 < n < N.
By applying integration by parts and using (2.6), we note that

Now by using the regularity results of elliptic obstacle problem, we deduce
(28) W' e HA(Q) and W) < C(IG" — OV | caqay + Ixllzcey):

Lemma 2.1. Let W™ € K, be the solution of (2.6) and (2.7). Then W" satisfies
the following:

(2.9) IV —AW" —G" >0 ae in{,
(2.10) (OW" —AW™ —G") =0 a.e.in{zeQ: W"> x}.

Proof. The proofs of (2.9) and (2.10) follow from the theory of the elliptic
obstacle problems (cf. [20], [29], [23]). O

The following lemma on convergence and regularity results (see [40], Theorem 4;
[34], Theorem 3.20) for the semi-discrete solution of problem (2.6)—(2.7) will be
crucial in the forthcoming error analysis.

Lemma 2.2 ([34], Theorem 3.20; [40], Theorem 4). For any W° € H~1(Q),
problem (2.6) has a unique solution {W"} and W™ € K, forn = 1,...,N. If
WO =wy € Ky and g € LY(0,T; L%(Q)) + L2(0,T; H1()), then we have

W e £2(0,T; £2(2)) N L2(0, T; 1)),

where W is the piecewise linear interpolant for the sequence {Wr}N_,. Further,
if g € BV(0,T;L3(12)), then we have 2¥ € £°(0,T; L£2(2)) N L2(0,T; Hi()) and

678



there exists a constant C' dependent on g and wq such that

N T N 1/2
max{ max ||w—W||z2q), </ IV (w — W)”%z(Q) dt> :
0

0<t<T
T . 1/2
</0 IV (w = W)|[Z2 (0 dt> } < CAt,

where W is the piecewise constant interpolant for the sequence {W"}\_.

Let us emphasize that at several occasions we shall use the elementary inequality:
for any real numbers r, s

1
(2.11) rs < —1r2 + E52, e>0.

3. DISCRETE PROBLEM

In order to define fully-discrete DG schemes, we first introduce some notations and
definitions. Let 7, be a shape regular d-simplicial triangulations of @ ¢ R? (d = 2, 3).
Denote by K a d-simplex in 7;, which is a triangle in dimension two and a tetrahedron
in dimension three. Let hx be the diameter of K, set h := max{hx: K € T} and
let |K| denote the d-dimensional Lebesgue measure of K. Given a simplex K € Tp,
vk stands for its minimum angle of K; mesh regularity is equivalent to vx > v > 0.
The elements of 7;, are numbered by a fixed numbering for a particular i. The set
of all vertices of K is denoted by Vi . Let w,. be the union of all d-simplices sharing
the (d — 1)-simplex e that is edge in dimension two and face in dimension three. The
set of all (d — 1)-simplices of K is denoted by &,(K). Denote the set of all vertices
of a d-simplex of 7j, that are in Q (or on Q) by Vi (or V?). Set V), = Vi U V).
Define &, = &} UEY as the set of all (d — 1)-simplices (edges/faces) in Ty, where &}
denotes the set of all interior (d— 1)-simplices and £ denotes the set of all boundary
(d — 1)-simplices of Ty,

Let us define a broken Sobolev space associated with the triangulation 7, as

HYQ,Th) == {ve L2(Q): v|x e H'(K) VK € Tp}.

For any (d—1)-simplices e,, € &} shared by two d-simplices K, and K, (see Figure 1)
such that e,q = 0K,NOK,, if p > g, then v is the unit normal of e, pointing from K,
to K, and v = v, = —v,. For any v € H'(Q, Tj,) there are two traces of v along e,,.
We define the jump and mean of v on e, by

1

[v] = v|pv|p + v|gv|q and {v}} = §(v|p + vl|q), respectively.
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Similarly, define for v € H!(€2,7,)? the jump and mean of v on e,, € Eéq by
1
[v] = vlp - vp +vlg-vg and {o}} = §(U|p + vlq), respectively.

For any e € 5}; there exists a K € 7 such that e = K N IN. Let v, be the unit
normal of e that points outside K. Also for any v € H* (€, T;,) we set on e € 82,

[v] = vve and {{v}} =v

and for v € HY(Q, Tp)?

