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Abstract. For each squarefree monomial ideal I ⊂ S = k[x1, . . . , xn], we associate a simple
finite graph GI by using the first linear syzygies of I . The nodes of GI are the generators
of I , and two vertices ui and uj are adjacent if there exist variables x, y such that xui = yuj .
In the cases, where GI is a cycle or a tree, we show that I has a linear resolution if and only
if I has linear quotients and if and only if I is variable-decomposable. In addition, with
the same assumption on GI , we characterize all squarefree monomial ideals with a linear
resolution. Using our results, we characterize all Cohen-Macaulay codimension 2 monomial
ideals with a linear resolution. As another application of our results, we also characterize
all Cohen-Macaulay simplicial complexes in the case, where G∆ ∼= GI∆∨

is a cycle or a tree.

Keywords: monomial ideal; linear resolution, linear quotient; variable-decomposability;
Cohen-Macaulay simplicial complex
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1. Introduction

Let I be a monomial ideal in S = k[x1, . . . , xn]. Then there is a minimal graded

free S-resolution for I of the form 0 7→ Fp 7→ . . . 7→ F1 7→ F0 7→ I 7→ 0, where

Fi =
⊕

j

S(−j)βij and S(−j) denotes the free S-module obtained by shifting the

degrees of S by j. The numbers βij = βij(I) are called the graded Betti numbers

of I. Recall that I has a d-linear resolution over k if βij(I) = 0 for all j 6= i+ d. Let

ϕ : F0 7→ I be the map which sends the basis element eis of F0 to the generators ui
of I. Recall that I has linear relations if the kernel of ϕ is generated by linear forms.

Note that if the ideal I has a linear resolution or has linear relations, then all of

its generators have the same degree. In general, it is not easy to find ideals with

linear resolution. Note that the free S-resolution of a monomial ideal and its linearity

depends in general on the characteristic of the base field.
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We denote byG(I) the unique minimal monomial set of generators of the monomial

ideal I. We say that I has linear quotients if there exists an order σ = u1, . . . , um
of G(I) such that the colon ideal (u1, . . . , ui−1) : (ui) is generated by a subset of the

variables, for i = 2, . . . ,m. Ideals with linear quotients were introduced by Herzog

and Takayama, see [12]. Note that having linear quotients is a purely combinatorial

property of an ideal I and hence does not depend on the characteristic of the base

field. Suppose that I is a graded ideal generated in degree d. It is known that if I

has linear quotients, then I has a d-linear resolution, see [10], Proposition 8.2.1.

The concept of variable-decomposable monomial ideal was first introduced by

Rahmati and Yassemi (see [14]) as a concept dual to vertex-decomposable simplicial

complexes. We denote by ∆∨ the Alexander dual of ∆. In the case, where I is the

Stanley-Reisner ideal of ∆∨, they proved that I is variable-decomposable if and only

if ∆ is vertex-decomposable. Also they proved that if a monomial ideal I is variable-

decomposable, then it has linear quotients. Hence, for monomial ideal generated in

one degree we have the following implications:

I is variable-decomposable ⇒ I has linear quotients ⇒ I has a linear resolution.

However, there are ideals with linear resolution but without linear quotients (see [5])

and ideals with linear quotients which are not variable-decomposable, see [14], Ex-

ample 2.24.

The problem of characterizing ideals with 2-linear resolution is completely solved

by Fröberg in [9] (see also [13]). Any ideal of S which is generated by squarefree

monomials of degree 2 can be assumed as edge ideal of a finite simple graph. Fröberg

proved that the edge ideal of a finite simple graph G has a linear resolution if and

only if the complementary graph G of G is chordal. Trying to generalize the result of

Fröberg for monomial ideals generated in degree d, d > 3, is an interesting problem

which several mathematicians including Emtander (see [7]) and Woodroofe (see [16])

have worked on.

It is known that monomial ideals with 2-linear resolution have linear quotients,

see [11]. Let I = I∆∨ be a squarefree monomial ideal generated in degree d which

has a linear resolution. By a result of Eagon-Reiner (see [6]), one has that ∆ is

a Cohen-Macaulay complex of dimension n − d. In [2] the authors proved that

if ∆ is a Cohen-Macaulay simplicial complex of codimension 2, then ∆ is vertex-

decomposable. Hence, by [14], Theorem 2.10, I∆∨ is a variable-decomposable mono-

mial ideal generated in degree 2. Therefore for squarefree monomial ideals generated

in degree 2, we have:

I has a linear resolution ⇔ I has linear quotients

⇔ I is variable-decomposable ideal.
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So it is natural to look for some other classes of monomial ideals with the same

property. In this paper, we investigate some classes of monomial ideals with this

property via combinatorial properties of simple graph GI , which we associated to

a squarefree monomial ideal I generated in degree d > 2. We show that in the cases,

where GI is a cycle or a tree, these three statements are equivalent.

The paper proceeds as follows. In Section 2, we associated a simple graph GI

to a squarefree monomial ideal I generated in degree d > 2. Let Cm denote the

m-cycle on vertex set V = {1, . . . , n}. In Theorem 2.2, we show that if GI
∼= Cm,

m > 4, then I has a linear resolution if and only if it has linear quotients and this is

equivalent to saying that I is a variable-decomposable. With the same assumption

on GI , we characterize all monomial ideals with a linear resolution.

In Section 3, we consider the monomial ideal I, where GI is a tree. We prove

that if I has linear relations, then GI is a tree if and only if projdim(I) = 1 (see

Theorem 3.2). In Theorem 3.3 we show that if GI is a tree, then the following are

equivalent:

(a) I has a linear resolution.

(b) I has linear relations.

(c) G
(u,v)
I is a connected graph for all u and v in G(I).

(d) If u = u1, u2, . . . , us = v is the unique path between u and v in GI , then

F (uj) ⊂ F (ui) ∪ F (uk) for all 1 6 i 6 j 6 k 6 s.

(e) L has a linear resolution for all L ⊆ I, where G(L) ⊂ G(I) and GL is a path.

