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Abstract. Let T be a tree. Then a vertex of T with degree one is a leaf of T and a vertex
of degree at least three is a branch vertex of T . The set of leaves of T is denoted by L(T )
and the set of branch vertices of T is denoted by B(T ). For two distinct vertices u, v
of T , let PT [u, v] denote the unique path in T connecting u and v. Let T be a tree with
B(T ) 6= ∅. For each leaf x of T , let yx denote the nearest branch vertex to x. We delete
V (PT [x, yx]) \ {yx} from T for all x ∈ L(T ). The resulting subtree of T is called the
reducible stem of T and denoted by R Stem(T ). We give sharp sufficient conditions on the
degree sum for a graph to have a spanning tree whose reducible stem has a few branch
vertices.
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1. Introduction

In this paper, we consider only finite simple graphs. Let G be a graph with

the vertex set V (G) and edge set E(G). For any vertex v ∈ V (G), we use NG(v)

and degG(v) (or N(v) and deg(v) if there is no ambiguity) to denote the set of

neighbors of v and the degree of v in G, respectively. For any X ⊆ V (G), we

denote by |X | the cardinality of X . Sometime, we denote it by |G| instead of |V (G)|.

We define NG(X) =
⋃

x∈X

NG(x) and degG(X) =
∑

x∈X

degG(x). For k > 1, we put

Nk(X) = {x ∈ V (G) : |N(x)∩X | = k}.We use G−X to denote the graph obtained

from G by deleting the vertices inX together with their incident edges. We introduce

G−uv to be the graph obtained from G by deleting the edge uv ∈ E(G), and G+uv

to be the graph obtained from G by adding a new edge uv joining two non-adjacent
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vertices u and v of G. For two vertices u and v of G, the distance between u and v

in G is denoted by dG(u, v). We use Kn to denote the complete graph on n vertices.

We write A := B to rename B as A.

For an integer m > 2, let αm(G) denote the number defined by

αm(G) = max{|S| : S ⊆ V (G), dG(x, y) > m for all distinct vertices x, y ∈ S}.

For an integer p > 2, we put

σm
p (G) = min{degG(S) : S ⊆ V (G), |S| = p, dG(x, y) > m

for all distinct vertices x, y ∈ S}.

For convenience, we set σm
p (G) = ∞ if αm(G) < p. We note that α2(G) is often

written as α(G), which is the independence number of G, and σ2
p(G) is often written

as σp(G), which is the minimum degree sum of p independent vertices.

Let T be a tree. A vertex of degree one is a leaf of T and a vertex of degree at

least three is a branch vertex of T . The set of leaves of T is denoted by L(T ) and

the set of branch vertices of T is denoted by B(T ). The subtree T − L(T ) of T is

called the stem of T and is denoted by Stem(T ). For two distinct vertices u, v of T ,

let PT [u, v] denote the unique path in T connecting u and v. We define that the

orientation of PT [u, v] is from u to v. For each vertex x ∈ V (PT [u, v]), we denote

by x+ and x− the successor and predecessor of x in PT [u, v], respectively, if they

exist. We refer to [4] for terminology and notation not defined here.

T

R Stem(T )

Figure 1. Tree T and R Stem(T )

For a leaf x of T , let yx denote the nearest branch vertex to x. For each leaf x of T ,

we remove the path PT [x, yx) from T , where PT [x, yx) denotes the path connecting x

to yx in T but not containing yx. Moreover, the path PT [x, yx) is called the leaf-

branch path of T incident to x and denoted by lbPT (x). The resulting subtree of T

698



is called the reducible stem of T and denoted by R Stem(T ) (see Figure 1 for an

example of T and R Stem(T )). Then R Stem(T ) = T −
⋃

x∈L(T )

V (lbPT (x)). A leaf

of R Stem(T ) is also called a peripheral branch vertex of T , see [6], [13].

There are several sufficient conditions (such as the independence number condi-

tions and the degree sum conditions) for a graph G to have a spanning tree with

a bounded number of leaves or branch vertices (see the survey paper [15] and the

references cited therein for details). Win in [17] obtained the following theorem,

which confirms a conjecture of Las Vergnas (see [12]), and Broersma and Tuinstra

in [1] gave the following sufficient condition for a graph to have a spanning tree with

at most k leaves.