[v] =v-ve and {v}} =w.

Figure 1. For the case d = 2, two neighboring triangles K, and K, that share the edge epq
with initial node A and end node B and unit normal v. The orientation of v =
Vvp = —vq equals the outer normal of K, hence, points into K.

The finite element spaces are defined by

Vi = {vn, €C(Q): vn|x € P1(K) VK € Th},
Voa(Th) := {vpc € L3(Q): vpalk € P1(K) VK € Ty}

Positive preserving interpolation ([14]): Now we define the positive preserv-
ing interpolation which was introduced in [14]. We denote the interior nodes of
triangulation 7;, by {z:}/_,. Let ., € V, be the ith canonical basis function,
ie. @, (z;) = d;; for 1 < 4, j < I, where §;; is the Kronecker delta function. For
each 1 <14 < I, let w; ;= U{K € T},: supp(ps,) N K # 0} be the star surrounding z;.
Let A,, be the maximal ball centered at z; such that A,, C w;. Let h; denote the
diameter of w; and p; the radius of A,,. Then mesh regularity implies the existence
of a constant C independent of h such that Ch; < g; < h; (cf. [14]). Define the
interpolation I, : L'(Q) — V4 by

I
M) =3 Alzi /A vl o),

i
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where |A,,

is the d dimensional Lebesgue measure of the ball A,,. For any K € 7Tj,
we denote the union of elements surrounding K by wgk:

WK = U {K': K'NK #0}.

K'eTy

The interpolation operator satisfies the following stability estimates (cf. [14],
Lemma 3.1): For any K € Ty,

(3.1) ||Hh'U||L2(K)
(3.2) [VILvl| 22 (k)

C|U|£2(wK) Yv € Z:Q(Q),
C VU|£2(MK) Yov € H(l)(Q),

NN

where hg is the diameter of K.
The interpolation operator satisfies the following approximation properties, cf. [14],
Lemma 3.2: For any K € T, 1 =0,1 and m = 1,2,

(33) ||U — Hh’UHH"(K) < Ch%illvlﬂm,(wK) Yv € Hm(Q) N ,Hé(Q),

where hg is the diameter of K.
At this point we define the discrete analogue of IC by

Ky = {Uh € Vi ’Uh(Z) > X(Z) Vze Vh}a
Kpc = {Voa(Th): vpalk(z) 2 px(2) V2 € Vk VK € Ty}

Here we introduce the DG methods. Define

Aw(p, @) := an(p, q) + b (p; 9),

where

an(p,q) ==Y _ /KVP'qux,

KeTn

and the bilinear form by consists of all consistency and stability terms. Set the
notation HVhpDGn%Q(Q) := an(ppc, ppe) for all ppe € Vpa(Tr). Also, recall that
for any given g € BV(0,T; £L2(2)) we define G := g (t,).

Fully-discrete DG scheme: The fully-discrete DG scheme consists of finding
Wi € Kpe for 1 < n < N such that

(3.4) (Vg vpe — Wha) + AnWpha, vpe — Wha) = (6", vpe — Whe)
Yupag € Kpa,
(35) WgG =IIpwo € Kpg.
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The choice of bilinear from by, (-, -) for several DG methods is such that corresponding
discrete bilinear form Aj, is coercive and bounded with respect to some norm on
Vb (Tr). The existence and uniqueness of a solution to the inequality (3.4)—(3.5)
follows from the Lions-Stampacchia theorem (cf. [30], [31]) for any 1 < n < N. As
an example, for all the choices of b,(-,-) listed in [25], the corresponding discrete
bilinear form Ay, is coercive and bounded with respect to some norm on Vpg (7).
For the sake of completeness, we recall some bilinear forms by, (-, -) which have been
listed in [25].
SIPG method [1], [43]: For v > vy > 0,

(3.6)  bu(p Z/ {Vphal + {Vdiip d0+2/

e€lp ec&y

NIPG method [38]: For v > 0,

(3.7) - [l 16Vl o+ Y [

ec&y ec&y

ITPG method [13], [24], [19]: For v > v > 0,

(3.8) bi(p / {Vphlaldo+ > /

e€&y e€&y

LDG method [12], [17]: For v > 0 and 8 € R?,

69w == [ U+ (VD do

e€lp

Y / Vgl + [Vp]8 - [q]) do

e€&}

+Z/

e€&y

+ /Q[T([[P]]) +18 - [pD] - [r([ql) +1(8 - [lql})] .

