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A STOCHASTIC MIRROR-DESCENT ALGORITHM FOR
SOLVING AXB = C OVER AN MULTI-AGENT SYSTEM

Yinghui Wang and Songsong Cheng

In this paper, we consider a distributed stochastic computation of AXB = C with local
set constraints over an multi-agent system, where each agent over the network only knows a
few rows or columns of matrixes. Through formulating an equivalent distributed optimization
problem for seeking least-squares solutions of AXB = C, we propose a distributed stochastic
mirror-descent algorithm for solving the equivalent distributed problem. Then, we provide the
sublinear convergence of the proposed algorithm. Moreover, a numerical example is also given
to illustrate the effectiveness of the proposed algorithm.

Keywords: distributed computation of matrix equation, multi-agent system, sublinear
convergence, stochastic mirror descent algorithm

Classification: 68M15, 93A14

1. INTRODUCTION

The increasing scale and big data in engineering have posed new challenges for traditional
centralized optimization and control recently. As a result, distributed algorithms have
attracted much research attention. Particularly, distributed optimization, which agents
over the network cooperately seeks a global optimal solution, has become more and more
popular [3, 13, 14, 16, 17].

The aforementioned algorithms were based on Euclidean projection, whose local pro-
jections could be easily computed. In these cases, the local constraints sets could only
be described by simple sets, such as balls, hyperplanes, and bounded constraints. Dis-
tributed stochastic mirror descent algorithms [6, 15], based on Bregman divergence [1],
were developed to solve distributed problems with complex local constraints sets. [6, 15]
provided sublinear convergence when local objective functions were strongly convex and
convex, respectively.

In fact, distributed computation of the linear algebraic equation Ax = c, which
is also recognized as linear regression problem in machine learning or linear system
identification in engineering, has attracted much research attention. Mainly distributed
algorithms [5, 8, 9, 12] have been proposed to solve the linear algebraic equation Ax = c.
[8, 9] presented linear convergence of distributed deterministic algorithms, while [5, 12]
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presented sublinear convergence of distributed stochastic algroithm when agents over
the network could only get incomplete row or column information of matrixes.

Moreover, distributed computation of different matrix equations have been another
hot topic, since matrix equations have played important roleds in engineering areas. [17]
studied four kinds of different distirbuted computations of unconstrainted linear matrix
equation AXB = C (a generation of matrix equation AX = C and algerbraic equation
Ax = c) and provided primal-dual algorithms for solving these computations. Further,
[4] and [2] provided distributed algorithms for solving Sylvester equation AX+XB = C
and constrainted Stein equation X +AXB = C. It was noteworthy that the algorithms
proposed in [2, 4, 17], whose linear rates were not given explicitly, were all continuous-
time algorithms.

The objective of this paper is to study a distributed stochastic computation of con-
strainted linear matrix equation AXB = C. Moreover, mirror descent techniques are
used in our algorithm so as to reduce the computation cost of complex local constraints.
The contributions of this paper are summarized as follows:

(a) We studied a distributed stochastic computation of AXB = C discussed in [17]
constaints and proposed a distributed stochastic mirror descent algorithm for solv-
ing AXB = C with complex local constaints. [4, 17] studieds unconstraint matrix
equations and [2] studied matrix equation with global constraints, while we studied
AXB = C with local constraints. Moreover, we do not need assumptions that each
agents get explicit information of some row and column of matrixs A, B and C.

(b) We give the O( 1
T ) (sublinear) convergence in expectation of the proposed algorithm

when the second moments of gradient noises were summable, which recovers the
best convergence rate for distributed mirror-descent algorithms [6, 15]. Still, we
show that agents can find an ε-solution in O( 1

ε ) communication rounds with O( 1
ε )

rounds of local stochastic gradient evaluations of the proposed algorithm.

The rest of the paper is organized as follows. Preliminaries are given in Section 2. In
Section 3, the distributed description of solving AXB = F with set constraints and a
distributed stochastic mirror-descent algorithm are presented. The proposed algorithm
is further analyzed in Section 4 and numerical examples are given in Section 5. Finally,
the conclusion of this paper is offered in Section 6.

2. PRELIMINARIES

In this section, we introduce preliminaries of convex analysis and graph theory, which
will be further used in the analysis of our distributed stochastic mirror-descent algorithm
for solving AXB = C.

2.1. Convex Analysis

First, we present several properties of convex functions.

Definition 1. (Convexity and Lipschitz continuity, subgradient)

(a) A function f : Rmr → R is be κ-Lipschtiz continuous for a constant κ > 0 if
‖f(x1)− f(x2)‖ 6 κ‖x1 − x2‖, ∀x1, x2 ∈ Rmr.
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(b) For x ∈ Ω, define by ∂f(x) the subdifferential of a nonsmooth convex function f
at x. For any x1, x2 ∈ Ω, the following inequality holds

f(x2)− f(x1) > 〈∇f(x1), x2 − x1〉, ∀∇f ∈ ∂f(x),

where ∇f(x) is a subgradient of function f at x.

Next, we give the concept of Bregeman distance function, which is important for
distributed first-order methods as a generalization of Euclidean projections.