In addition, it is shown that I has a linear resolution if and only if it has linear

quotients if and only if it is variable-decomposable, provided that GI is a tree (see

Theorem 3.4).

In Section 4, as an application of our results in Corollary 4.1, we characterize

all Cohen-Macaulay monomial ideals of codimension 2 with a linear resolution. Let

t > 2 and It(Cn) (It(Ln)) be the path ideal of length t for n-cycle Cn (n-path Ln).

We show that It(Cn) (It(Ln)) has a linear resolution if and only if t = n − 2 or

t = n− 1 (t > 1
2n), see Corollaries 4.2 and 4.3.

Finally, we consider the simplicial complex ∆ = 〈F1, . . . , Fm〉, where Fis are the

facets of ∆. It is shown that ∆ is connected in codimension one if and only if GI∆∨

is a connected graph, see Lemma 5.1. In Corollary 5.1, we show that I∆∨ has linear

relations if and only if ∆(F,G) is connected in codimension one for all facets F and G

of ∆. Also, we introduce a simple graph G∆ on vertex set {F1, . . . , Fm} which is

isomorphic to GI∆∨
. As an other application of our results, we show that if G∆ is

a cycle or a tree, then the following are equivalent:

(a) ∆ is Cohen-Macaulay.

(b) ∆ is pure shellable.

(c) ∆ is pure vertex-decomposable.
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In addition, with the same assumption on G∆, all Cohen-Macaulay simplicial

complexes are characterized.

2. monomial ideals whose GI is a cycle

First, we recall some definitions and known facts which will be useful later.

Proposition 2.1 ([10], Proposition 8.2.1). Suppose I ⊆ S is a monomial ideal

generated in degree d. If I has linear quotients, then I has a d-linear resolution.

Let u = xa1

1 . . . xan
n be a monomial in S. Set F (u) := {i : ai > 0} = {i : xi | u}.

For another monomial v we set [u, v] = 1 if xai

i ∤ v for all i ∈ F (u). Otherwise, we

set [u, v] 6= 1. For a monomial ideal I ⊆ S, set Iu = (ui ∈ G(I) : [u, ui] = 1) and

Iu = (uj ∈ G(I) : [u, uj] 6= 1).

Definition 2.1 ([14]). Let I be a monomial ideal with G(I) = {u1, . . . , um}.

A monomial u = xa1

1 . . . xan
n is called shedding if Iu 6= 0 and for each ui ∈ G(Iu)

and l ∈ F (u) there exists uj ∈ G(Iu) such that uj : ui = xl. A monomial ideal I is

r-decomposable if m = 1 or else has a shedding monomial u with |F (u)| 6 r+1 such

that the ideals Iu and I
u are r-decomposable. A monomial ideal is decomposable

if it is r-decomposable for some r > 0. A 0-decomposable ideal is called variable-

decomposable.

Example 2.1. Let I = (x1x2x3, x
2
1x2, x2x

2
3). It is easy to see that x1 is a shed-

ding monomial for I, Ix1 = (x1x2x3, x
2
1x2) and Ix1

= (x2x
2
3). It is clear that x

2
1 is

a shedding monomial for Ix1 and hence, I is a decomposable ideal.

In [14] the authors proved the following result:

Theorem 2.1. Let I be a monomial ideal. Then I is decomposable if and only if

it has linear quotients.

Let G be a finite simple graph on vertex set [n] = {1, . . . , n} with edge set E(G).

A path of length t is a sequence i1, i2, . . . , it, it+1 of t + 1 distinct vertices, where

{ij, ij+1} is an edge for 1 6 j 6 t. A cycle is a path that begins and ends at the same

vertex. A connected graph G is called a tree if it has no cycle. A vertex i is called

a leaf if there exists a vertex j, called branch of i, such that {i, j} is an edge in G and

for each vertex k 6= j, {i, k} is not an edge in G. An induced subgraph ofG onB ⊂ [n]

is a graph with vertex set B together with any edges whose endpoints are both in B.

We associate to an ideal I a simple graph GI whose vertices are labeled by the

elements of G(I). Two vertices ui and uj are adjacent if there exist variables x, y

such that xui = yuj . We called it the first syzygies graph of I. This graph was first

introduced by Bigdeli, Herzog and Zaare-Nahandi, see [3].
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Remark 2.1. If I is a squarefree monomial ideal, then two types of 3-cycle ui1 ,

ui2 , ui3 , ui1 may appear in GI .

(i) If F (ui1) = A∪{j, k}, F (ui2) = A∪{i, k} and F (ui3) = A∪{i, j}, then we have

xiei1 − xkei3 = (xiei1 − xjei2) + (xjei2 − xkei3) and, hence, one of the linear

forms can be written as a linear combination of two other linear forms.

(ii) If F (ui1) = A ∪ {i}, F (ui2) = A ∪ {j} and F (ui3) = A ∪ {k}, then the three

linear forms are independent.

The number of the minimal generating set of ker(ϕ) in degree d+1 is β1(d+1) and

β1(d+1) 6 |E(GI)|. It is clear that equality holds if GI has no C3 of type (i). In this

paper, we assume that GI has no 3 cycle of type (i). Our aim is to study minimal

free resolution of I via some combinatorial properties of GI . Set xF :=
∏

i∈F

xi for

each F ⊂ [n] = {1, . . . , n}.

Remark 2.2. Let I be a squarefree monomial ideal. If ui = xFi
and uj = xFj

are two elements in G(I) such that wiui = wjuj , then there exists a monomial w ∈ S

such that wi = wxFj\Fi
and wj = wxFi\Fj

.

Lemma 2.1. If I is a squarefree monomial ideal and ui1 , ui2 , . . . , uit−1
, uit is

a path in GI , then one can obtain minimal monomials (with respect to divisibil-

ity) wi and wj from the given path such that wiei1 − wjeit belong to ker(ϕ) and

degwi=degwj 6 t− 1.