Particular choices of 8 can be found in [16] for superconvergence.
Bassi et al. [5]: For v > 3,

310) bp.0) == 3 [(WTPHlal+ (TN o+ 3 [ arelobre(la) .

ec&y ec&y
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Brezzi et al. [10]: For v > 0,

B1) b=~ Y / {VPYa) + AV} ) do

=
" / (RS [ Wl s
Babugka-Zlamal [3]: For v > 0,
(3.12) UL | el do
Brezzi et al. [11]: For 7 > 0,
(3.13) o) = 3 | Zerelere(la)) da.

WOPSIP [7]: For v > 0,

(3.14) )= Y [ i el (a)) o

ecly,

Here r and [ denote the global lifting operators and r. denotes the local lifting
operator which is defined in [2] and 7.: £2(e) — Poy(e) is the £L2-projection.

For the first six DG methods (3.6)—(3.11), the discrete norm ||||;, on Vpg(7r) is
defined by

lopc 7 = Z HV”DGch(m + Z [vpc] ||L',2(e
KeTn eEE;L

and for the last three DG methods (3.12)—(3.14), the discrete norm ||-||n on Vb (7h)
is defined by

lopc i = An(vpa, vpa)-
Here we emphasize that for all the methods in (3.6)—(3.14) the corresponding dis-
crete form A;, is coercive and bounded over Vpc(7;,) with respect to the norm ||||n

(see [2], [25]). Therefore, for all the discrete forms Ay, there exist positive constants o
(coercitivity constant) and C' independent of h such that

allvpclli Ve € Vba(Th),

Cllvpelrllwpelln  Yvbe, wpe € Vba(Th).

Ar(vpe,vpa)

NV

Ar(vpe, wpa)
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Henceforth, we use the notation C' for a generic constant whose value can change
at each occurrence but is independent of the parameters At and h. Also at several
occasions we shall use the following inequalities: the trace inequality (cf. [15], [37])

(3.15) Iollz2 o) < Clhi 20l ey + hil* 1 V0l c2ay) - Vo € HY(K),
and for any v € P1(K), the inverse inequality (cf. [15], [37])

(3.16) V0]l 2(50) < Chig vl c2(xc) -

4. ERROR ESTIMATE FOR FULLY-DISCRETE DG SCHEME

In this section, we furnish a unified a priori error analysis for all the symmetric
and non-symmetric fully-discrete DG schemes (which have been listed in Section 4).
We show that the error in a certain norm converges with optimal order O(h + At).

Theorem 4.1. Let w and {Wgs}Y_, be the solutions of equations (2.4)—(2.5)
and (3.4)—(3.5), respectively. Then there exists a constant C independent of h and
At such that

T
om0 = Whg oy + [ = Wocl i < O + (A0)2),

where Wp is the piecewise constant (in time) interpolant for the sequence
{We o

Proof. Recallthat {W"}Y_ is the solution of semi-discrete problem (2.6)—(2.7),
and W and W are the piecewise constant interpolant and the piecewise linear inter-
polant for the sequence {W"}]_ as defined in (2.1) and (2.2), respectively. Also
define Wpg to be the piecewise linear interpolant for the sequence {WBLIN ) as it
is defined in (2.2). By using the identity r(r — s) = 72/2 — 52 /2 + (r — 5)?/2 for any
real numbers r, s, we have

/OtM (%(W - WD(;,),W - WD(;,) dt

(V" =Wp) = (W1 =Whh), (W™ = Wig))

Il
:Mg

=1

M

DOV =Wpa) = W = Wi 122
n=1

|~

1 1
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Therefore,

(4.1) neg{?ﬁv} W — WBGH%Q(Q)

1374 o —~ N -
<2/0 (a(W—WDg),W—WDG) dt + W = WG 1 Z2q)-

Next we choose a piecewise constant function in time II; )V such that
HhW(t) = HhW(tn) Vte (tnfl,tn], n=1,...,N.
Then we expand

/OT(%(VNV—VNVDG),W—ng) dt = /OT(%(VNV—VNVDG),W—H}L—W) dt

T o —~ —_
+ / (—(W — W), W — WDG) dt.
0
Let us define

9 ~ _ —
Ena(t) == (&(W W), T — WDG) + o[ T — Whel12.