Definition 2. (Bregman divergence [1]) Given a strongly convex and differentiable fun-
cion φ : Rmr → R, the Bregman divergence Bi(·, ·) is introduced by function φ as

Bi(x, z) = φ(x)− φ(z)− 〈Oφ(z), x− z〉 > 0.

The following assumption on the Bregman function B(·, ·) is adopted in this paper,
which is widely used in [6, 15].

Assumption 1. (a) Suppose Bi(x, z) is strongly convex with module 1, and then
〈∇φ(x)−∇φ(z), x− z〉 > ‖x− z‖2, ∀x, z ∈ Rmr and B(x, z) > 1

2‖x− z‖
2, ∀x, z ∈

Rmr.

(b) Suppose Bi(x, z) is growing quadratically with quadratic constant ρ in Ωi, i.e., for
all x, z ∈ Ωi and i = 1, . . . ,m, there exists a constant ρ > 0 such that B(x, z) 6
ρ
2‖x− z‖

2.

Remark 3. We provide some choices of convex function φ(·) and its corresponding
Bregman divergence function B(·, ·) [1, 15]:

(a) φ(x) = 1
2 ||x||

2
2, the corresponding B(x, y) = 1

2 ||x− y||
2
2.

(b) φ(x) =
∑d
p=1[x]p log[x]p, the corresponding B(x, y) =

∑d
p=1[x]p log

[x]p
[y]p

, which is

known as the Kullback-Leibler divergence.

(c) φ(x) = − log x, the corresponding B(x, y) = x
y − log

(
x
y

)
− 1, which is known as

the itakura-saito divergence.

2.2. Graph theory

We still need to consider the communication between agents. The communication
topology between agents is described by an undirected graph G(V, E ,A), where V =
{1, 2, ..., n} denotes the agent set, E ⊂ V × V denotes the edge set between agents, and
matrix A as the adjacency matrix, whose elements are given by{

ai,j = aj,i > 0, if (i, j) ∈ E , j 6= i

ai,j = 0, otherwise.

Denote by L = D − A the weighted Laplacian matrix of graph G = (V, E , A), where D
is an m×m diagonal matrix whose diagonal elements are Dii =

∑m
j=1 ai,j , i ∈ V.
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An edge (j, i) ∈ E means that agent j can communicate with agent i. A path of G
is a sequence of distinct agents where any pair of consecutive agents in the sequence
has an edge in E . Agent j is connected to agent i if there exists a path from agent j
to agent i. The graph G = (V, E ,A) is a connected graph if any two agents over the
network are connected. The communication graph between agents satisfies the following
assumption.

Assumption 2. The communication graph is connected.

3. PROBLEM DESCRIPTION AND ALGORITHM DESIGN

In this section, we formulate a standard distributed form of solving matrix equation
AXB = C and design a distributed stochastic mirror descent algorithm for solving it.

3.1. Problem description

Consider the distributed computation of a solution to the following matrix equation:

min
X
‖AXB − C‖2, X ∈ X (1)

where A ∈ Rm×p, B ∈ Rq×r, and C ∈ Rm×r are known matrices in piror knowledge,
and X ∈ Rp×q is an unknown matrix to be calculated. Though the solution to matrix
equation (1) may not exist, there always exists a least squares solution to equation (1),
which is defined as follows.

Definition 4. A least squares solution to matrix equation (1) is a solution to the opti-
mization problem

min
X
‖AXB − C‖2.

In this paper, we assume that each agent i over the network has prior knowledge to
Avi ∈ Rmi×p, Bli ∈ Rq×ri , and Cli ∈ Rm×ri ,

∑n
i=1mi = m,

∑n
i=1 ri = r, where Avi,

Bli, and Cli are given through the following equations:

A =

Av1...
Avn

 ∈ Rm×p,

B =
[
Bl1, . . . , Bln

]
∈ Rq×r

C =
[
Cl1, . . . , Cln

]
∈ Rm×r. (2)

Through neighbourhood information interchange over the network, agents can solve the
least squares solution to equation (1) cooperatively.

Remark 5. A special case B>X> = C> of equation (1) has been widely investigated
in [8, 9, 11] and references therein. In this special setting, X,C ∈ R with A = 1. Still,
each agent has prior knowledge to a row sub-block of B> and vector C>. However, in
the original setting (1), sub-blocks of matrices A, B, and X are coupled and hence we
need to investigate new distributed computing technologies in our algorithm design.
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We make the following efforts so as to handle the couplings between sub-blocks of
matrices A, B, and X in equation (1). First, a substitutional variable Y which is
equivalent to Y = AX and Y Bli = Cli for i ∈ {1, . . . , n} is introduced. Define Xi ∈
Rp×q and Yi ∈ Rm×q as agent i ∈ {1, . . . , n}’s estimates for X and Y , respectively. A
consensus-based substitutional decomposition which requires the agreements between
both variables Xi and Yi is required:

YiBli = Cli, Yi = Yj , i, j ∈ {1, . . . , n}, (3)

AXi = Yi, Xi = Xj . (4)

However, (4) is not in a fully distributed form for the global information matrix A

need to be known for each agent. Further, define Yi ,

Y
v1
i
...