Theorem 1.1 ([17]). Let l > 1 and k > 2 be integers and let G be an l-connected

graph. If α(G) 6 k + l − 1, then G has a spanning tree with at most k leaves.

Theorem 1.2 ([1]). Let G be a connected graph and let k > 2 be an integer. If

σ2(G) > |G| − k + 1, then G has a spanning tree with at most k leaves.

Recently, many researchers studied spanning trees in connected graphs whose

stems have a bounded number of leaves or branch vertices, see [8], [9], [16] and [18]

for more details. We introduce here some results on spanning trees whose stems have

a few leaves or branch vertices.

Theorem 1.3 ([16]). Let G be a connected graph and let k > 2 be an integer. If

σ3(G) > |G| − 2k + 1, then G has a spanning tree whose stem has at most k leaves.

Theorem 1.4 ([8]). Let G be a connected graph and let k > 2 be an integer. If

either α4(G) 6 k or σk+1(G) > |G| − k − 1, then G has a spanning tree whose stem

has at most k leaves.

Theorem 1.5 ([18]). Let G be a connected graph and k > 0 be an integer. If one

of the conditions

(a) α4(G) 6 k + 2,

(b) σ4
k+3(G) > |G| − 2k − 3

holds, then G has a spanning tree whose stem has at most k branch vertices.

Furthermore, by considering the graph G restricted in some special graph classes,

many analogous researches have been introduced, see [2], [3], [5], [7], [10], [11] and [14]

for example.

Recently, Ha, Hanh and Loan in [6] have introduced a new concept of spanning

trees and gave a sufficient condition for a graph to have a spanning tree possessing

such a property. Namely, they obtained the following theorem.
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Theorem 1.6 ([6]). Let G be a connected graph and let k > 2 be an integer. If

one of the conditions

(i) α(G) 6 2k + 2,

(ii) σ4
k+1(G) > ⌊ 1

2 (|G| − k)⌋

holds, then G has a spanning tree with at most k peripheral branch vertices. Here,

the notation ⌊r⌋ stands for the floor, i.e., the largest integer not exceeding the real

number r.

In this paper, we would like to study sufficient conditions for a graph to have

a spanning tree T such that R Stem(T ) has a bounded number of branch vertices.

In particular, we prove the following theorem.

Theorem 1.7. Let G be a connected graph and let k > 2 be an integer. If the

condition

σ4
k+3(G) >

⌊ |G| − 2k − 2

2

⌋

holds, then G has a spanning tree T whose reducible stem has at most k branch

vertices.

KmKm

KmKm

Km

Km

Km

Km

G

. . .x1 x2 xk

xk+1

y1

y0

y2

yk
yk+1

yk+2

KmKm

KmKm

R1H1

R0H0

H2 R2

Hk Rk

Rk+1

Hk+1

Rk+2

Hk+2

Figure 2. Graph G

To show that our result is sharp, we will give the following example. Let k > 2 and

m > 1 be integers, and let R0, R1, . . . , Rk+2 and H0, H1, . . . , Hk+2 be 2k+6 disjoint

copies of the complete graph Km of order m. Let y0, y1, . . . , yk+2, x1, x2, . . . , xk+1

be the 2k+4 vertices not contained in R0 ∪R1 ∪ . . .∪Rk+2 ∪H0 ∪H1 ∪ . . .∪Hk+2.

Join yi to all the vertices of Ri∪Hi for every 0 6 i 6 k+2. Add the two edges x1y0,
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xk+1yk+2 and join xi to yi for each 1 6 i 6 k+1. Let G denote the resulting graph,

see Figure 2. Then α4(G) = k + 3. Moreover, we also obtain

σ4
k+3(G) =

k+3
∑

i=1

degG(ai) = (k + 3)m =
⌊ |G| − 2k − 4

2

⌋

,

where ai is any vertex of Hi for each 0 6 i 6 k + 2.

But G has no spanning tree whose reducible stem has at most k branch vertices.

Then, our main result is sharp.

2. Proof of Theorem 1.7

Firstly, we recall the following useful lemma.

Lemma 2.1. Let T be a tree. Then the number of leaves in T is

|L(T )| =
∑

x∈B(T )

(degT (x) − 2) + 2.