P r o o f. It is clear that t− 1 linear forms (xk1
ei1 − xk′

2
ei2), (xk2

ei2 − xk′

3
ei3), . . . ,

(xkt−1eit−1−xk′

t
eit) belong to ker(ϕ). Hence (xk2

xk1
ei1 −xk′

2
xk′

3
ei3) ∈ kerϕ. Again,

we have (xk3
xk2

xk1
ei1 − xk′

4
xk′

3
xk′

2
ei4) ∈ kerϕ. Continuing these procedures, we

obtain wi and wj with the required property. �

The following example shows that the inequality degwi=degwj 6 t − 1 can be

pretty strict.

Example 2.2. Consider the monomial ideal I = (u, v, w, z) ⊂ k[x1, . . . , x5],

where u = x1x2x3, w = x1x2x4, z = x1x4x5 and v = x3x4x5. It is easy to see that

u,w, z, v is a path of length 3 between u and v, but (x4x5eu − x1x2ev) ∈ kerϕ.

Lemma 2.2. Let I be a squarefree monomial ideal which has linear relations.

Then GI is a connected graph.

P r o o f. For any ui, uj ∈ G(I), there exist minimal monomials wi and wj such

that wiui = wjuj and hence wiei − wjej ∈ ker(ϕ). Since ker(ϕ) is generated by

linear forms, one has:

wiei − wjej = fi1(xk1
ei − xk′

2
ei2) + . . .+ fit(xkt

eit − xk′

t+1
ej),

where fij ∈ S for j = 0, . . . , t. Therefore ui, ui2 , . . . , uit , uj is a path in GI . �
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The following example shows that the converse of Lemma 2.2 is not true in general.

Example 2.3. Consider the monomial ideal I = (u, v, w, z, q) ⊂ k[x1, . . . , x6],

where u = x1x2x3, v = x1x2x4, w = x1x4x5, z = x4x5x6 and q = x3x5x6. It is

easy to see that GI is a connected graph. However, I does not have linear relations.

Computation with CoCoA (see [1]) shows that I has the minimal free S-resolution

0 7→ S(−6) 7→ S(−4)4 + S(−5) 7→ S(−3)5 7→ I 7→ 0.

Remark 2.3. Let I be a squarefree monomial ideal and ui1 , ui2 , . . . , uit be a path

in GI . Then by Lemma 2.1, there are monomials w, w
′ and fij in S such that

wei1 − w′eit ∈ ker(ϕ) and

wei1 − w′eit = fi1(xk1
ei1 − xk′

2
ei2) + . . .+ fit−1

(xkt−1
eit−1

− xk′

t
eit).

(i) If r ∈ F (uit) and r /∈ F (ui1), then xr is the coefficient of some eij in the

equation which is given above.

(ii) If w and w′ are minimal monomials (with respect to dividing) and F (uij ) ⊆

F (ui1) ∪ F (uit) for each j, 1 6 j 6 t, then w = xF (uit
)\F (ui1

) and w
′ =

xF (ui1
)\F (uit

). Let xl | w, by part (i), xl is the coefficient of some eir which

appears in the above equation. Hence, there exist uij such that l ∈ F (uij ).

Since F (uij ) ⊆ F (ui1) ∪ F (uit) and l /∈ F (ui1), one has l ∈ F (uit). So xl ∤ w
′.

Similarly, for arbitrary xr with xr | w′, one has xr ∤ w. Hence, we conclude that

w = xF (uit)\F (ui1
) and w

′ = xF (ui1
)\F (uit

).

Remark 2.4. Let wi1 and wit be two monomials in S such that wi1ei1 −witeit ∈

ker(ϕ) and

wi1ei1 − witeit = fi1(xk1
ei1 − xk′

2
ei2) + . . .+ fit−1

(xkt−1
eit−1

− xk′

t
eit).

If xi ∤ ui1 and there exist uir (2 6 r 6 t) such that xi | uir , then xi | wi1 . We may

assume that r is the smallest number with the property that xi | uir . We know

fir−2
(xkr−2

eir−2
−xk′

r−1
eir−1

)+fir−1
(xieir−1

−xk′

r
eir) is a part of the above equation.

Since in the above equation eir−1
must be eliminated, we have fir−1

xi = fir−2
xk′

r−1
.

Hence, xi | fir−2
. Also, eir−2

must be eliminated and hence one has fir−2
xkr−2

=

fir−3
xk′

r−2
. Therefore xi | fir−3

. Continuing these procedures yields xi | fi1 , i.e.,

xi | wi1 . Similarly, if xi ∤ uit and there exist uir (1 6 r 6 t − 1) such that xi | uir ,

then xi | wit .

For all u, v ∈ G(I) let G
(u,v)
I be the induced subgraph of GI on vertex set

V (G
(u,v)
I ) = {w ∈ G(I) : F (w) ⊆ F (u) ∪ F (v)}. The following fact was proved

by Bigdeli, Herzog and Zaare-Nahandi, see [3]. Here we present a different proof.
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Proposition 2.2. Let I be a squarefree monomial ideal which is generated in de-

gree d. Then I has linear relations if and only ifG
(u,v)
I is connected for all u, v ∈ G(I).

P r o o f. Assume that I has linear relations and u, v ∈ G(I). We know that

xF (v)\F (u)eu − xF (u)\F (v)ev ∈ ker(ϕ). Since ker(ϕ) is generated by linear forms,

one has:

xF (v)\F (u)eu − xF (u)\F (v)ev = fi1(xk1
ei1 − xk′

2
ei2) + . . .+ fit−1

(xkt−1
eit−1

− xk′

t
et).

Hence, u = ui1 , ui2 , . . . , uit−1
, uit = v is a path in GI . It is enough to show that

F (uij ) ⊆ F (ui1) ∪ F (uit) for all ij , 1 < j < t. Assume to the contrary that there

exists k, 1 < k < t, such that F (uik) * F (ui1) ∪ F (uit). Let l ∈ F (uik) and

l /∈ F (ui1) ∪ F (uit). By Remark 2.4, xl | xF (v)\F (u) and xl | xF (u)\F (v), which is

a contradiction.