Y vni

, where Y vji ∈ Rmj×q for

all i, j ∈ {1, . . . , n} to decompose (4). Since Yi = Yj holds for all i, j ∈ {1, . . . , n} in (3),
(4) can be rewritten as

AviXi = Y vii , Xi = Xj , i, j ∈ {1, . . . , n}. (5)

Hence, the matrix equation (1) is equivalent to linear matrix equations (3) and (5).
Define extended matrices XE = [XT

1 , . . . , X
T
n ]T ∈ Rnp×q and YE = [Y T

1 , . . . , Y
T
n ]T ∈

Rnm×q. Based on (3) and (5), we reformulate the distributed computation of (1) as the
following distributed optimization problem as done in [17]:

min
XE,YE

n∑
i=1

‖YiBli − Cli‖2, (6a)

s. t. Xi = Xj , Yi = Yj , AviXi = Y vii , i, j ∈ {1, . . . , n}, (6b)

where agent i has prior knowledge to sub-blocks Avi, Bli, Cli, and estimates Xi and Yi
with its local information.

3.2. Algorithm design

Here we propose a distributed algorithm with stochastic gradient to solve the problem
(6), which is called DSMD, where the stochastic gradients∇gi(xi, ξi) satisfy the following
assumption:

Assumption 3. For each i ∈ V, the stochastic gradients ∇gi(Yi, ξi) and stochastic
function gi(Yi, ξi) satisfies:

(a) Eξki [∇gi(Y ki , ξki )
∣∣Y ki ] = B>li

(
Y ki Bli − Cli

)
.

(b) Eξki
[∥∥∇gi(Y ki , ξki )−∇fi(xki )

∥∥2∣∣∣xki ] 6 δ2k,
∑∞
k=1 δ

2
k <∞.

(c) EY k
i

[gi(Y
k
i , ξ

k
i )
∣∣Y ki ] = 1

2‖Y
k
i Bli − Cli‖2.
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Different from [6, 10], where the variance of gradient noises are assumed to be uni-
formly bounded, in Assumption 3, we require the variance of gradient noises to be
summable. Infinite sampling (see [7]) is a guarantee for Assumption 3. The special
choice of gradient noises guarantees the sublinear convergence of DSMD converges to
the optimal solution of problem (6) with fixed stepsizes. ‘

Algorithm DSMD Distributed Stochastic Mirror Descent Algorithm for Solv-
ing AXB = C

1: Initialization of Xi ∈ X for all i = 1, 2, . . . n.
2: Update Ẑki = (X̂k

i , Ŷ
k
i ) according to

X̂k
i = 2Xk−1

i −Xk−2
i (7)

Ŷ ki = 2Y k−1i − Y k−2i (8)

3: Update Λki = (Λk1i,Λ
k
2i,Λ

k
3i) according to

Λk1i = Λk−11i +
1

αi

[
AviX̂

k
i − Ŷ

vi,k
i

]
(9)

Λk2i = Λk−12i +
1

βi

∑
j∈Ni

li,jX̂
k
j (10)

Λk3i = Λk−13i +
1

γi

∑
j∈Ni

li,j Ŷ
k
j (11)

4: Update Zki = (Zk1i, Z
k
2i) = (Xk

i , Y
k
i ) according to

Xk
i = arg min

Xi

{〈
Λk1i, AviXi − Ŷ vi,ki

〉
+
〈 ∑
j∈Ni

li,jΛ
k
2i, Xi

〉
+ µ1iBi

(
Xk−1
i , Xi

)}
(12)

Y ki = arg min
Yi

{
gi(Yi, ξ

k
i ) +

〈 ∑
j∈Ni

li,jΛ
k
3i, Yi

〉
+
〈

Λk1i, AviX
k
i − Y vii

〉

+ µ2iBi

(
Y k−1i , Yi

)}
(13)

5: Check the end condition of algorithm. If the condition is satisfied, then the
algorithm is terminated. Otherwise, k := k + 1 and go to Step 2.

Explanations for DSMD are given as follows.

(a) In each iteration step of DSMD, (10), (11), (12) and (13) involve the neighborhood
communication between agents, (7), (8) and (9) can be performed by each agents
separately. Through proper choosing of stepsizes {αi}, {βi}, {γi}, {µ1i and {µ2i, we

can find ε-solutions of DSMD, i.e. x∗ ∈ Ωm such that 1
2

∑n
i=1 E

∥∥∥YiBli−Cli∥∥∥2 6 ε
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within O(1/ε) iterations.

(b) The basic idea of DSMD is inspired by distributed primal-dual algorithm [17]
(deterministic and continuous-time algorithm). However, the refined steps (7) – (8)
and the existence of Bregman penalty termB

(
xi, x

k−1
i

)
andB

(
Yi, Y

k−1
i

)
guarantee

an ε-solution of DSMD within (1/ε) iterations.

4. MAIN RESULTS

In this section, we provide the convergence results of Algorithm DSMD, whose analysis
are given in Appendix.