P r o o f of Theorem 1.7. Suppose to the contrary that there does not exist a span-

ning tree T of G such that |B(R Stem(T )))| 6 k. Then every spanning tree T of G

satisfies |B(R Stem(T ))| > k + 1.

Choose a maximal tree T of G that satisfies

(C0) |B(R Stem(T ))| = k + 1,

(C1) |L(R Stem(T ))| is as small as possible subject to (C0),

(C2) |L(T )| is as small as possible subject to (C1),

(C3) |R Stem(T )| is as small as possible subject to (C2).

Claim 2.2. There does not exist a tree S in G such that V (S) = V (T ) and

|B(R Stem(S))| 6 k.

P r o o f. Indeed, assume that there exists a tree S in G such that V (S) = V (T )

and |B(R Stem(S))| 6 k. Since |B(R Stem(S))| 6 k, S is not a spanning tree of G.

Then there exists u ∈ V (G)−V (S) such that u is adjacent to a vertex v ∈ S. Let S1

be a tree obtained from S by adding the edge uv. Then S1 is a tree in G such that

|V (S1)| = |V (T )|+ 1 and |B(R Stem(S1))| 6 k + 1.

If |B(R Stem(S1))| = k + 1, then S1 contradicts the maximality of T (since

|V (S1)| = |V (S)|+ 1 = |V (T )|+ 1 > |V (T )|). So we may assume that

|B(R Stem(S1))| 6 k.
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By repeating this process, we can recursively construct a set of trees {Si : i > 1} in G

such that Si satisfies that |B(R Stem(Si))| 6 k and |V (Si+1)| = |V (Si)|+1 for each

i > 1. Since G has no spanning tree T with at most k branch vertices of R Stem(T )

and |V (G)| is finite, the process must terminate after a finite number of steps, i.e.,

there exists some h > 1 such that Sh+1 is a tree in G with |B(R Stem(Sh+1))| = k+1.

But this contradicts the maximality of T . So the claim holds. �

Let B(R Stem(T )) = {x1, x2, . . . , xk+1} and L(R Stem(T )) = {y1, y2, y3, . . . , yl}.

Then l > k + 3 by Lemma 2.1. By the definition of the leaf of R Stem(T ), we have

the following claim.

Claim 2.3. For each yi, 1 6 i 6 l, there exist at least two leaves T which

are connected to yi by paths in T . Namely, T has at least two leaf-branch paths

connecting yi to leaves of T .

Claim 2.4. For each yi, 1 6 i 6 l, there exist ai, bi ∈ L(T ) such that lbPT (ai)

and lbPT (bi) connect ai and bi to yi, respectively, and

NG(ai) ∩ (V (R Stem(T ))− {yi}) = ∅ and NG(bi) ∩ (V (R Stem(T ))− {yi}) = ∅.

P r o o f. Assume that there exists ys, 1 6 s 6 l for which the claim does not

hold. Then each leaf-branch path PT [zj , ys), 1 6 j 6 m, except at most one

such a path, satisfies NG(zj) ∩ (V (R Stem(T )) − {ys}) 6= ∅. For each zj, 1 6

j 6 m, take a vertex tj ∈ NG(zj) ∩ (V (R Stem(T )) − {ys}) and let vj = NT (ys) ∩

V (PT [zj, ys)). Then T ′ := T + {zjtj : 1 6 j 6 m} − {ysvj : 1 6 j 6 m} sat-

isfies V (T ′) = V (T ), |L(R Stem(T ′))| 6 |L(R Stem(T ))|, |L(T ′)| = |L(T )| and

|R Stem(T ′)| < |R Stem(T )|, since ys is not a vertex of R Stem(T ′). This gives

a contradiction. Therefore, Claim 2.4 holds. �

Set U = {ai, bi : 1 6 i 6 l}.

Claim 2.5. U is an independent set in G.

P r o o f. Suppose that there exist two vertices u, v ∈ U such that uv ∈ E(G).