Conversely, ker(ϕ) is generated by xFv\Fu
eu−xFu\Fv

ev, where u, v ∈ G(I). By our

assumption, G
(u,v)
I is a connected graph for all u, v ∈ G(I). Therefore there exists

a path u = ui1 , ui2 , . . . , uit−1
, uit = v between u and v in G(u,v). By Remark 2.3,

one has

xF (v)\F (u)ei1 − xF (u)\F (v)eit = fi1(xk1
ei1 − xk′

2
ei2) + . . .+ fit−1

(xkt−1
eit−1

− xk′

t
et).

Hence, xF (v)\F (u)ei1 − xF (v)\F (u)eit is a combination of linear forms. �

Lemma 2.3. Let I be a squarefree monomial ideal. Then one can assign to each

cycle of GI an element in ker(ψ), where ψ : F1 7→ F0 sends the basis element gis

of F1 to elements of the minimal generating set of ker(ϕ).

P r o o f. Let ui1 , ui2 , . . . , uit−1
, uit , ui1 be a cycle in GI . Then we have two paths

ui1 , ui2 and ui2 , . . . , uit , ui1 . Since {ui1 , ui2} ∈ E(GI), there exist variables x and y

such that xei1 − yei2 ∈ ker(ϕ). Since xei1 − yei2 is an element in the minimal set of

generators of ker(ϕ), there exists a basis element g of F1 such that ψ(g) = xei1−yei2 .

By Lemma 2.1, there exist monomials w1 and w2 in S such that w1ei1 − w2ei2 =

fi2(xk2
ei2 −xk′

3
ei3)+ . . .+fit(xkt

eit −xk′

t+1
ei1) = ψ

( t
∑

j=2

fijgij

)

. Remark 2.2 implies

that w1 = hxF (ui2
)\F (ui1

) = hx and w2 = hxF (ui1
)\F (ui2

) = hy. Therefore, we have

h(xei1 − yei2) = w1ei1 − w2ei2 .

This implies that hψ(g) = ψ
( t
∑

j=2

fijgij

)

and hence
(

hg −
t
∑

j=2

fijgij

)

∈ kerψ. Since

g 6= gij for all 1 6 j 6 r, one has
(

hg −
t
∑

j=2

fijgij

)

6= 0. �
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Lemma 2.4. Let w be an element of a minimal set of generators of ker(ψ). If

w =
∑

higi, where gi is a basis element of F1 and 0 6= hi ∈ S for each i, then hi is

a monomial.

P r o o f. Without loss of generality, we may assume that ψ(g1) = t′1e1− t2e2. Let

u ∈ supp(h1) be a monomial. Since ut2e2 must be eliminated, there exists a basis

element gj of F1 such that ψ(gj) = (t′2e2 − t3el). Without loss of generality, we may

assume j = 2 and l = 3. Hence, t2u/t
′
2 = u′ ∈ supp(h2). Again, since u

′t3e3 must be

eliminated, without loss of generality, we may assume there exists a basis element g3
of F1 such that ψ(g3) = (t′3e3−t4e4). Therefore t3u

′/t′3 = u′′ ∈ supp(h3). Continuing

this procedure yields ψ(gl) = (t′lel − t1e1) and tlu
l−2/t′l = ul−1 ∈ supp(hl). Hence,

we obtain a cycle in GI in this way. Now if there exists another monomial v ∈

supp(h1) with u 6= v, then by a similar argument one can find a new cycle in GI .

Hence, Lemma 2.3 implies that w is a combination of some other elements of ker(ψ),

a contradiction. So hi is a monomial. �

Lemma 2.5. Let I be a squarefree monomial ideal which has linear relations.

Then corresponding to every element in a minimal set of generators of ker(ψ) there

is a cycle in GI .

P r o o f. Let
n
∑

i=1

higi be an element in a minimal set of generators of ker(ψ).

Then ψ
( n
∑

i=1

higi

)

=
n
∑

i=1

hiψ(gi) = 0, therefore −h1ψ(g1) =
n
∑

i=2

hiψ(gi). Assume that

ψ(g1) = xi1ei1 − xi2ei2 . So ui1 , ui2 is a path in GI .

The left-hand side of the above equation is of the form wi1ei1 − wi2ei2 . By the

proof of Lemma 2.2, the right-hand side of the above equation is of the form

fi2(xk2
ei2 − xk′

3
ei3) + fi3(xk3

ei3 − xk′

4
ei4) + . . .+ fit(xkt

eit − xk′

t+1
ei1),

where eit 6= ei2 . If eit = ei2 , then xk′

t+1
= xi1 and xkt

= xi2 . Hence, g1 appears

on the right-hand side of the equation, a contradiction. Thus, ui2 , ui3 , . . . , uit , ui1 is

a path which is different from the path ui1 , ui2 . �

From now, we assume that I is a squarefree monomial ideal generated in one

degree, n is the smallest integer such that I ⊂ k[x1, . . . , xn] and I 6= uJ , where u is

a monomial and J a monomial ideal.

Theorem 2.2. Let I ⊂ k[x1, . . . , xn] be a squarefree monomial ideal such that

GI
∼= Cm, m > 4. Then the following conditions are equivalent:

(a) I has a linear resolution.
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(b) m = n and after a suitable relabeling of variables, one has the generators of I

of the forms ui =
n−2+i
∏

j=i+1

xj for 1 6 i 6 n, where xn+k = xk.

(c) I is variable-decomposable ideal.

(d) I has linear quotients.

P r o o f. (a) ⇒ (b) Assume that I has a linear resolution. Since GI is a cycle, by

Lemmas 2.3 and 2.5, ker(ψ) = (w). Let w =
m
∑

i=1

higi. Without loss of generality, we

may assume that GI = u1, u2, . . . , um, u1. Then

ψ(w) =
m
∑

i=1

hiψ(gi)

= h1(xt1e1 − xt′
2
e2) + h2(xt2e2 − xt′

3
e3) + . . .+ hm(xtmem − xt′

1
e1) = 0.