For the convenience of denoting, we redefine some related variables of Algorithm
DSMD as follows 

D
(·)
1i = AviX

(·)
i − Y

vi,·
i

D
(·)
2i =

∑
j∈Ni

li,jX
(·)
j

D
(·)
3i =

∑
j∈Ni

li,jY
(·)
j

Λ(·) =
(

Λ
(·)
1 ,Λ

(·)
2 ,Λ

(·)
3

) (14)

Based on the redefined variables in (14), the Lagrangian function of optimization prob-
lem in (6) can be formulated as

L
(
ZE,Λ

)
=

1

2

n∑
i=1

∥∥∥YiBli − Cli∥∥∥2 +

3∑
r=1

n∑
i=1

〈Λri, Dri〉 (15)

For a pair of feasible solutions ZE =
(
XE , YE

)
and Λ =

(
Λ1,Λ2,Λ3

)
of the Lagrangian

function L(XE, YE,Λ
1,Λ2,Λ3), we define the primal-dual gap function Q(ZE , Λ̄) by

Q
[
Z̄E , Λ̄;ZE ,Λ

]
= L

(
Z̄E,Λ

)
− L

(
ZE, Λ̄

)
. (16)

We first provide a lemma to characterize the solution between primal steps (12) – (13)
and dual steps (9) – (11).

Lemma 6. (Lan et al. [6]) Let φ : U → R be a differentiable convex function and
B(x, z) = φ(x) − φ(z) − 〈Oφ(x), x − z〉. Let the convex function q : U → R, points
x̄, ȳ ∈ U and the scalars µ1, µ2 ∈ R be given. If

u∗ ∈ arg min

{
q(u) + µ1B(x̄, u) + µ2B(ȳ, u)

}
,

then for any u ∈ U , we have

q(u∗) + µ1B(x̄, u∗) + µ2B(ȳ, u∗ 6 q(u) + µ1B(x̄, u) + µ2B(ȳ, u)− (x+ y)B(u∗, u).

In the following, we provide a selection of stepsizes αi, βi, γi, µ1i and µ2i and establish
the complexity of DSMD through computing the ε-solution of problem 1.
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Theorem 7. Suppose that stepsizes αi, βi and γi, µ1i and µ2i are set to

αi = βi = γi = 1, µ1i = 2‖Ai‖2 + 2‖Li‖2, µ1i = 2 + 2‖Li‖2. (17)

Then for any K > 1, we have

1

2
E‖Ȳ ki Bli − Cli‖2 −

1

2
E‖Y ∗i Bli − Cli‖2

6
1

K

n∑
i=1

[
µ1iEBi

(
X0
i , Xi

)
+

n∑
i=1

µ2iEBi
(
Y 0
i , Yi

)
+
αi
2
E‖Λ0

1i‖2 +
βi
2
E‖Λ0

2i‖2 +
γi
2
E‖Λ0

3i‖2
]

(18)

and

E‖ 1

K

K∑
k=1

ρKii ‖

6
1

K

n∑
i=1

[
µ1iBi

(
X0
i , Xi

)
+

n∑
i=1

µ2iEBi
(
Y 0
i , Yi

)
+
αi
2
E‖Λ0

1i‖2 +
βi
2
E‖Λ0

2i‖2 +
γi
2
E‖Λ0

3i‖2
]

(19)

where 
ρK1i = DK

1i −D
K−1
1i + αi

(
ΛK1i − Λ0

1i

)
ρK2i = DK

2i −D
K−1
2i + βi

(
ΛK2i − Λ0

2i

)
ρK3i = DK

3i −D
K−1
3i + αi

(
ΛK3i − Λ0

3i

)
.

P r o o f . The proof of Theorem 7 can be derived directly from Lemma 10 and Lemma
11. �

From Theorem 7, we can see that the complexity of Algorithm DSMD for computing

an expected (ε, δ)-solution is O(
1

ε
) for the primal functional optimality and O(

1

ε
) for the

constraint violation. Since each iteration involves a constant number of communication
rounds and the number of communications between agents required is also in the same
order.

5. SIMULATION

Consider a 10-agents network, whose communication topology is given in Figure 1.
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1 2

3

4

5

67

8

9

10

Fig. 1. Topology between agents over the network.

Consider to solve linear matrix equation (1), where

A =



2 1
4 3
1 3
2 4
3 1
0 5
3 0
2 1
3 2
5 2


B =



1 −1
2 1
3 1
2 3
2 1
3 1
1 2
2 3
5 1
1 4


and C =



0 0
2 1
3 5
1 4
1 2
3 2
2 4
2 1
1 3
2 4


.