Without lost of generality, we assume that v = ai for some i ∈ {1, 2, . . . , l}. Set

vi ∈ NT (yi)∩V (lbPT (ai)). Consider the tree T
′ := T + uai− viyi. Then the number

of vertices of T ′ remains unchanged, i.e., equal to that of T , |B(R Stem(T ′))| 6

|B(R Stem(T ))|, |L(R Stem(T ′))| 6 |L(R Stem(T ))| and |L(T ′)| < |L(T )|. This

contradicts either Claim 2.2 or the condition (C1) or the condition (C2). The proof

of Claim 2.5 is completed. �

Claim 2.6. For each i, j ∈ {1, 2, . . . , k + 1} with i 6= j, it follows that NG(ai) ∩

lbPT (aj) = ∅ and NG(ai) ∩ lbPT (bj) = ∅.

702



P r o o f. As ai and bi play the same role, we only need to prove NG(ai) ∩

lbPT (aj) = ∅. Suppose the assertion of the claim is false. Then there exists a vertex

x ∈ NG(ai) ∩ lbPT (aj). Set T
′ := T + xai. Then T ′ is a subgraph of G including

a unique cycle C, which contains both yi and yj .

Since |B(R Stem(T ))| > 1. Then there exists a branch vertex u of R Stem(T )

contained in C. Let e be an edge of C incident with u. By removing the edge e

from T ′ we obtain a tree T ′′ of G satisfying V (T ′′) = V (T ), |B(R Stem(T ′′))| 6

|B(R Stem(T ))| and |L(R Stem(T ′′))| < |L(R Stem(T ))|, since yi and yj are not

leaves of R Stem(T ′′). This contradicts either Claim 2.2 or the condition (C1). So

Claim 2.6 is proved. �

Claim 2.7. For each 1 6 i 6= j 6 l, dG(si, sj) > 4 for si ∈ {ai, bi} and sj ∈

{aj, bj}.

P r o o f. By the symmetry of ai and bi, it suffices to show that dG(ai, aj) > 4. Let

P [ai, aj ] be a shortest path connecting ai and aj in G. Assume that all the vertices

of P [ai, aj ] are contained in (V (G)− R Stem(T )) ∪ {yi, yj}.

Let ti be the vertex of lbPT (ai) ∩ P [ai, aj ] closest to yi, and tj be the vertex of

lbPT (aj) ∩ P [ai, aj ] closest to yj. Then P [ai, aj ] = PG[ai, ti] ∪ PG[ti, tj ] ∪ PG[tj , aj ],

where PG[ti, tj ] passes only through vertices contained in (V (G − R Stem(T ))) ∪

{yi, yj}.

xi vp

u
e xj

yi v−p yj

bi
ti

tj bj

ai p aj

Figure 3. Tree T ′′

For each leaf-branch path lbPT (p) of T such that lbPT (p) ∩ P [ti, tj ] 6= ∅, re-

move the edge of lbPT (p) incident to R Stem(T ) and add P [ti, tj]. Then the

resulting subgraph T ′ of G includes a unique cycle C, which contains two ver-

tices yi and yj. Because |B(R Stem(T ))| > 1, there exists a branch vertex u of

R Stem(T ) contained in C. Let e be an edge in C incident with u. Denote by

T ′′ the tree obtained from T by removing the edge e, see Figure 3 for an ex-

ample. Then V (T ) ⊆ V (T ′) = V (T ′′), |B(R Stem(T ′′))| 6 |B(R Stem(T ))| and
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|L(R Stem(T ′′))| < |L(R Stem(T ))|, where yi and yj are not leaves of R Stem(T ′′).

This contradicts either the maximality of T or Claim 2.2 or the condition (C1).

Therefore, P [ai, aj] ∩ (R Stem(T )− {yi, yj}) 6= ∅. Set v ∈ P [ai, aj] ∩ (R Stem(T )−

{yi, yj}). Hence, by combining with Claim 2.4, we obtain

dG(ai, aj) = dP [ai,aj ](ai, aj) = dP [ai,aj ](ai, v) + dP [ai,aj ](v, aj) > 2 + 2 = 4.

This completes the proof of Claim 2.7. �

By Claim 2.7 we obtain that α4(G) > l > k + 3.

Claim 2.8.
∑

y∈U

|NG(y) ∩ lbPT (p)| 6 |lbPT (p)| − 1 for every p ∈ L(T )− U .