Therefore h1xt1e1 = hmxt′1e1. Since I has d-linear resolution and deg(ei) = d, we

conclude that deg(hi) = 1 for i = 1, . . . ,m. Consequently, h1 = xt′
1
and hm = xt1 .

By a similar argument, hj = xt′
j
and hj = xtj+1

. Hence, xtj+1
= xt′

j
for all 1 6 j 6

m− 1. So ker(ϕ) is minimally generated by the following linear forms:

(xt1e1 − xt3e2), (xt2e2 − xt4e3), . . . , (xtmem − xt2e1).

For an arbitrary variable xi in S there exits ui and uj in G(I) such that xi | ui and

xi ∤ uj. Hence, by Remark 2.3 xi ∈ {xt1 , xt2 , . . . , xtm}. It is clear that the variables

xt1 , xt2 , . . . , xtm are distinct and hence n = m.

Set xt−1
= xtm−1

, xtm+1
= xt1 , e0 = em and em+1 = e1. For 1 6 i 6 m − 1

we have ϕ(xti−2
ei−1 − xtiei) = 0 and hence, xti | ui−1 and xti ∤ ui. Also, from

ϕ(xtiei+1 − xti+2
ei+2) = 0 we have xti ∤ ui+1 and xti | ui+2. By Remark 2.3 xti | uj

for j 6= i, i+ 1.

(b) ⇒ (c) It is easy to see that u = x1 is a shedding variable for I, Ix1
= 〈u1, u2〉

and Ix1 = 〈u3, . . . , un〉. Also, it is clear that Ix1
is variable decomposable and x2 is

a shedding variable for Ix1 . Now we have (Ix1)x2 = 〈u4, . . . , un〉 and (I
x1)x2

= 〈u3〉.

Continuing these procedures yields that Ix1 is variable-decomposable. Hence, I is

a variable-decomposable ideal.

(c) ⇒ (d) follows from Theorem 2.1.

(d) ⇒ (a) follows from Proposition 2.1. �

As an immediate consequence of Theorem 2.2 we have the following corollaries:

Corollary 2.1. Let I be a squarefree monomial ideal generated in degree d and

GI
∼= Cm. If d+ 2 < n or m 6= n, then I can not have a d-linear resolution.
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Corollary 2.2. Let I ⊂ S be a squarefree monomial ideal generated in degree 2

and assume that GI
∼= Cm, m > 4. Then I has a linear resolution if and only if

m = 4.

Example 2.4. Consider the monomial ideal I = (xy, zy, zq, qx) ⊂ k[x, y, z, q].

It is clear that GI is 4-cycle, d = 2, n = 4 and d+2 = n. Computation with CoCoA

(see [1]) shows that I has the minimal free 2-linear resolution

0 7→ S(−4) 7→ S(−3)4 7→ S(−2)4 7→ I 7→ 0.

Example 2.5. Let I = (xyz, yzq, zqw, qwe, wex, xye) ⊂ k[x, y, z, q, e, w]. Then

GI
∼= C6. Therefore I does not have a 3-linear resolution since d = 3, n = 6 and

d + 2 < n. Computation with CoCoA (see [1]) shows that I has the minimal free

S-resolution:

0 7→ S(−6) 7→ S(−4)6 7→ S(−3)6 7→ I 7→ 0.

Remark 2.5. Let I be a squarefree monomial ideal. If GI
∼= C3, then I has

linear quotients. Hence I has a linear resolution.

Let I be a squarefree monomial ideal generated in degree 2. We may assume that

I = I(G) is the edge ideal of a graph G. Hence, by Fröberg’s result, I(G) has a linear

resolution if and only if G is a chordal graph. If G ∼= Cm, then G is chordal if and

only if m = 3 or m = 4. In this situation G ∼= Cm if and only if GI
∼= Cm. Hence,

in this case our result coincides to Fröberg’s result.

3. Linear resolution of monomial ideals whose GI is a tree

Let I be a squarefree monomial ideal such that GI is a tree. In this section we

study linear resolutions of such monomial ideals. We know that each path is a tree,

therefore first we consider the following:

Theorem 3.1. Let I = (u1, . . . , um) be a squarefree monomial ideal generated

in degree d. If GI = u1, u2, . . . , um is a path, then the following conditions are

equivalent:

(a) I has a linear resolution.

(b) for any 1 6 j 6 k 6 i 6 m

F (uk) ⊆ F (ui) ∪ F (uj).

(c) I is variable-decomposable ideal.

(d) I has linear quotients.
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P r o o f. (a) ⇒ (b) Suppose on the contrary that there exist 1 6 j < k < i 6 m

and l ∈ F (uk) such that l /∈ F (ui) ∪ F (uj). Since I has a linear resolution, we have

xF (ui)\F (uj)ej−xF (uj)\F (ui)ei = fi(xk1
ei−xk′

2
ei+1)+fi+1(xk2

ei+1−xk′

3
ei+2)+ . . .+

fj−1(xkj−1
ej−1 − xk′

t
ej). By Remark 2.4, xl | xF (uj)\F (ui) and xl | xF (ui)\F (uj),

which is a contradiction.

(b) ⇒ (c) Let F (u2) \ F (u1) = {l}. From the facts that F (u2) ⊆ F (u1) ∪ F (ui),

l ∈ F (u2) and u2 : u1 = xl, we conclude that l ∈ F (ui) for all 2 6 i 6 m, Ixl
= 〈u1〉

and x1 is a shedding monomial. By induction on m, I
xl is variable-decomposable,

since Ixl is a path of length m− 1.

(c) ⇒ (d) follows from Theorem 2.1.

(d) ⇒ (a) follows from Proposition 2.1. �

Theorem 3.2. If I is a squarefree monomial ideal which has linear relations,

then GI is a tree if and only if projdim(I) = 1.

P r o o f. If GI is a tree, then GI has no cycle. Therefore by Lemma 2.5,

ker(ψ) = 0. Hence, the linear resolution of I is of the form

0 7→ F1 7→ F0 7→ I 7→ 0, and projdim(I) = 1.

Conversely, assume that projdim(I) = 1. Then ker(ψ) = 0 and by Lemma 2.3, GI

has no cycle. Since I has linear relations, by Lemma 2.2, GI is a connected graph.

Therefore GI is a tree. �

Proposition 3.1. Let I be a squarefree monomial ideal with projdim(I) = 1.

Then I has a linear resolution if and only if GI is a connected graph.

P r o o f. Assume that GI is a connected graph. Since projdim(I) = 1, Lemma 2.3

implies that GI has no cycle and hence it is a tree. So it is enough to show

that I has linear relations. For ui, uj ∈ G(I) there exists a unique path be-

tween ui and uj in G(I). Assume that wei − w′ej = fi1(xk1
ei1 − xk′

2
ei2) + . . . +

fit−1
(xkt−1

eit−1
− xk′

t
eit) is an element of ker(ϕ) which is obtained from this

path. If wei − w′ej = xF (uj)\F (ui)ei − xF (ui)\F (uj)ej , we are done. So assume

that the equality does not hold. Then xF (uj)\F (ui)ei − xF (ui)\F (uj)ej belongs

to the minimal set of generators of ker(ϕ). Hence, there exists g ∈ F1 such

that ψ(g) = xF (uj)\F (ui)ei − xF (ui)\F (uj)ej . Remark 2.2 implies that there ex-

ists a monomial h ∈ S such that hψ(g) = wei − w′ej =
t−1
∑

j=1

fijψ(gij ). Therefore

ψ
(

hg −
t−1
∑

j=1

fijgij

)

= 0 and hg −
t−1
∑

j=1

fijψ(gij ) 6= 0, a contradiction.

The converse follows from Lemma 2.2. �
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Proposition 3.2. Let I = (u1, . . . , um) be a squarefree monomial ideal generated

in degree d which has linear quotients. Assume that GI is a tree and v is a monomial

in degree d which is a leaf in G(I,v). Then the following conditions are equivalent:

(a) (I, v) has a linear resolution.

(b) Let ui be the branch of v and F (ui) \ F (v) = {l}. Then l ∈
m
⋂

t=1
F (ut).

(c) (I, v) has linear quotients.

P r o o f. (a) ⇒ (b) Suppose on the contrary that there exists a 1 6 j 6 m such

that l /∈ F (uj). Let v, ui = ui1 , ui2 , . . . , uit−1
, uit = uj be the unique path between v

and uj . Without loss of generality, we may assume that l ∈ F (uir ) for all r, 1 6 r 6

t − 1. Since (I, v) has a linear resolution, we have xF (uj)\F (v)ev − xF (v)\F (uj)ej =

f0(xi0ev−x
′
i1
ei1)+f1(xi1ei1 −x

′
i2
ei2)+ . . .+ft−1(xit−1

eit−1
−x′itet). By Remark 2.4,

one has xl | xF (uj)\F (v) and xl | xF (v)\F (uj), a contradiction.

(b) ⇒ (c) Assume that I has linear quotients with respect to an ordering v1,

v2, . . . , vm of G(I). Since by our assumption {l} = F (ui) \ F (v) and l ∈ F (uj) for

any 1 6 j 6 m, we conclude that the order v1, v2, . . . , vm, v is an admissible order

for (I, v).

(c) ⇒ (a) follows from Proposition 2.1. �

Proposition 3.3. Let I = (u1, . . . , um) be a squarefree monomial ideal generated

in degree d. If GI is a tree, then I has a linear resolution if and only if L has a linear

resolution for all L ⊆ I, where G(L) ⊂ G(I) and GL is a path.

P r o o f. Assume that I has a linear resolution. Since GI is a tree, we have

projdim(I) = 1. So if L ⊂ I with G(L) ⊂ G(I) and GL is a path, then L has linear

relations and projdim(L) = 1. Therefore L has a linear resolution.

For the converse, by our assumption there exists a monomial ideal J0 ⊂ I such

that G(J0) = {ui1 , . . . , uit} ⊂ G(I), GJ0
is a path and J0 has linear resolution.

Therefore J0 has linear quotients. Take v ∈ V (GI) \ V (GJ0
) such that v and uij are

adjacent in GI for some 1 6 j 6 t. Set F (uij ) \ F (v) = {l}. Since J0 has linear

quotients, there exists a path between uir and uij for all 1 6 r 6 t. Therefore we

have path uir , . . . , uij , v in GI . By our hypothesis L = 〈uir , . . . , uij , v〉 has a lin-

ear resolution and Proposition 3.1 implies that F (uij ) ⊆ F (v) ∪ F (uir ). Therefore

{l} ∈ F (uir ) and Proposition 3.2 implies that J1 = 〈J0, v〉 has linear quotients. Now

replace J0 by J1 and do the same procedure until we obtain I. �

Theorem 3.3. Let I be a squarefree monomial ideal which is generated in de-

gree d. If GI is a tree, then the following conditions are equivalent:

(a) I has a linear resolution.

(b) I has linear relations.
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(c) G
(u,v)
I is a connected graph for all u and v in G(I).

(d) If u = u1, u2, . . . , us = v is the unique path between u and v in GI . Then

F (uj) ⊂ F (ui) ∪ F (uk) for all 1 6 i 6 j 6 k 6 s.

(e) L has a linear resolution for all L ⊆ I, where G(L) ⊂ G(I) and GL is a path.

P r o o f. (a) ⇒ (b) is trivial.

(b) ⇔ (c) follows from Proposition 2.2.

(c)⇒ (d) for all 1 6 i 6 j 6 k 6 s, G
(ui,uk)
I is connected and uj is a vertex of this

graph. Therefore F (uj) ⊂ F (ui) ∪ F (uk).

(d) ⇒ (e) follows from Proposition 3.1.

(e) ⇒ (a) follows by Proposition 3.3. �

Theorem 3.4. Let I be a squarefree monomial ideal generated in degree d. If GI

is a tree, then the following are equivalent:

(a) I has a linear resolution.