We solve a least squares solution with Algorithm DSMD

X

=[Xl1;Xl2;Xl3;Xl4;Xl5;Xl6;Xl7;Xl8;X19;Xl10]

=

[
−0.0187 0.0064 0.0022 0.0356 0.0064 0.0022 0.0251 0.0356 −0.0060 0.0543
−0.0084 0.0150 0.0172 0.0361 0.0150 0.0172 0.0234 0.0361 0.0216 0.0445

]

where agent i estimates Xli for i = 1, 2 . . . 10. Figure 2 shows that the trajectory of
‖AXk

i B − C‖F for 4 agents converges to a least squares solution.
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Number of iteration

10
0

10
1

10
2

10
3

10
4

‖
A
X

k i
B

−
C
‖
F

10
0

10
1

10
2

10
3

AXk
1B − C

AXk
2B − C

AXk
3B − C

AXk
4B − C

Fig. 2. The trajectories of ‖AXk
i B − C‖ for each agent i

.

6. CONCLUSION

A distributed stochastic mirror descent algorithm for solving AXB = C was proposed in
this paper. Sublinear convergence to the optimal solution and the O( 1

ε ) complexity were
also given to the proposed algorithm. Finally, simulations were given to the proposed
algorithm to verify its effectiveness.
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APPENDIX

Proof of Theorem 7

Before we provide proofs for Theorem 7, we still need to present the following results which
characterize the convergence properties of Algorithm DSMD.

DefineP1i

(
Xi, Yi,Λi

)
=
〈

Λ1i, AviXi − Y vii
〉

+
〈∑

j∈Ni
li,jΛ2i, Xi

〉
P2i

(
Xi, Yi,Λi

)
= 1

2
‖YiBli − Cli‖2 +

〈∑
j∈Ni

li,jΛ3i, Yi
〉

+
〈

Λ1i, AviXi − Y vii
〉 (20)

The following lemma gives upper bounds of P1i

(
Xi, Yi,Λi

)
and P2i

(
Xi, Yi,Λi

)
, which is

useful in the estimate of EQ
[
Z̄KE , Λ̄

K ;ZE ,Λ
]
.

Lemma 8. Let the iterate
{
ZkE
}

be generated by Algorithm DSMD. P1i

(
Xi, Yi,Λi

)
and

P2i

(
Xi, Yi,Λi

)
are defined in (20). Then,

∑K
k=1 E

[
P1i

(
Xk
i , Y

k
i ,Λ

k
i

)
− P1i

(
Xi, Y

k
i ,Λ

k
i

)]
6 µ1iEBi

(
X0
i , Xi

)
−
∑K
k=1 µ1iEBi

(
Xk−1
i , Xk

i

)
∑K
k=1 E

[
P2i

(
Xk
i , Y

k
i ,Λ

k
i

)
− P2i

(
Xk
i , Yi,Λ

k
i

)]
6 µ2iEBi

(
Y 0
i , Yi

)
−
∑K
k=1 µ2iEBi

(
Y k−1
i , Y ki

)
.

(21)

P r o o f . Applying Lemma 6 to (12) and (13), for all Λ1i ∈ Rmi×q, Λ2i ∈ Rp×q, Λ3i ∈ Rm×q,
Xi ∈ Rp×q and Yi ∈ Rm×q, we can get

EP1i

(
Xk
i , Y

k
i ,Λ

k
i

)
− EP1i

(
Xi, Y

k
i ,Λ

k
i

)
6 µ1i

[
EBi

(
Xk−1
i , Xi

)
− EBi

(
Xk
i , Xi

)
− EBi

(
Xk−1
i , Xk

i

)]
,

(22)

and

EP2i

(
Xk
i , Y

k
i ,Λ

k
i

)
− EP2i

(
Xk
i , Yi,Λ

k
i

)
6 µ2i

[
EBi

(
Y k−1
i , Yi

)
− EBi

(
Y ki , Yi

)
− EBi

(
Y k−1
i , Y ki

)]
.

(23)

Summing both sides of (22) from k = 1 to k = K, it yields

K∑
k=1

E
[
P1i

(
Xk
i , Y

k
i ,Λ

k
i

)
− P1i

(
Xi, Y

k
i ,Λ

k
i

)]
6 µ1iEBi

(
X0
i , Xi

)
−

K∑
k=1

µ1iEBi
(
Xk−1
i , Xk

i

)
,

(24)

where the inequality can be deduced by the face that Bi
(
XT
i , Xi

)
> 0. Analogously, we can

give an upper bound for
∑K
k=1 E

[
P2i

(
Xk
i , Y

k
i ,Λ

k
i

)
− P2i

(
Xk
i , Yi,Λ

k
i

)]
, which completes the

proof. �

Define

Γkri = 〈Λri − Λkri, D
k
ri〉, r = 1, 2, 3 (25)

Next, we give estimates of Γkri, r = 1, 2, 3.
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Lemma 9. Let the iterate
{

Λk
}

be generated by Algorithm DSMD. Γkri, r = 1, 2, 3 are defined
in (25). Then,

∑K
k=1 EΓk1i 6

αi
2
E
[
‖Λ1i − Λ0

1i‖2 − ‖Λ1i − ΛK1i‖2
]

+ E
〈
DK

1i −DK−1
1i ,Λ1i − ΛK1i

〉
+
∑K
k=1 E

[
‖Ai‖2
2αi1

∥∥Xk−1
i −Xk−2

i

∥∥2 + 1
2αi2

∥∥Y k−1
i − Y k−2

i

∥∥2],∑K
k=1 EΓk2i 6

βi
2
E
[
‖Λ2i − Λ0

2i‖2 − ‖Λ2i − ΛK2i‖2
]