P r o o f. Let p ∈ L(T ) − U and let vp be the nearest branch vertex of T to p.

Then PT [p, vp) ∩B(T ) = ∅.

Subclaim 2.8.1. {p, v−p } ∩NG(U) = ∅.

P r o o f. Indeed, to the contrary, without loss of generality, assume that q ∈

NG(ai) for some ai ∈ U and q ∈ {p, v−p }. We consider the tree T ′ := T +

aiq − vpv
−

p . Hence, T
′ is a tree with |V (T ′)| = |V (T )|, |B(R Stem(T ′))| = k + 1,

|L(R Stem(T ′))| = |L(R Stem(T ))| and |L(T ′)| < |L(T )|. This contradicts the con-

dition (C2). Therefore, {p, v−p } ∩NG(U) = ∅. �

Subclaim 2.8.2. If every x ∈ lbPT (p) then x is adjacent to at most 2 vertices

in U .

xi vp

u
e xj

yi
v−p

yj

ai p

x
x+

aj

bi bj

Figure 4. Tree T ′′

P r o o f. Indeed, we first prove that if x ∈ NG(ai) ∩ lbPT (p), then x /∈ NG(aj) ∪

NG(bj) for all 1 6 i 6= j 6 l. In particular, N3(U) ∩ lbPT (p) = ∅. To the contrary,

without loss of generality, assume that there exist 1 6 i 6= j 6 k + 1 such that

x ∈ NG(ai) ∩ lbPT (p) and x ∈ NG(aj). Set T
′ := T + {xai, xaj} − vpv

−

p . Then T ′ is
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a subgraph of G including a unique cycle C, which contains two vertices, yi and yj .

Since |B(R Stem(T ))| > 1, there exists a branch vertex in R Stem(T ) contained in C.

Let e be an edge of C incident with u. By removing the edge e we obtain a tree T ′′

of G, see Figure 4 for an example. Then |V (T ′′)| = |V (T )|, |B(R Stem(T ′′))| 6

|B(R Stem(T ))| and |L(R Stem(T ′′))| < |L(R Stem(T ))|, where yi and yj are not

leaves of R Stem(T ′′). This contradicts either Claim 2.2 or the condition (C1).

Therefore, we obtain |U ∩NG(x)| 6 2. �

For convenience, let al+j := bj for all 1 6 j 6 l, and thus U = {a1, a2, . . . , a2l}.

Subclaim 2.8.3. For each i ∈ {1, 2, . . . , 2l}, if x ∈ NG(ai) ∩ lbPT (p) then x+ /∈

NG(U − {ai}) ∩ lbPT (p).

P r o o f. Suppose that there exists x+ ∈ NG(z) ∩ lbPT (p) with z ∈ U − {ai}.

Let T ′ := T + {xai, x+z} − {xx+, vpv
−

p }. Then, T
′ is a tree with |V (T ′)| = |V (T )|,

|B(R Stem(T ′))| = k + 1, |L(R Stem(T ′))| = |L(R Stem(T ))| and |L(T ′)| < |L(T )|.

This contradicts the condition (C2). �

Now, by Subclaims 2.8.2 and 2.8.3 we conclude that {p}, NG(ai) ∩ lbPT (p),

(NG(U − {ai}) ∩ lbPT (p))
+ and (N2(U) − N(ai)) ∩ lbPT (p) are pairwise disjoint

subsets in lbPT (p) for each 1 6 i 6 2l. Note that if z ∈ (N2(U)−N(ai)) ∩ lbPT (p),

then z ∈ NG(ak) ∩ NG(bk) for some 1 6 k 6= i 6 l and z− /∈ N(U). Recall that

N3(U)∩ lbPT (p) = ∅ by Subclaim 2.8.2. Then by combining with Subclaim 2.8.1 we

obtain

|lbPT (p)| − 1 > |N(ai) ∩ lbPT (p)|+ |(N(U − {ai}) ∩ lbPT (p))
+|

+ |(N2(U)−N(ai)) ∩ lbPT (p)|

= |N(ai) ∩ lbPT (p)|+ |N(U − {ai}) ∩ lbPT (p)|

+ |(N2(U)−N(ai)) ∩ lbPT (p)|

=
∑

y∈U

|NG(y) ∩ lbPT (p)|.