Thus from (4.1) we arrive at

T
@2) | max W= Wholbu + 20 | T~ ol de

T T a . . .
<2/ £DG(t)dt+2/ (a—(W—WDg),W—HhW) dt
0 o \Ot
+ W’ - WgG”QL?(Q)'

By integrating Epg(t) over 0 to T, we get

T N t
" H o~ -
/ g[)(;(t) dt = Z/ (E(W—WDg),H}LW—WDg) dt
0 n=1

tn—1

N tn .
oY / (T — W) |2 dt
n=1

tn—1

N
=) (OWV" = Wia), W™ — Wig) At
n=1

N
+a ) W™ = Wi R Ant.

n=1
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Next, by using the coercivity of Ay, we have
T N
/ Epa(t)dt < Z((’?(W” —Wpha), W™ — W) ARt
0 n=1

N
> AW = Wi W™ — Wig) At
n=1
N

=) (O ILW" = W) At

n=1

N
+ Z Ap(IL,W™ T,V — Wha) At

n=1

N

=) (OB TV = Wig) At
n=1
N

=) A WBG, W™ = Wi Ant.

n=1

Then, by taking vpg = II, W™ in (3.4), we arrive at

T N
/ Ena(t)dt < S (OW" LW — Wic)Aut
0

n=1

WE

57 AL (W LW — WiG) At

n=1

WE

(G, IV — WEa)Ant.

n=1

After that, we expand the right-hand side of the inequality in the following way:
T N
/ En(t)dt < S (@W W™ — Wi) At
0 n=1

N

+ ) AW — W TLW™ — Wi ) At
n=1
N

+ 3 ALV TV — WG At
n=1
N

=) (@I — W) Ant.

n=1
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Then by using boundedness of Ay, we obtain

T N
(4.3) / Epc(t)dt < CZ ([T W™ — WP [ T W™ — WGl nAnt
0 n=1
N
+) (@ ILW = Wig) Ayt
n=1

N
+ Y AW T — Wi ) At

n=1
N
=) (G W = W) At
n=1

Here we define T" = I, W" — W[, for n =1,..., N, to make convenience of the
presentation. Thus, it is easy to see (cf. [21], pages 13—-14) that

OV LW = Whe) = = [ AW+ Y [(owr i
ecly,

Therefore,
(44) AWV LW —WBG)
/ AW e+ > / YW BT do + by (W™, T™).

ecly,

We first consider SIPG, NIPG, IIPG, LDG, Bassi et al. and Brezzi et al. methods
n (3.6), (3.7), (3.8), (3.9), (3.10) and (3.11), respectively. In that case we have

Now we consider Babuska-Zlamal, Brezzi et al. and WOPSIP methods in (3.12),
(3.13) and (3.14), respectively. In that case we have

(4.6) AW T — Wi, = / AW TV — Wi,) da
-y / YW R[] do
ec&y

For the methods SIPG, NIPG, IIPG, LDG, Bassi et al. and Brezzi et al. in (3.6),
(3.7), (3.8), (3.9), (3.10) and (3.11), respectively, from (4.2), (4.3) and (4.5) we
deduce

T 3
(4.7) ne P2y V" = Wiz () + 20‘/0 [TLW — W7 dt < 225&;7
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and for the methods Babuska-Zlamal, Brezzi et al. and WOPSIP in (3.12), (3.13)
and (3.14), respectively, from (4.2), (4.3) and (4.6) we deduce