+ E
〈
DK

2i −DK−1
2i ,Λ2i − ΛK2i

〉
+
∑K
k=1 E

[
‖Li‖2
2βi

∥∥Xk−1
i −Xk−2

i

∥∥2]∑K
k=1 EΓk3i 6

γi
2
E
[
‖Λ3i − Λ0

3i‖2 − ‖Λ3i − ΛK3i‖2
]

+ E
〈
DK

3i −DK−1
3i ,Λ3i − ΛK3i

〉
+
∑K
k=1 E

[
‖Li‖2
2γi

∥∥Y k−1
i − Y k−2

i

∥∥2],
where αi = αi1 + αi2.

P r o o f . Applying Lemma 6 to (9), (10) and (11) respectively, for all Λ1i ∈ Rmi×q, Λ2i ∈ Rp×q,
Λ3i ∈ Rm×q, Xi ∈ Rp×q and Yi ∈ Rm×q, we have

E
〈
AviX̂

k
i − Ŷ vi,ki ,Λ1i − Λk1i

〉
6
αi
2
E
[
‖Λ1i − Λk−1

1i ‖
2 − ‖Λ1i − Λk1i‖2 − ‖Λk−1

1i − Λk1i‖2
]
, (26)

E
〈
li,jX̂

k
j ,Λ2i − Λk2i

〉
6
βi
2
E
[
‖Λ2i − Λk−1

2i ‖
2 − ‖Λ2i − Λk2i‖2 − ‖Λk−1

2i − Λk2i‖2
]
, (27)

E
〈
li,j Ŷ

k
j ,Λ3i − Λk3i

〉
6
γi
2
E
[
‖Λ3i − Λk−1

3i ‖
2 − ‖Λ3i − Λk3i‖2 − ‖Λk−1

3i − Λk3i‖2
]
. (28)

Summing Γkri from k = 1 to k = K yields

K∑
k=1

EΓk1i

=

K∑
k=1

E
〈
AviX

k
i − Y vi,ki ,Λ1i − Λk1i

〉
+

K∑
k=1

E
〈
Avi
(
Xk
i − X̂k

i

)
−
(
Y vi,ki − Ŷ vi,ki

)
,Λ1i − Λk1i

〉
6
αi
2
E
[
‖Λ1i − Λ0

1i‖2 − ‖Λ1i − ΛK1i‖2
]

+ E
〈
Avi
(
XK
i −XK−1

i

)
−
(
Y vi,Ki − Y vi,K−1

i

)
,Λ1i − ΛK1i

〉
−

K∑
k=1

E
[αi

2
‖Λk−1

1i − Λk1i‖2 −
〈
Avi
(
Xk−1
i −Xk−2

i

)
−
(
Y vi,k−1
i − Y vi,k−2

i

)
,Λk1i − Λk−1

1i

〉]
6
αi
2
E
[
‖Λ1i − Λ0

1i‖2 − ‖Λ1i − ΛK1i‖2
]

+ E
〈
Avi
(
XK
i −XK−1

i

)
−
(
Y vi,Ki − Y vi,K−1

i

)
,Λ1i − ΛK1i

〉
+

K∑
k=1

E
[‖Ai‖2

2αi1

∥∥Xk−1
i −Xk−2

i

∥∥2 +
1

2αi1

∥∥Y k−1
i − Y k−2

i

∥∥2], (29)

where the second inequality follows from the fact that a〈u, v〉 − a2

2b
‖v‖2 6 b

2
‖u‖2, ∀u, v ∈ Rp×q.

Similarly, we can also give the upper bounds of
∑K
k=1 EΓk2i and

∑K
k=1 EΓk3i, which complete the

proof. �

Then, we present estimates on EQ
[
Z̄KE , Λ̄

K ;ZE ,Λ
]

defined in (16) together with stepsizes

αi, βi, γi, µ1i and µ2i, which are used to provide convergence rate of AlgorithmDSMD.
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Lemma 10. Let the iterates
{
ZkE ,Λ

k
}

be generated by Algorithm DSMD. With{
µ1i − ‖Ai‖2

αi1
− ‖Li‖2

βi
> 0

µ2i − 1
αi1
− ‖Li‖2

γi
> 0

(30)

and defining Z̄KE = 1
K

∑K
k=1 Z

k
E , Λ̄K = 1

K

∑K
k=1 Λk, we have

EQ
[
Z̄KE , Λ̄

K ;ZE ,Λ
]
− 1

K
E

3∑
r=1

n∑
i=1

〈
Λri, ρ

K
ri

〉
6

1

K

n∑
i=1

[
µ1iEBi

(
X0
i , Xi

)
+

n∑
i=1

µ2iEBi
(
Y 0
i , Yi

)
+
αi
2
E‖Λ0

1i‖2 +
βi
2
E‖Λ0

2i‖2 +
γi
2
E‖Λ0

3i‖2
]

(31)

where 
ρK1i = DK

1i −DK−1
1i + αi

(
ΛK1i − Λ0

1i

)
ρK2i = DK

2i −DK−1
2i + βi

(
ΛK2i − Λ0

2i

)
ρK3i = DK

3i −DK−1
3i + αi

(
ΛK3i − Λ0

3i

)
.