Claim 2.8 is proved. �

Claim 2.9. For each 1 6 i 6 l, it is
∑

y∈U

|NG(y)∩ lbPT (ai)| 6 |lbPT (ai)| − 1 and
∑

y∈U

|NG(y) ∩ lbPT (bi)| 6 |lbPT (bi)| − 1.

P r o o f. As ai and bi play the same role, we only need to prove
∑

y∈U

|NG(y) ∩

lbPT (ai)| 6 |lbPT (ai)| − 1.

By Claim 2.6, we conclude that NG(U) ∩ lbPT (ai) = NG({ai, bi}) ∩ lbPT (ai).
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Subclaim 2.9.1. For y−i ∈ lbPT (ai), y
−

i /∈ NG(bi).

P r o o f. Assume that y−i is adjacent to bi in G. Consider the tree T ′ = T +

biyi
− − yi

−yi. Then T ′ is a tree of G such that V (T ′) = V (T ), |B(R Stem(T ′))| 6

|B(R Stem(T ))|, |L(R Stem(T ′))| 6 |L(R Stem(T ))| and |L(T ′)| < |L(T )|. This

contradicts either Claim 2.2 or the condition (C1) or the condition (C2). �

Subclaim 2.9.2. If x ∈ NG(ai) ∩ lbPT (ai), then x− /∈ NG(bi).

P r o o f. Suppose that there exists x ∈ NG(ai)∩lbPT (ai) such that x
− ∈ NG(bi)∩

lbPT (ai). Set T
′ := T + {xai, bix

−} − {xx−, y−i yi}, where y
−

i ∈ lbPT (ai). Hence,

T ′ is a tree of G such that V (T ′) = V (T ), |B(R Stem(T ′))| 6 |B(R Stem(T ))|,

|L(R Stem(T ′))| 6 |L(R Stem(T ))| and |L(T ′)| < |L(T )|. This contradicts either

Claim 2.2 or the condition (C1) or the condition (C2). Subclaim 2.9.2 holds. �

By Subclaims 2.9.1 and 2.9.2 and Claim 2.6 we conclude that {ai}, NG(ai) ∩

lbPT (ai) and (NG(bi) ∩ lbPT (ai))
+ are pairwise disjoint subsets in lbPT (ai). Then

∑

y∈U

|NG(y) ∩ lbPT (ai)| = |NG(ai) ∩ lbPT (ai)|+ |NG(bi) ∩ lbPT (ai)|

= |NG(ai) ∩ lbPT (ai)|+ |(NG(bi) ∩ lbPT (ai))
+|

6 |lbPT (ai)| − 1.

This completes the proof of Claim 2.9. �

By Claims 2.4, 2.6, 2.8 and 2.9, we obtain that

degG(U) =

l
∑

i=1

(degG(ai) + degG(bi))

6

l
∑

i=1

(|lbPT (ai)| − 1) +
l

∑

i=1

(|lbPT (bi)| − 1) + 2|{yi : 1 6 i 6 l}|

+
∑

p∈L(T )−U

|lbPT (p)− 1|

6

l
∑

i=1

(|lbPT (ai)|) +
l

∑

i=1

(|lbPT (bi)|) +
∑

p∈L(T )−U

|lbPT (p)|

= |G| − |R Stem(T )|.

On the other hand, we note that |R Stem(T )| > l+ k + 1 > 2k + 4. Hence,

l
∑

i=1

degG(ai) +

l
∑

i=1

degG(bi) 6 |G| − 2k − 4 ⇒ min

{ l
∑

i=1

degG(ai),

l
∑

i=1

degG(bi)

}

6

⌊ |G| − 2k − 4

2

⌋

.
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Combining the above inequality with Claim 2.7, we obtain

σ4
l (G) 6 min

{ l
∑

i=1

degG(ai),

l
∑

i=1

degG(bi)

}

6

⌊ |G| − 2k − 4

2

⌋

.

Moreover, l > k + 3 and we conclude that

σ4
k+3(G) 6 σ4

l (G) 6
⌊ |G| − 2k − 4

2

⌋

.

This gives a contradiction of the assumption of Theorem 1.7.

The proof of Theorem 1.7 is completed. �
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