T 4
@) _max W= Wl + 20 [ TR~ Whalfde <23 e

where

T
0 S
Ehe = W0 = W22 +/O (at (W = Wha), W — th) dt,

N
3¢ = C S [T — W[V — Wi [n A,

n=1
N
Eda =D _(OW" — AW™ — G" TI,W" — W) Ant,
n=1
eho = Y [UTWBIT A0
ecéy,

Estimation of &}: By using (2.3), we have precisely

N
Eba = W' = WhallZa i) + D (O™ = W), W™ — I, W™) At
n=1
= HWO - W]%GH%z(Q)
+ Z —Wha) — W —wesh, W — T, W)

N
= W = WoglZe) + YOV =Wt I
n=1
(WN —WEG, WY — T, W) — W — W, WP — T, W°)
_ Z Wn 1 _ Da ,Wn _ thn)
= HW - WDGHN(Q) (WN - leavca W — HhWN)

- (WO - ng, WO — 1, W)

B Z tn B (Wn _ thn) _ (Wn—l _ thn—l))
tn_1 DG ’ At

= HWO - WDGH£2(Q) + WY =Wl WY T, W)
- W0 = WE o, WO — T, W)
_Z/ Wt = Wi & o (W HhW))
s ot

n—1

dt
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By applying the Cauchy-Schwarz inequality and Young’s inequality (2.11), we ar-

rive at

1
Ebc < ellVY = Whe)l[z2 (o) + <OV — HhWN)Hf;z(Q +2[V° =TV 220

tn tn
+EZ/ [wr=t — w2 + Z/

th_1 tn—1

ot (W —117) ‘

£2(Q)

Since the interpolation IIj, is H!-stable and it commutes with 2 57> this implies

1

0 0 1 ~
FIV0 = 5 ;<|Azi| /A we) da’) .

I
1 o ~
2 <m /A 2V dx) e

Then by using the interpolation error estimates (3.3) and the regularity result aw €
L£2(0,T;HY(Q)) from Lemma 2.2, we have

t N ¢ —
! "1 OW o ~ 2
(4. = —(t) — =11 t dt
K Z fnot z_: tnq I O (1) = Z )‘52(9)
N t St o~
" OW ow
nzz:l~/tn1 ot () = 1 ot ( )‘ £2()
< C’*H@ 2
D £2(0,T/HL(Q))

Also, by using the interpolation error estimates (3.3), we find

WO =TIV 220 = llwo — pwo |l 22() < Ch?|Jwollpz(q)

and
IOV = L) |20y < CRRIWN gz
Therefore,
ow
4.10 Eba < " —Wha 2% ChQH—
(4.10) DG 5neg§%N} W™ =Whoallzz@) + £2(0.T71()

+ CRA(IWN [ 2() + lwoll3z ()
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Estimation of £3: By using Young’s inequality (2.11), we find

(4.11) Eha < ZHHhWn Wz A, t‘f'EZHHhWn Wiz Ant.

n=1

By employing interpolation error estimates (3.3), we obtain

(4.12) &2 < ChQZ IV 320y An t+52|\HhW" W22 At
n=1 =
. N
< CR? W\ 220,042 (00 + € D TV = Wi 1R Ant.
n=1

Estimation of £3: Recall that

N
Ehg =D _(OW" = AW™ — G" T[W" — W) Ant

n=1

For convenience of presentation, we define Z” := W™ — AW™ — G". Next we define
three subsets of the triangulation 7 as follows:

T.r(n) ={K € Tp,: W">xin K},

T(n) == {K € Th: W" =y in K},
T (n) == T \ (T, (n) U T3 (n)).

Thus
(4.13) > / ZrIW" — Whe) de = TP + I8 + 17,
KeTy,
where
It = Yy / ZY W —WEG) de,  TH = / ZMIW" —WhG) dz
KeT; (n KeT?(n
and
Iy =y ZMIW™ — Wig) da.
KeT?(n) K

Therefore,

N
(4.14) Ea=> (I +Iy +I5) Ant

n=1
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If K € 7;L+(n), then by (2.10), we have Z™ = 0, which implies Z}* = 0. Next, for
any K € T?(n) we have W™ = x in K. Thus, II,W" = I, x < Wj¢ in K. Since
Z" >0 a.e. in Q (by (2.9)), we have

= > Z"(Ipx — Whe) dz < 0.
KeT(n) "

Now we turn to estimate Z7. For any K € T,F(n),
/K ZM I W™ = W) da = /K ZH AW =W W™ —x+x— I x+1Ix— WP dz.
Since [, Z"(W™ — x)dz =0 and [, Z"(IIx — W) dz < 0, we have

[ 2w - wi)as < [ 2w - - v - ) da,

We see in (2.8) that W € H%(Q). Now from Lemma 2.2 and (2.3) it is easy to see
that 2" = OW" — AW"™ — G" € L2(Q). Therefore by using the Cauchy-Schwarz
inequality and interpolation error estimates (3.3), we arrive at

/K ZUIW — Whe) de < CRE 2720 V" = Xl o).

By using Young’s inequality (2.11) and inequality (x — y)? < 222 + 2y?%, we derive

B Y 12wt O Y W e+ Y Il
KETF (n) KETF (n) KeT," (n)

Since ||Z"H%2(Q) < ||8Wn||%2(9) + ||AWnH%2(Q) + ||gnH%2(Q)’ we have
I3 < Ch2|\3WnH%2(Q) + Ch2”Wn”${2(Q) + Ch2||g”||%2(9) + Ch2”XH$—Lz(Q)'

Therefore, from (2.3) and (4.14) we deduce

al W |2 _
(4.15) o < ZIQAnt < ChQHW + Ch2 W22 (0 7202 (62
n=1

L£2(0,T;£2(2))

+ Ch[G 1122 0 1202 () + CPA X320 -

Estimation of &} ,: The estimation of £} is similar to the estimation of Q
in [21], pages 16-17. For the sake of completeness, we provide the following de-
tails. First we consider the estimation of &3 for Babuska-Zldmal and Brezzi et

691



al. methods in (3.12) and (3.13), respectively. By applying Cauchy-Schwarz inequal-
ity and Young’s inequality (2.11) for both Babuska-Zlamal and Brezzi et al. methods
n (3.12) and (3.13), respectively, we find

sDG\z( 5 IOV s + o 3 I ) At
eeé'h ec&y

Further, the by using the trace inequality (3.15), we obtain for Babuska-Zlamal
method in (3.12):

(4.16) Epa < CR* W22 0 130 0y + CR W Z20, 7342 (02
T
’)/ - —_
ve [ (S I - Poclit ) a.
ec&, €

For Brezzi et al. method in (3.13), by using

1
Cullre(p)l122 () < h—H@H%z(e) < Calre(@z2 (@) Vo € [Pale)?
€

(cf. [2]) and the trace inequality (3.15), we deduce

(4.17) gDG Ch2||WH,CZ(OTH1(Q)) + Ch? HWHL:Z(OTHQ(Q))
T
+5/0 (Z zllre<[[HhW Woal)|[2: e)) dt.
ecéy

For WOPSIP method in (3.14) we split £} into two parts as follows:

1) o= (Z [awov - mw e ao
ecéy,
N
+ 3 [ATmW YT Tdo ) vt = 381 + B0
ec&y V€ n=1

Now by applying the Cauchy-Schwarz inequality and the triangle inequality, we find

BY < Y VOV = W) Bl ez o I — me (XD 220

ecéy

+ ) YOV =TV B 220 llme(TX" D) 22

e€lp
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Since [|[T"]) = 7 ([ lc2(e) < Che’?||VAY"| £2(w.) (here we is the union of all
K € Ty, which share e), by using the trace inequality (3.15), interpolation error
estimates (3.3) and Young’s inequality (2.11), we deduce

By <C > R IW (s, 2 IVA Y 22
e€&y

+ ) BPIW a1 ([0" D 220
ecéy

< CR2 W™ 320 + el VR |22y + CHH W 320
g n
ey g Ime ([T DIZz o),

ec, ¢

where S,, = |J wk andwg := |J {K': K'NK # (}. Therefore,
Kewe K'e€Th

N T
(419) > BIAGt < CRW|Z2 0 1942 () + 6/0 VLIV — Wpa) |72 g dt
n=1
+ ChYWII 220 1302 2y

T
v [ (X Zlm W - Woc e, ) ar

ecE, ¢

Since 7 ([[v]) = |e|™! [ [[v] do (here |e| is the Lebesgue measure of e), by using the
Cauchy-Schwarz inequality and Young’s inequality (2.11), we obtain

B = 3 [ lelTmm (1)) do

ecéy, €
|e|2h2 nLl2 Y nyy |2
< ; <4—%||{{VH;LW }}ng(e) +eh—g|\7re([[r ]])”w(e)).

Then by using the trace inequality (3.15) and since W™ € H?(Q2), by H!-stability of
interpolation ITj in (3.2), we arrive at

N
(4.20) > By ALt < O W22 0 1342 ()
n=1
T ~y o
re [ (X ZIn - Woc s, ) a.
ec&y, €
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Therefore, from (4.18), (4.19) and (4.20) we get

T
(421) b < CR2 W0 zmisin + € / IV (T — W) o dt

+ ChYWI 220 1202 2y
T
’y [— _
v [ (X ZIm W - Woclz, ) ar

ecE, ¢

For the methods SIPG, NIPG, IIPG, LDG, Bassi et al. and Brezzi et al. in (3.6),
(3.7), (3.8), (3.9), (3.10) and (3.11), respectively, from (4.7), (4.10), (4.12) and (4.15),
by choosing € small, we obtain

T
4.22 n _yon (12 T — W 2 4t
(4.22) negl,a.t.).{,N} V" =Woallz2 (@) +/0 T,V — Whell,

oW |2
< ORI |12 h2H_
CRIW 320 + C ot Il 2730 @)
+ Ch4||w0|\§{2(9) + ChQHWH%?(o,T;W(Q))
+ Ch2(||g||2£2(0,T;£2(Q)) + HXH?—F(Q))-

For the methods Babuska-Zlamal, Brezzi et al. and WOPSIP in (3.12), (3.13) and
(3.14), respectively, from (4.8), (4.10), (4.12), (4.15), (4.16), (4.17) and (4.21), by
choosing ¢ small, we get the following:

T
42 n __ n 2 H—__ 2
(4.23) ne{mf_‘_)_fN}HW WDGH[:Q(Q)“'/O [Ty — Whellj, dt

oW |2
< CHA WY 3y + Ch2HW

L2(TH ()
+ Ch¥lwollFzq) + CR*IWIIZ2 0,712 02))
+ CR2(|IG11 220 1.22(0)) T IIX 1322 ()

+ ChYWI 220 1702 ) -

Therefore, for all the methods in (3.6)—(3.14), the inequality

T
n no |2 W N 2 2
@) max W= Wil + [P~ Whallidt < Ch

follows from (4.22) and (4.23).
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By the triangle inequality we have

T
W”W%d$@+AIW—WmM&

< W2 W — Wi |17
w107 = Willzroy + | masx V" = Welexqe)

T T
+ [ o=l [~ Wil d
0 0

= I{l/aX/N} H’U}n — WnHEz(Q) + ne?ll,aX,N} ||Wn - WBGHL‘?(Q)
T

T
+A|Ww—wwam&+AHW—WMMw

forany n=1,...,N.
Hence, from (4.24) and by Lemma 2.2, we finally arrive at

T
n n 2 IA) 2 2 2
o o" = WhallEsy + [ o= Woalfdt < 00 + (0

for all the methods in (3.6)—(3.14). This completes the proof. O

5. NUMERICAL EXPERIMENTS

In this section, some numerical experiments are discussed to illustrate the perfor-
mance of the proposed method derived in Theorem 4.1. We consider 2d oscillating
moving circle from [32] as a model example. We implement the experiments by us-
ing MATLAB and algorithms (the primal-dual active set method) developed in the
article [26] and some of our in house algorithms. In the experiments, we consider the
four DG formulations SIPG (3.6), NIPG (3.7), IIPG (3.8) and LDG (3.9). We chose
the penalty parameter v = 10 for SIPG and IIPG and « = 1 for NIPG and LDG. In
the LDG formulation (3.9), we take 8 = (0, 0).

2d oscillating moving circle: Let 2 be the square [—1,1] x [-1,1] and J be
the time interval [0, 0.25], and let the non-contact and contact sets be

QT (t) := {(x,y) € Q: R(t) > Ro(t)} and Q°(t) := {(z,y) € Q: R(t) < Ro(t)},

respectively, where R(t) = {(z — Ry cos(ant))? + (y — Rysin(ant))?}'/2 Ro(t) =
a

)
1 +0.3sin(4ant), Ry = 3 and a = 4. The exact solution u is given by

gty = | TR O ROF H@y) €27,
7 o if (z,y) € QO(t).
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The initial and boundary conditions are computed from w. The obstacle is x := 0

and forcing function g is given by

A(R3(t) — 2R?(t) — 5(R?(t) — R3(1))(P(t) + Ro(t) Ry (1))
g(x,y,t) = if (z,y)
—4R3(t)(1 — R*(t) + R3(1)) if (x,y)

€Qr (1),

e Q)
where P(t) = (z — C1(t))C1(t) + (y — C2(t))C4(t), C1(t) = Ry cos(ant) and Ca(t) =
Ry sin(ant). The free boundary is an oscillating circle with radius Ro(¢) and center
(C1(t),C2(t)) moving anticlockwise along the circle of radius R; centered at the
origin. We define

1/2
total errorpg := max__[|w" —Wpg [lc20) + (/ | (w — Wpa)(@®)|7 dt) ,
ne{l,...,N} J

DOF := number of degrees of freedom in space, where

N = number of time steps.

According to our analysis, we expect the convergence rate to be O(At) (in the
norm defined above) with uniform time-step, and to be O(h) with spatial mesh
refinement. We present the computed errors and orders of convergence in Table 1
and Table 2, for NIPG and ITPG methods, respectively. We get the same computed
errors and orders of convergence for SIPG and LDG methods as in [21], Table 7.2
and [21], Table 7.3, respectively.

100E I AL S

; ; —— total errorpg vs. h for SIPG

- E —— total errorpg vs. h for NIPG
o 1071 - —— total errorpg vs. h for IIPG
g ; ; *— total errorpg vs. h for LDG
i: i ] —— total errorpg vs. At for SIPG
2 102k | -6 total errorpg vs. At for NIPG

E E —8- total errorpg vs. At for IIPG

E E 4— total errorpg vs. At for LDG

T S —

Mesh size h and time step size At

Figure 2. Mesh size h, time step size At versus total errorpg for various DG methods.
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N h DOF total errorpg  order N h DOF total errorpg  order
50 i 48  0.76826192 — 10 i 192 0.63439329 —
100 % 192 0.21680061 1.82522940 20 % 768 0.28981282 1.13025609
200 % 768 0.06676175 1.69927516 40 % 3072 0.12279353 1.23888685
400 % 3072 0.02314769 1.52815328 80 % 12288 0.05814057 1.07861742
800 6—14 12288 0.00906717 1.35214297 160 é 49152 0.02920752 0.99320529

Table 1. Errors and orders of convergence in h (left table) & errors and orders of convergence
in At (right table) for NIPG.

N h DOF total errorpg  order N h DOF total errorpg  order
50 i 48  0.75822986 — 10 % 192 0.60338834 —
100 % 192 0.21547514 1.81511384 20 % 768  0.28368477 1.08879809
200 % 768 0.06682247 1.68911621 40 % 3072 0.12235533 1.21321171
400 % 3072 0.02320090 1.52615206 80 % 12288 0.05811903 1.07399427
800 6—14 12288 0.00908344 1.35287043 160 é 49152 0.02920893 0.99260097

Table 2. Errors and orders of convergence in h (left table) & errors and orders of convergence
in At (right table) for IIPG.

In the left table of Table 1 (or Table 2) we show the order of convergence for
space variable h with the quotient At/h = 0.01, and in the right table of Table 1 (or
Table 2) we show the order of convergence for space variable At with the quotient
At/h = 0.1 for NIPG method (or IIPG method). These experiments establish the
correctness of the expected convergence rates for all the methods considered here.
In Figure 2, we present the convergence history of the four DG methods.
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