P r o o f . In view of the definition of Q
[
Z̄E , Λ̄;ZE ,Λ

]
, D

(·)
ri and Γ

(·)
ri in (16), (14), and (25),

respectively, we can get

EQ
[
ZkE ,Λ

k;ZE ,Λ
]

=

n∑
i=1

E
[
P1i

(
Xk
i , Y

k
i ,Λ

k
i

)
− P1i

(
Xi, Y

k
i ,Λ

k
i

)]
+

n∑
i=1

E
[
P2i

(
Xk
i , Y

k
i ,Λ

k
i

)
− P1i

(
Xk
i , Yi,Λ

k
i

)]
+

3∑
r=1

n∑
i=1

EΓkri. (32)

With Lemmas 8-9 and (30),
∑K
k=1Q

[
ZkE ,Λ

k;ZE ,Λ
]

can be bounded as

K∑
k=1

EQ
[
ZkE ,Λ

k;ZE ,Λ
]
6

2∑
s=1

n∑
i=1

E∆si, (33)

where

∆1i =µ1iBi
(
X0
i , Xi

)
− µ1iBi

(
XK−1
i , XK

i

)
+
αi1
2
‖Λ1i − Λ0

1i‖2 −
αi1
2
‖Λ1i − ΛK1i‖2 +

βi
2
‖Λ2i − Λ0

2i‖2

− βi
2
‖Λ2i − ΛK2i‖2 +

〈
Avi
(
XK
i −XK−1

i

)
,Λ1i − ΛK1i

〉
+
〈 n∑
j=1

li,j
(
XK
i −XK−1

i

)
,Λ2i − ΛK2i

〉
∆2i =µ2iBi

(
Y 0
i , Yi

)
− µ2iBi

(
Y K−1
i , Y Ki

)
+
αi2
2
‖Λ1i − Λ0

1i‖2 −
αi2
2
‖Λ1i − ΛK1i‖2 +

γi
2
‖Λ3i − Λ0

3i‖2

− γi
2
‖Λ3i − ΛK3i‖2 −

〈
Y vi,Ki − Y vi,K−1

i ,Λ1i − ΛK1i

〉
+
〈 n∑
j=1

li,j
(
Y Ki − Y K−1

i

)
,Λ3i − ΛK3i

〉
.
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Since ‖Λsi−Λ0
si‖2−‖Λsi−ΛKsi‖2 = ‖Λ0

si‖2−‖ΛKsi‖2−2〈Λsi,Λ0
si−ΛKsi〉, ∆si can be modified as

∆1i 6µ1iBi
(
X0
i , Xi

)
− µ1iBi

(
XK−1
i , XK

i

)
+
αi1
2
‖Λ0

1i‖2 −
αi1
2
‖ΛK1i‖2 − αi1

〈
Λ0

1i − ΛK1i,Λ1i

〉
+
βi
2
‖Λ0

2i‖2 −
βi
2
‖ΛK2i‖2 − βi

〈
Λ0

2i − ΛK2i,Λ2i

〉
+
〈
Avi
(
XK
i −XK−1

i

)
,Λ1i − ΛK1i

〉
+
〈 n∑
j=1

li,j
(
XK
i −XK−1

i

)
,Λ2i − ΛK2i

〉
6µ1iBi

(
X0
i , Xi

)
+
αi1
2
‖Λ0

1i‖2 +
βi
2
‖Λ0

2i‖2 +
〈
Avi
(
XK
i −XK−1

i

)
+ αi1

(
ΛK1i − Λ0

1i

)
,Λ1i

〉
+
〈 n∑
j=1

li,j
(
XK
i −XK−1

i

)
+ βi

(
ΛK2i − Λ0

2i

)
,Λ2i

〉
, (34)

where the second inequality is based on µ1i − ‖Ai‖2
αi1

− ‖Li‖2
βi
> 0 and a〈X,Y 〉 − a2

2b
6 b

2
‖X‖2.

Similarly, we have

∆2i 6µ2iBi
(
Y 0
i , Yi

)
+
αi2
2
‖Λ0

1i‖2 +
γi
2
‖Λ0

3i‖2 +
〈(
Y vi,K−1
i − Y vi,Ki

)
+ αi2

(
ΛK1i − Λ0

1i

)
,Λ1i

〉
+
〈 n∑
j=1

li,j
(
Y Ki − Y K−1

i

)
+ γi

(
ΛK3i − Λ0

3i

)
,Λ3i

〉
. (35)

Combining (34) and (35), we obtain

K∑
k=1

EQ
[
ZkE ,Λ

k;ZE ,Λ
]

6
n∑
i=1

E
[
µ1iBi

(
X0
i , Xi

)
+ µ2iBi

(
Y 0
i , Yi

)
+
αi
2
‖Λ0

1i‖2 +
βi
2
‖Λ0

2i‖2 +
γi
2
‖Λ0

3i‖2 +

3∑
r=1

〈
DK
ri

−Dk−1
ri ,Λri

〉
+
〈
αi
(
ΛK1i − Λ0

1i

)
,Λ1i

〉
+
〈
βi
(
ΛK2i − Λ0

2i

)
,Λ2i

〉
+
〈
γi
(
ΛK3i − Λ0

3i

)
,Λ3i

〉]
.