(b) I is variable-decomposable ideal.

(c) I has linear quotients.

P r o o f. (a)⇒ (b) GI is a tree and I has a linear resolution, hence projdim(I) = 1.

Without loss of generality we may assume that u1 is a leaf in GI and u2 is its branch.

Set F (u2) \ F (u1) = {l}. Proposition 2.2 implies that G
(u1,ui)
I is a connected graph

for all ui. If l 6∈ F (ui) for some i > 2, then F (u2) * F (u1) ∪ F (ui) and u2 /∈

V (G
(u1,ui)
I ). Therefore G

(u1,ui)
I is not connected, a contradiction. Hence Ixl

= {u1}

and G(Ixl) = G(I)\ {u1}. It is easy to see that xl is a shedding variable. Since GIxl

is a tree and has linear relations, by induction on |G(I)|, we conclude that Ixl is

variable-decomposable. Therefore I is a variable-decomposable ideal.

(b) ⇒ (c) follows from Theorem 2.1.

(c) ⇒ (a) follows by Proposition 2.1. �

4. Linear resolution of some classes of monomial ideals

In this section, as applications of our obtained results, we determine the linearity

of resolution for some classes of monomial ideals.

Let I be a squarefree Cohen-Macaulay monomial ideal of codimension 2 which is

generated in one degree. Since projdim(I) = 1, as a corollary of Proposition 3.1 and

Theorem 3.4, we have:

Corollary 4.1. Let I be a squarefree Cohen-Macaulay monomial ideal of codi-

mension 2. Then I has a linear resolution if and only if GI is a connected graph.

Indeed, in this case GI is a tree and the following conditions are equivalent:
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(i) I has a linear resolution.

(ii) I has linear quotients.

(iii) I is variable decomposable.

The following example shows that there are Cohen-Macaulay monomial ideals of

codimension 2 with and without a linear resolution.

Example 4.1.

(i) Let I = (xy, yz, zt) ⊂ K[x, y, z, t]. Computation with CoCoA (see [1]) shows

that I is Cohen-Macaulay of codimension 2 and has the minimal free 2-linear

resolution.

(ii) Let I = (xy, zt) ⊂ K[x, y, z, t]. Again, using CoCoA (see [1]) shows that I is

Cohen-Macaulay of codimension 2 which does not have a linear resolution.

Remark 4.1. Let I be a squarefree monomial ideal generated in degree d. If GI

is a complete graph, then the following statements hold.

(a) I has a linear resolution.

(b) I is variable-decomposable ideal.

(c) I has linear quotients.

In [4] Conca and De Negri introduced a path ideal of a graph. The path ideal

of G of length t is the monomial ideal It(G) =
〈 t
∏

j=1

xij

〉

, where i1, . . . , it is a path

in G. In [8], Proposition 4.1, it is shown that S/I2(Cn) is vertex decomposable

(shellable, Cohen-Macaulay) if and only if n = 3 or 5. In [15], the authors showed

that if 2 < t 6 n, then S/It(Cn) is sequentially Cohen-Macaulay if and only if t = n,

t = n− 1 or t = 1
2 (n− 1). In [2] it is shown that S/It(Cn) is Cohen-Macaulay if and

only if it is shellable and if and only if It(Cn) is vertex decomposable.

It is easy to see that if t < n − 1, then GIt(Cn)
∼= Cn. Hence, by Theorem 2.2,

It(Cn) has a linear resolution if and only if t = n− 2. For t = n− 1, since GIt(G) is

a complete graph, It(G) has a linear resolution. Also, in these cases, having a linear

resolution is equivalent to having linear quotients and it is equivalent to variable

decomposability of It(Cn). Hence we have:

Corollary 4.2. It(Cn) has a linear resolution if and only if t = n−2 or t = n−1.

In addition, the following conditions are equivalent:

(a) It(Cn) has a linear resolution.

(b) It(Cn) is variable-decomposable ideal.

(c) It(Cn) has linear quotients.

Corollary 4.3. Let Ln be a path on vertex set {1, . . . , n} and It(Ln) be the path

ideal of Ln. Then It(Ln) has a linear resolution if and only if t >
1
2n. Also It(Cn)
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has linear resolution if and only if it has linear quotients and this is equivalent to

saying that It(Cn) is variable decomposable.

P r o o f. Let Ln = 1, . . . , n be a path. It is easy to see that GIt(Ln)
∼= Ln−t+1

and It(Ln) =
( t
∏

i=1

xi, . . . ,
2t
∏

i=t+1

xi, . . . ,
n
∏

i=n−t+1

xi

)

. If n − t + 1 > t + 1, then

F (u2) * F (u1) ∪ F (un). Hence Theorem 3.1 implies that It(G) does not have

a linear resolution. If n − t + 1 6 t + 1, i.e., t > 1
2n, then it is clear that for any

1 6 j 6 k 6 i 6 m one has:

F (uk) ⊆ F (ui) ∪ F (uj).

Therefore, by Theorem 3.1, It(G) has a linear resolution and the equivalent condi-

tions hold. �

5. Cohen-Macaulay simplicial complex

A simplicial complex ∆ over a set of vertices [n] = {1, . . . , n} is a collection of

subsets of [n] with the property that {i} ∈ ∆ for all i and if F ∈ ∆, then all subsets

of F are also in ∆. An element of ∆ is called a face and the dimension of a face F

is defined as |F | − 1, where |F | is the number of vertices of F . The maximal faces

of ∆ under inclusion are called facets and the set of all facets is denoted by F(∆).

The dimension of the simplicial complex ∆ is the maximal dimension of its facets.

A subcomplex of ∆ is a simplicial complex whose facets are also facets of ∆. We

say that a simplicial complex ∆ is connected if for each F and G of F(∆) there

exists a sequence of facets F = F0, F1, . . . , Fq−1, Fq = G such that Fi ∩ Fi+1 6= ∅

for i = 0, . . . , q − 1.

Let ∆ be a simplicial complex on [n] with F(∆) = {F1, . . . , Fm}. The Stanley-

Reisner ideal of∆ is a squarefree monomial ideal I∆ =(xi1 . . . xip | {xi1 , . . . , xip} /∈∆).

The Alexander dual of ∆ is the simplicial complex ∆∨ = ({x1, . . . , xn} \F | F /∈ ∆).

For each F ⊂ [n] we set Fi = [n] \ Fi and PF = (xj : j ∈ F ). It is well known that

I∆ =
m
⋂

i=1

PFi
and I∆∨ = (xFi

: i = 1, . . . ,m), see [10].

The simplicial complex ∆ is called pure if its facets have the same dimension. It

is easy to see that ∆ is pure if and only if I∆∨ is generated in one degree. The

k-algebra k[∆] = S/I∆ is called the Stanley-Reisner ring of ∆. We say that ∆ is

Cohen-Macaulay over k if k[∆] is Cohen-Macaulay. It is known that ∆ is Cohen-

Macaulay over k if and only if I∆∨ has a linear resolution, see [6].

The simplicial complex ∆ is called shellable if its facets F1, F2, . . . , Fm can be

ordered so that for all 2 6 i 6 m, the subcomplex (F1, . . . , Fi−1) ∩ (Fi) is pure of

dimension dim(Fi)− 1.
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For the simplicial complexes ∆1 and ∆2 defined on disjoint vertex sets, the join

of ∆1 and ∆2 is ∆1 ∗∆2 = {F ∪G : F ∈ ∆1, G ∈ ∆2}. For a face F in ∆, the link,

deletion and star of F in ∆ are, respectively, denoted by link∆F , ∆\F and ⋆∆F and

defined by link∆F = {G ∈ ∆: F ∩ G = ∅, F ∪ G ∈ ∆}, ∆ \ F = {G ∈ ∆: F * G}

and ⋆∆F = (F )∗link∆F .

A face F in ∆ is called a shedding face if every face G of ⋆∆F satisfies the following

exchange property: for every i ∈ F there is j ∈ [n] \ G such that (G ∪ {j}) \ {i}

is a face of ∆. A simplicial complex ∆ is recursively defined to be k-decomposable

if either ∆ is a simplex or else has a shedding face F with dim(F ) 6 k such that

both ∆ \ F and link∆F are k-decomposable. 0-decomposable simplicial complexes

are called vertex decomposable.

It is clear that xFi
and xFj

are adjacent in GI∆∨
if and only if Fi and Fj are

connected in codimension one, i.e., |Fi ∩ Fj | = |Fi| − 1. A simplicial complex ∆

is called connected in codimension one or strongly connected if for any two facets

F and G of ∆ there exists a sequence of facets F = F0, F1, . . . , Fq−1, Fq = G such

that Fi and Fi+1 are connected in codimension one for each i = 1, . . . , q− 1. Hence,

we have the following:

Lemma 5.1. A simplicial complex ∆ is connected in codimension one if and only

if GI∆∨
is a connected graph.

For facets F and G of ∆, we introduce a subcomplex ∆(F,G) = (L ∈ F(∆):

F ∩ G ⊂ L). It is easy to see that ∆(F,G) is connected in codimension one if and

only if G
(x

F
,x

G
)

I∆∨
is a connected graph. Hence, by Proposition 2.2 we have:

Corollary 5.1. Let ∆ be a pure simplicial complex on vertex set [n]. Then I∆∨

has linear relations if and only if ∆(F,G) is connected in codimension one for all

facets F and G of ∆.

Suppose that ∆ is a pure simplicial complex of dimension d, i.e., |Fi| = d + 1 for

all i. We associate to ∆ a simple graph G∆ whose vertices are labeled by the facets

of ∆. Two vertices Fi and Fj are adjacent if Fi and Fj are connected in codimension

one, i.e., |Fi ∩Fi+1| = d. Then it is easy to see that | Fi ∩Fj |= n− d− 2. Therefore

xFi
and xFj

are adjacent in GI∆∨
and hence G∆

∼= GI∆∨
.

Now assume that G∆
∼= GI∆∨

is a path. Proposition 3.1 implies that I∆∨ has

a linear resolution if and only if for any 1 6 j 6 k 6 i 6 m, Fk ⊆ Fi ∪Fj . Hence, by

Eagon-Reiner (see [6]), in this case ∆ is Cohen-Macaulay. Therefore we have:

Corollary 5.2. Let ∆ = (F1, . . . , Fm) be a pure simplicial complex. If G∆ =

F1, F2, . . . , Fm is a path, then ∆ is Cohen-Macaulay if and only if Fi ∩ Fj ⊆ Fk
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for any 1 6 j 6 k 6 i 6 m. Moreover, in this case the following conditions are

equivalent:

(a) ∆(F,G) is connected in codimension one for all facets F and G in ∆.

(b) ∆ is Cohen-Macaulay.

(c) ∆ is shellabe.

(d) ∆ is vertex decomposable simplicial complex.

Also as a consequence of Theorem 2.2 we have:

Corollary 5.3. Let ∆ = (F1, . . . , Fm) be a pure simplicial complex on vertex

set [n]. If G∆
∼= Cm, then ∆ is Cohen-Macaulay if and only if m = n and with

a suitable relabeling of vertexes, we have Fi = {i + 1, i + 2, . . . , i + n − 2}, where

n + i = i. Moreover, in this case ∆ is shellabe and vertex decomposable simplicial

complex.

As another corollary of Theorems 3.3 and 3.4 we have:

Corollary 5.4. Let ∆ = (F1, . . . , Fm) be a pure simplicial complex. If G∆ is

a tree, then the following conditions are equivalent:

(a) ∆(F,G) is connected in codimension one for all facets F and G in ∆.

(b) If F = F1, F2, . . . , Fs = G is the unique path in G∆ from F to G, then Fi ∩

Fk ⊂ Fj for all 1 6 i 6 j 6 k 6 s.

(c) ∆ is Cohen-Macaulay.

(d) ∆ is shellable.

(e) ∆ is vertex decomposable.
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