(36)

Following the convexity of Q
[
ZkE ,Λ

k;ZE ,Λ
]

with respect to ZkE and Λk, it follows

EQ
[
Z̄KE , Λ̄

K ;ZE ,Λ
]
− 1

K

3∑
r=1

n∑
i=1

E
〈

Λri, ρ
K
ri

〉
6

1

K

n∑
i=1

E
[
µ1iBi

(
X0
i , Xi

)
+

n∑
i=1

µ2iBi
(
Y 0
i , Yi

)
+
αi
2
‖Λ0

1i‖2 +
βi
2
‖Λ0

2i‖2 +
γi
2
‖Λ0

3i‖2
]

(37)

�

Next, we present estamates of E‖Λ∗1i−ΛK1i‖2, E‖Λ∗2i−ΛK2i‖2, E‖Λ∗3i−ΛK3i‖2, E‖XK
i −XK−1

i ‖2
and E‖Y Ki − Y K−1

i ‖2.

Lemma 11. Let the iterates
{
ZkE ,Λ

k
}

be generated by Algorithm DSMD. Assuming that
αi
2
− ‖Ai‖2

2µ1i1
− 1

2µ2i1
> 0

βi
2
− ‖Li‖2

2µ1i2
> 0

γi
2
− ‖Li‖2

2µ2i2
> 0

(38)
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with µ1i1 + µ1i2 = µ1i and µ2i1 + µ2i2 = µ2i, we have

maxE
{
‖Λ∗1i − ΛK1i‖2, ‖Λ∗2i − ΛK2i‖2, ‖Λ∗3i − ΛK3i‖2, ‖XK

i −XK−1
i ‖2, ‖Y Ki − Y K−1

i ‖2
}

6
1

σ
E
[
µ1iBi

(
X0
i , X

∗
i

)
+ µ2iBi

(
Y 0
i , Y

∗
i

)
+
αi
2
‖Λ∗1i − Λ0

1i‖2 +
βi
2
‖Λ∗2i − Λ0

2i‖2 +
γi
2
‖Λ∗3i − Λ0

3i‖2
]
.

(39)

P r o o f . Recalling (32) and Q
[
ZkE ,Λ

k;Z∗E ,Λ
∗
]
> 0, it yields

µ1iEBi
(
XK−1
i , XK

i

)
+ µ2iBiE

(
Y K−1
i , Y Ki

)
6µ1iEBi

(
X0
i , X

∗
i

)
+ µ2iEBi

(
Y 0
i , Y

∗
i

)
+
αi
2
E‖Λ∗1i − Λ0

1i‖2 +
βi
2
E‖Λ∗2i − Λ0

2i‖2 +
γi
2
E‖Λ∗3i − Λ0

3i‖2

+

[
‖Ai‖2

2αi1
+
‖Li‖2

2βi

]
E‖XK

i −XK−1
i ‖2 +

[
1

2αi2
+
‖Li‖2

2γi

]
E‖Y Ki − Y K−1

i ‖2. (40)

Rerange terms in (40), we get

ξ1iE‖XK
i −XK−1

i ‖2 + ξ2iE‖Y Ki − Y K−1
i ‖2

6µ1iEBi
(
X0
i , X

∗
i

)
+ µ2iEBi

(
Y 0
i , Y

∗
i

)
+
αi
2
E‖Λ∗1i − Λ0

1i‖2 +
βi
2
E‖Λ∗2i − Λ0

2i‖2 +
γi
2
E‖Λ∗3i − Λ0

3i‖2,
(41)

where ξ1i = µ1i
2
− ‖Ai‖2

2αi1
− ‖Li‖2

2βi
and ξ2i = µ2i

2
− 1

2αi2
− ‖Li‖2

2γi
. Similarly, we have

3∑
r=1

τriE‖Λ∗ri − ΛKri‖2

6µ1iEBi
(
X0
i , X

∗
i

)
+ µ2iEBi

(
Y 0
i , Y

∗
i

)
+
αi
2
E‖Λ∗1i − Λ0

1i‖2 +
βi
2
E‖Λ∗2i − Λ0

2i‖2 +
γi
2
E‖Λ∗3i − Λ0

3i‖2,
(42)

where τ1i = αi
2
− ‖Ai‖2

2µ1i1
− 1

2µ2i1
, τ2i = βi

2
− ‖Li‖2

2µ1i2
and τ3i = γi

2
− ‖Li‖2

2µ2i2
. With (41) and (42) and

defining σ as follows

σ = min
{
τ1i, τ2i, τ3i, ξ1i, ξ2i

}
, (43)

the proof is completed. �


