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Coarse homotopy on metric spaces and their corona

Elisa Hartmann

Abstract. This paper discusses properties of the Higson corona by means of a quo-
tient on coarse ultrafilters on a proper metric space. We use this description to

show that the corona functor is faithful and reflects isomorphisms.

Keywords: Higson corona; coarse geometry

Classification: 51F99, 54H99

1. Introduction

The corona ν ′(X) of a metric space X has been introduced in [12] and studied

in [13], [14], [3], [15], [7], [8].

The Stone–Čech compactification is a functor β from the category of com-

pletely regular spaces to the category of compact Hausdorff spaces. Note that by

[1, Theorem 2.1] if X is a completely regular space and G a group then

Ȟn
F (X ;G) = Ȟn(βX,G).

The left side denotes n-dimensional Čech type functional cohomology based on

finite open covers and the right side denote n-dimensional Čech cohomology.

This resembles [8, Corollary 35] where sheaf cohomology based on finite coarse

covers of a metric space X is related to sheaf cohomology on the corona ν ′(X).

This property and other properties which we are going to discuss in this paper

suggest that the corona functor is the Stone–Čech boundary version of a space in

the coarse category.

We start with the first quite elementary property:

Theorem A. If mCoarse denotes the category of metric spaces and coarse maps

modulo close and Top the category of topological spaces and continuous maps

then the functor

ν ′ : mCoarse → Top

is faithful.
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A direct consequence of this result is that ν ′ reflects isomorphisms.

We examine in which way the corona functor ν ′ is related to the Higson

corona ν of [17]. Originally the Higson corona has been defined on a proper met-

ric space X as the boundary of the compactification determined by an algebra of

bounded functions called the Higson functions. Already [13] showed that there

exists a homeomorphism ν(X) = ν ′(X). We provide an explicit homeomorphism

and show ν, ν ′ agree on morphisms too.

Theorem B. If X is a proper metric space then there is a homeomorphism

ν ′(X) → ν(X).

Here the right side denotes the Higson corona of [17]. If f : X → Y is a coarse

map between proper metric spaces then ν ′(f), ν(f) are homeomorphic (the same

map pre-and postcomposed by a homeomorphism).

The asymptotic product of two metric spaces has been introduced in [9] as the

limit of a pullback diagram in the coarse category. Note [6, Theorem 1] shows

the following: If X,Y are hyperbolic proper geodesic metric spaces then their

asymptotic product X ∗Y is hyperbolic proper geodesic and therefore its Gromov

boundary ∂(X∗Y ) is defined. There is a homeomorphism ∂(X∗Y ) = ∂(X)×∂(Y )

which is the main result of [6].

If the asymptotic product X ∗Y of two metric spaces X,Y is well defined then

ν ′(X ∗ Y ) is the pullback of

ν ′(Y )

ν ′(d(·,q))

��

ν ′(X)
ν ′(d(·,p))

// ν ′(Z+)

2. Metric spaces

Definition 1. Let (X, d) be a metric space. Then the coarse structure associated

to d on X consists of those subsets E ⊆ X2 for which

sup
(x,y)∈E

d(x, y) < ∞.

We call an element of the coarse structure entourage. In what follows we assume

the metric d to be finite for every (x, y) ∈ X2.
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Definition 2. A map f : X → Y between metric spaces is called coarse if

◦ E ⊆ X2 being an entourage implies that f×2(E) is an entourage (coarsely

uniform);

◦ and if A ⊆ Y is bounded then f−1(A) is bounded (coarsely proper).

Two maps f, g : X → Y between metric spaces are called close if

f × g(∆X)

is an entourage in Y . Here ∆X denotes the diagonal in X2.

Notation 3. A map f : X → Y between metric spaces is called

◦ coarsely surjective if there is an entourage E ⊆ Y 2 such that

E[im f ] = Y ;

◦ coarsely injective if for every entourage F ⊆ Y 2 the set (f×2)−1(F ) is an

entourage in X .

Two subsets A,B ⊆ X are called not coarsely disjoint if there is an entourage

E ⊆ X2 such that the set

E[A] ∩E[B]

is not bounded. We write AfB in this case.

Two subsets A,B ⊆ X are called asymptotically alike if there is an entourage

E ⊆ X2 such that

E[A] = B.

We write AλB in this case.

Remark 4. We study metric spaces up to coarse equivalence. A coarse map

f : X → Y between metric spaces is a coarse equivalence if:

◦ there is a coarse map g : Y → X such that f ◦ g is close to idY and g ◦ f

is close to idX ;

◦ or equivalently if f is both coarsely injective and coarsely surjective.

Notation 5. If X is a metric space and U1, . . . , Un ⊆ X are subsets, then (Ui)i
are said to coarsely cover X if for every entourage E ⊆ X2 the set

E[U c
1 ] ∩ · · · ∩ E[U c

n ]

is bounded.

3. The corona functor

Definition 6. If X is a metric space a system F of subsets of X is called a coarse

ultrafilter if
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(1) A,B ∈ F then Af B;

(2) A,B ⊆ X are subsets with A ∪B ∈ F then A ∈ F or B ∈ F ;

(3) X ∈ F .

Lemma 7. If f : X → Y is a coarse map between metric spaces and F is a coarse

ultrafilter on X then

f∗F := {A ⊆ Y : f−1(A) ∈ F}

is a coarse ultrafilter on Y .

Proof: See [8]. �

Definition 8. We define a relation on coarse ultrafilters on X : two coarse ultra-

filters F ,G are asymptotically alike, written AλB if for every A ∈ F , B ∈ G:

Af B.

Remark 9. By [8] the relation λ is an equivalence relation on coarse ultrafilters

on X . If two coarse ultrafilters F ,G on X are asymptotically alike and f : X → Y

is a coarse map to a metric space Y then f∗Fλf∗G on Y .

Definition 10. Let X be a metric space. Denote by ν ′(X) the set of coarse

ultrafilters modulo asymptotically alike on X . The relation “f” on subsets of

ν ′(X) is defined as follow. Define, for a subset A ⊆ X ,

cl(A) = {[F ] ∈ ν ′(X) : A ∈ F}.

Then π1 6fπ2 if and only if there exist subsets A,B ⊆ X such that A 6fB and

π1 ⊆ cl(A), π2 ⊆ cl(B).

Remark 11. The relation “f” on subsets of ν ′(X) defines a proximity relation

on ν ′(X) which induces a compact topology. By [8] the mapping f∗ between

coarse ultrafilters induces a continuous map ν ′(f) between the quotients. Thus

ν ′ is a functor mapping coarse metric spaces to compact topological spaces.

The topology on ν ′(X) is generated by (cl(A))cA⊆X . Coarse covers determine

finite open covers, see [8].

4. On morphisms

Lemma 12. Let f : X → Y be a map between metric spaces. Then

(1) a map f is a coarse map if

◦ for any bounded subset B ⊆ X , f(B) is bounded;

◦ for every subsets A,B ⊆ X , the relation AfB implies f(A)f f(B);

(2) a coarse map f is coarsely injective if A 6fB implies f(A) 6f f(B);
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(3) a map f is coarsely surjective if the relation f(X) 6fB in Y implies B is

bounded.

Proof: (1) First we show f is coarsely proper. If B ⊆ Y is bounded then B 6fY .

This implies f−1(B) 6fX . Thus f−1(B) is bounded.

Now we show f is coarsely uniform: Suppose A,B ⊆ X are two subsets with

f(A)λ̄f(B). Then there is an unbounded subset S ⊆ f(A) with S 6f f(B) or

there is an unbounded subset T ⊆ f(B) with T 6f f(A). Assume the former.

Then f−1(S) 6fB. Since f maps bounded sets to bounded sets the set f−1(S)∩A

is unbounded. Thus Aλ̄B. Thus we have shown AλB implies f(A)λf(B). By

[11, Theorem 2.3] we can conclude that f is coarsely uniform.

(2) This is [8, Lemma 41].

(3) This is easy. �

Theorem 13. If f, g : X → Y are two coarse maps between metric spaces and

ν ′(f) = ν ′(g) then f, g are close.

Proof: Suppose f, g are not close. By [11, Proposition 2.15] there is a subset

A ⊆ X with f(A)λ̄g(A). This implies there is a subset S ⊆ A with f(S) 6f g(S).

Now by [7, Proposition 4.7] there is a coarse ultrafilter F on X with S ∈ F . Then

f(S) ∈ f∗F and g(S) ∈ g∗F . Since f(S) 6f g(S) this implies f∗F 6= g∗F . Thus

ν ′(f), ν ′(g) are not the same map. �

Corollary 14. If mCoarse denotes the category of metric spaces and coarse

maps modulo close and Top the category of topological spaces and continuous

maps then the functor

ν ′ : mCoarse → Top

is faithful.

Corollary 15. The functor ν ′ : mCoarse → Top reflects epimorphisms and mo-

nomorphisms.

Proof: It is general theory that a faithful functor reflects epimorphisms and

monomorphisms. This fact can also be found in [16, Exercise 1.6. vii]. Since by

Corollary 14 the functor ν ′ is faithful the result follows. �

Corollary 16. The functor ν ′ : mCoarse → Top reflects isomorphisms.

Proof: Suppose f : X → Y is a coarse map between metric spaces such that

ν ′(f) is an isomorphism in Top. Then ν ′(f) is both a monomorphism and an

epimorphism. The proof of [8, Theorem 40] can be generalized to hold for met-

ric spaces. Then the map f is coarsely surjective. By Corollary 15 the map f

is a monomorphism in mCoarse. By a proof similar to the one of [4, Proposi-

tion 3.A.16] every monomorphism is coarsely injective. Since f is coarsely injec-

tive and coarsely surjective it is a coarse equivalence. �
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Definition 17. Let Y be a locally compact topological space. A bounded con-

tinuous map ϕ : Y → R is said to vanish at infinity if for every ε > 0 there is

a compact set K ⊆ Y such that y ∈ Kc implies |f(y)| < ε.

Definition 18. Let R > 0 be a number. A metric space X is said to be R-

discrete if for every x, y ∈ X the relation x 6= y implies d(x, y) ≥ R.

Theorem 19. If X is a proper metric space then there is a homeomorphism

ν ′(X) → ν(X).

Here the right side denotes the Higson corona of [17]. If f : X → Y is a coarse

map between proper metric spaces then ν ′(f), ν(f) are homeomorphic (the same

map pre-and postcomposed by a homeomorphism).

Proof: Let X be a proper metric space. First we show that h′(X) := X ⊔ν ′(X)

is a compactification of X . Closed sets on h′(X) are generated by (Ā∪cl(A))A⊆X .

We show this topology is compact. If (Āi ∪ cl(Ai))
c
i is an open cover of h′(X)

then there is a subcover

(Ā1 ∪ cl(A1))
c
1, . . . , (Ān ∪ cl(An))

c

such that cl(A1)
c, . . . , cl(An)

c is a cover of ν ′(X). Now this implies Ac
1, . . . , A

c
n

are a coarse cover of X . Thus Ā1 ∩ · · · ∩ Ān is both bounded and closed. Then

there is a subcover

(Ān+1 ∪ cl(An+1))
c, . . . , (Ān+m ∪ cl(An+m))c

of (Āi ∪ cl(Ai))
c
i such that Āc

n+1, . . . , Ā
c
n+m covers Ā1 ∩ · · · ∩ Ān. Then

(Ā1 ∪ cl(A1))
c, . . . , (Ān+m ∪ cl(An+m))c

are a subcover of (Āi ∪ cl(Ai))
c
i that cover h′(X).

Now X, ν ′(X) both appear as subspaces of h′(X). We show the inclusion

X → h′(X) is dense:

X
h′

=
⋂

Ā∪cl(A)⊇X

(Ā ∪ cl(A)) = X ∪ cl(X) = h′(X).

The Higson compactification h(X) is determined by the C∗-algebra of Higson

functions whose definition we now recall from [17]: A bounded continuous function

ϕ : X → R is called Higson if the function
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dϕ : X2 → R

(x, y) 7→ ϕ(y)− ϕ(x)

when restricted to E vanishes at infinity for every entourage E ⊆ X2.

Note [13, Proposition 1] shows Higson functions onX can be extended to h′(X).

For the convenience of the reader we recall it.

Without loss of generality assume that X is R-discrete for some R > 0. Then

every coarse ultrafilter F on X is determined by an ultrafilter σ on X by the

proof of [8, Theorem 17]. If σ is an ultrafilter on X then a bounded continuous

function ϕ : X → R determines an ultrafilter ϕ∗σ := {A : ϕ−1(A) ∈ σ} on R.

Since the image of ϕ is bounded and therefore relatively compact the ultrafilter

ϕ∗σ converges to a point σ- limϕ ∈ R.

If two ultrafilters σ, τ induce asymptotically alike coarse ultrafilters and ϕ is

a Higson function then σ- limϕ = τ - limϕ: Suppose σ- limϕ 6= τ - limϕ. Then

there exist neighborhoods U ∋ σ- limϕ and V ∋ τ - limϕ such that d(U, V ) > 0.

Let E ⊆ X2 be an entourage. Then

dϕ : ϕ−1(U)× ϕ−1(V ) ∩ E → R

(x, y) → ϕ(y)− ϕ(x)

vanishes at infinity. Since d(U, V ) > 0 this implies that ϕ−1(U) × ϕ−1(V ) ∩

E is bounded. Now E was an arbitrary entourage thus ϕ−1(U), ϕ−1(V ) are

coarsely disjoint. Since ϕ−1(U) ∈ σ, ϕ−1(V ) ∈ τ the ultrafilters σ, τ induce

coarse ultrafilters which are not asymptotically alike.

If F is a coarse ultrafilter on X induced by an ultrafilter σ and ϕ a Higson

function then denote by F - limϕ the point σ- limϕ in R. By the above F - limϕ

is well defined modulo asymptotically alike of F .

If ϕ : X → R is a Higson function then there is an extension

ϕ̂ : h′(X) → R

x 7→

{
ϕ(x), x ∈ X,

F - limϕ, x = F ∈ ν ′(X).

We have shown ϕ̂ is well defined. Now we show ϕ̂ is continuous: Let A ⊆ R

be a closed set. If F - limϕ ∈ A fix an ultrafilter σ on X that induces F . Then

ϕ−1(A) ∈ σ. This implies F ∈ cl(ϕ−1(A)). On the other hand if F ∈ cl(ϕ−1(A))

then there is an ultrafilter σ on X with ϕ−1(A) ∈ σ that induces F . This implies
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σ- limϕ ∈ A, thus F - limϕ ∈ A. Now

ϕ̂−1(A) = ϕ−1(A) ∪ {F : F - limϕ ∈ A} = ϕ−1(A) ∪ cl(ϕ−1(A))

is closed.

Denote by (Ch(X))h
′

the set of extensions of Higson functions on X to h′(X).

By [2] the C∗-algebra of Higson functions Ch(X) determines the compactification

h′(X) if and only if (Ch(X))h
′

separates points of ν ′(X).

We show (Ch(X))h
′

separates points of ν ′(X): Let F ,G ∈ ν ′(X) be two

coarse ultrafilters with F λ̄G. Then there exist elements U ∈ F , V ∈ G with

U 6fV . Without loss of generality assume that U, V are disjoint such that d(x, U)+

d(x, V ) 6= 0 for every x ∈ X . Then define a function

ϕ : X → R

x 7→
d(x, U)

d(x, U) + d(x, V )
.

By [5, Lemma 2.2] the function dϕ|E vanishes at infinity for every entourage

E ⊆ X2. Now ϕ|U ≡ 0 and ϕ|V ≡ 1. This implies F - limϕ = 0 and G- limϕ = 1.

If f : X → Y is a coarse map between R-discrete for some R > 0 proper metric

spaces and ϕ : Y → R a Higson function then ϕ ◦ f : X → R is a Higson function:

Since X is R-discrete the map f is continuous, therefore ϕ ◦ f is continuous. The

map ϕ◦ f is bounded since ϕ is bounded. Let E ⊆ X2 be an entourage and ε > 0

a number. Then f×2(E) ⊆ Y 2 is an entourage. This implies (dϕ)|f×2(E) vanishes

at infinity. Thus there is a compact set K ⊆ Y such that

|d(ϕ(x, y)| < ε

whenever (x, y) ∈ f×2(E) ∩ (K2)c. Since K is bounded the set f−1(K) ⊆ X is

bounded. The set f−1(K) is finite since X is R-discrete and therefore f−1(K) is

compact. Then

|d(ϕ ◦ f)(x, y)| < ε

whenever (x, y) ∈ E ∩ (f−1(K))2.

Now we provide an explicit homeomorphism ν(X) → ν ′(X). Denote by

eCh(X) : Z → R
Ch(X)

x 7→ (ϕ(x))ϕ

the evaluation map for X .

Note eCh(X) is a topological embedding and ν(X) := eCh(X)(X) \ eCh(X)(X)

by [2]. A point p ∈ ν(X) is represented by a net (xi)i such that for every Higson

function ϕ ∈ Ch(X) the net ϕ(xi)i converges in R. Define Fi := {xj : j ≥ i}



Coarse homotopy on metric spaces and their corona 251

for every i. Then σ := {Fi : i} is a filter on X such that ϕ∗σ converges to

limi ϕ(xi) for every Higson function ϕ on X . An ultrafilter σ′ which is finer than

σ determines a coarse ultrafilter F . We have shown above that the association

ΦX : p 7→ F is well defined modulo asymptotically alike.

Now we show the map ΦX is injective: Let p, q ∈ ν(X) be two points. If

ΦX(p) = ΦX(q) then ΦX(p)− limϕ = ΦX(q)− limϕ for every Higson function ϕ.

This implies p = q in R
Ch(X).

We show ΦX is surjective: If σ is an ultrafilter on X that determines a coarse

ultrafilter on X then there is a net (xi)i on X which constitutes a section of σ.

Since ϕ(xi)i is a section of ϕ∗σ for every Higson function ϕ the net ϕ(xi)i con-

verges to σ- limϕ in R. Thus (xi)i converges to a point in ν(X).

Now we show ΦX is continuous: If A ⊆ X is a subset then Φ−1
X (cl(A)) is

a subset of ν(X). We show it is closed. If p ∈ Φ−1
X (cl(A)) then there is a net

(xi)i ⊆ X that converges to p. The net (xi)i is a section of an ultrafilter σ with

A ∈ σ. Thus there exists i with xj ∈ A for every j ≥ i. If on the other hand (xi)i
is a net in X and there exists i with xj ∈ A for every j ≥ i then (xi)i is a section

of an ultrafilter σ on X with A ∈ σ. This implies if (xi)i converges to p ∈ ν(X)

then p ∈ Φ−1
X (cl(A)). Thus we have shown

Φ−1
X (cl(A)) = eCh(X)(A) \ eCh(X)(A)

is closed. This way we have obtained that ΦX is a homeomorphism.

Now we define a map

f∗ : R
Ch(X) → R

Ch(Y )

(xϕ)ϕ∈Ch(X) 7→ (xϕ◦f )ϕ∈Ch(Y ).

We show f∗(eCh(X)(X)) ⊆ eCh(Y )(Y ): If (xϕ)ϕ ∈ eCh(X)(X) then there is a net

(xi)i ⊆ X such that limi ϕ(xi) = xϕ for every ϕ ∈ Ch(X). Then f(xi)i ⊆ Y is

a net such that limi ϕ(f(xi)) = xϕ◦f for every ϕ ∈ Ch(Y ).

Now ν(f) := f∗|eCh(X)(X)\eCh(X)(X). Then

ν(f) = Φ−1
Y ◦ ν ′(f) ◦ ΦX .

�

5. A Künneth formula

This is [9, Definition 25]:

Definition 20 (asymptotic product). If X,Y are metric spaces fix points p ∈ X

and q ∈ Y and a constant R ≥ 0 large enough. Then the asymptotic product
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X ∗ Y of X and Y is defined by

X ∗ Y := {(x, y) ∈ X × Y : |d(p, x) − d(q, y)| ≤ R}

as a subspace of X × Y . We define the projection p1 : X ∗ Y → X by (x, y) 7→ x

and the projection p2 : X ∗ Y → Y by (x, y) 7→ y. Note that the projections are

coarse maps. In what follows we denote by d(p, ·), d(q, ·) coarse maps X → R+,

Y → R+ defined by x ∈ X 7→ d(p, x), y ∈ Y 7→ d(q, y).

Remark 21. LetX,Y be metric spaces. NowX∗Y of Definition 20 is determined

by points p ∈ X , q ∈ Y and constant R ≥ 0. If X or Y has nice properties then

X ∗ Y does not depend on the choice of p, q, R up to coarse equivalence. If that

is the case we say the asymptotic product is well defined. Then by [9, Lemma 27]

the diagram

X ∗ Y

p1

��

p2
// Y

d(q,·)

��

X
d(p,·)

// R+

is a pullback diagram in Coarse.

Lemma 22. Let X,Y be metric spaces such that the asymptotic product is well

defined. The following statements hold:

(1) If A ⊆ X , B ⊆ Y are subsets then (A ×B) ∩ (X ∗ Y ) is bounded if A is

bounded or B is bounded.

(2) If (Ui)i is a coarse cover of X and (Vj)j a coarse cover of Y then ((Ui ×

Vj) ∩ (X ∗ Y ))ij is a coarse cover of X ∗ Y .

(3) Let F ,G be coarse ultrafilters on X,Y , respectively, with d(p, ·)∗Fλ ×

d(q, ·)∗G. Choose the constant of X ∗ Y large enough. Then

F ∗ G := {(A×B) ∩ (X ∗ Y ) : A ∈ F , B ∈ G}

is a coarse ultrafilter on X ∗ Y .

Proof: (1) Suppose A is bounded. Then (x, y) ∈ A ∗ Y implies x ∈ A and

|d(x, p)−d(y, q)| ≤ R. Let S ≥ 0 be such that A ⊆ B(p, S). Then y ∈ B(q, R+S).

Thus A ∗ Y is bounded. Similarly if B is bounded then X ∗B is bounded.
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(2) Let E ⊆ (X ∗ Y )2 be an entourage. Then

⋂

ij

E[(Ui × Vj)
c ∩ (X ∗ Y )] ⊆

⋂

ij

E[(Ui × Vj)
c] ∩ (X ∗ Y )

=
⋂

ij

(E[U c
i × Y ] ∪ E[X × V c

j ]) ∩ (X ∗ Y )

=

(⋂

i

E[U c
i × Y ] ∩ (X ∗ Y )

)
∪

(⋂

j

E[X × V c
j ] ∩ (X ∗ Y )

)

is bounded. Thus ((Ui × Vj) ∩ (X ∗ Y ))ij is a coarse cover of X ∗ Y .

Alternative proof: (p−1
1 (Ui) ∩ p−1

2 (Vj))ij .

(3) Let i : X ∗ Y → X × Y be the inclusion. At first we prove

i∗(F ∗ G) = {A×B : A ∈ F , B ∈ G}

is a coarse ultrafilter on X × Y . We check the axioms of a coarse ultrafilter on

i∗(F ∗ G):

(1) If A1×B1, A2×B2 ∈ i∗(F ∗G) then A1, A2 ∈ F , B1, B2 ∈ G. This implies

A1 fA2 in X and B1 fB2 in Y . Then A1 ×B1 f A2 ×B2 in X × Y .

(2) Let A1×B1, A2×B2 ⊆ X×Y be two subsets with (A1×B1)∪(A2×B2) ∈

i∗(F ∗G). Since (A1∪A2)×(B1∪B2) ⊇ (A1×B1)∪(A2×B2) this implies

(A1 ∪ A2)× (B1 ∪B2) ∈ i∗(F ∗ G). Thus (A1 ∪ A2) ∈ F , (B1 ∪B2) ∈ G.

This implies A1 ∈ F or A2 ∈ F . Then A1 × (B1 ∪ B2) ∈ i∗(F ∗ G) or

A2 × (B1 ∪B2) ∈ i∗(F ∗ G). Suppose A1 × (B1 ∪B2) ∈ i∗(F ∗ G). Since

A1 × B1 is maximal among factors of two subsets of X,Y contained in

A1 × (B1 ∪B2), (A1 ×B1) ∪ (A2 ×B2) ∈ i∗(F ∗ G) we obtain A1 ×B1 ∈

i∗(F ∗ G).

(3) X × Y ∈ i∗(F ∗ G) since X ∈ F , Y ∈ G.

Let A×B ∈ i∗(F ∗G) be an element. Since d(p, ·)∗Fλd(q, ·)∗G the sets d(p, ·)(A),

d(q, ·)(B) are close in R+. Thus there exists an R ≥ 0 and unbounded subsets

A′ ⊆ A, B′ ⊆ B with

|d(p, a)− d(q, b)| ≤ R

for a ∈ A′, b ∈ B′. Thus we have shown A × B f X ∗ Y . Choose the constant

of X ∗ Y large enough then X ∗ Y ∈ i∗(F ∗ G). We can thus restrict i∗(F ∗ G)

to X ∗ Y and obtain F ∗ G = (i∗(F ∗ G))|X∗Y . This way we have shown F ∗ G is

a coarse ultrafilter. �

Theorem 23. Let X,Y be metric spaces such that their asymptotic product is

well defined. Define

ν ′(X) ∗ ν ′(Y ) := {(F ,G) ∈ ν ′(X)× ν ′(Y ) : ν ′(d(p, ·))(F) = ν ′(d(q, ·))(G)}.



254 E. Hartmann

Then the map

〈ν ′(p1), ν
′(p2)〉 : ν

′(X ∗ Y ) → ν ′(X) ∗ ν ′(Y )

is a homeomorphism.

Proof: We prove 〈ν ′(p1), ν
′(p2)〉 is well defined: Let F be a coarse ultrafilter

on X ∗ Y then p1∗F , p2∗F are coarse ultrafilters on X,Y , respectively. Since

d(p, ·) ◦ p1, d(q, ·) ◦ p2 are close the coarse ultrafilters d(p, ·)∗p1∗F , d(q, ·)∗p2∗F

are asymptotically alike. Thus we have shown (p1∗F , p2∗F) ∈ ν ′(X) ∗ ν ′(Y ).

Now we prove 〈ν ′(p1), ν
′(p2)〉 is surjective: Let (F ,G) ∈ ν ′(X) ∗ ν ′(Y ) be

a point. By Lemma 22 the system of subsets F ∗G is a coarse ultrafilter on X ∗Y .

Denote by p′1 : X × Y → X , p′2 : X × Y → Y the projection to the first, second

factor, respectively, and by i : X ∗ Y → X × Y the inclusion. Then p1 = p′1 ◦ i,

p2 = p′2 ◦ i. Since i∗(F ∗ G) = {A × B : A ∈ F , B ∈ G} we obtain the relations

p′1∗i∗(F ∗G)λF , p′2∗i∗(F ∗G)λG. Thus we have proved 〈ν ′(p1), ν
′(p2)〉× (F ∗G) =

(F ,G).

Now we prove (ν ′(p1)(F)) ∗ (ν ′(p2)(F)) = F for every point F ∈ ν ′(X ∗ Y ):

Let A ∈ F be an element. Then (p1(A) × p2(A)) ∩ (X ∗ Y ) ∈ (p1∗F) ∗ (p2∗F).

Since A ⊆ (p1(A) × p2(A)) ∩ (X ∗ Y ) we obtain (p1∗F) ∗ (p2∗F) ⊆ F . Thus

(p1∗F) ∗ (p2∗F)λF . This way we have shown 〈ν ′(p1), ν
′(p2)〉 is bijective.

Since ν ′(X ∗ Y ) is compact and ν ′(X) ∗ ν ′(Y ) is Hausdorff we obtain that

〈ν ′(p1), ν
′(p2)〉 is a homeomorphism. �

6. Space of rays

Definition 24 (space of rays). Let Y be a compact topological space. As a set

the space of rays ̥(Y ) of Y is Y × Z+. A subset E ⊆ Y 2 is an entourage if for

every countable subset ((xk, ik), (yk, jk))k ⊆ E the following properties hold:

(1) The set (ik, jk)k is an entourage in Z+.

(2) If (ik)k → ∞ then (xk)k and (yk)k have the same limit points.

This makes ̥(Y ) a coarse space.

Theorem 25. If f : X → Y is a continuous map between compact topological

spaces

◦ then it induces a coarse map by

̥(f) : ̥(X) → ̥(Y )

(x, i) 7→ (f(x), i).

◦ If f is a homeomorphism then ̥(f) is a coarse equivalence.
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Proof: ◦ We show ̥(f) is coarsely uniform and coarsely proper. First we show

̥(f) is coarsely uniform: Suppose ((xi, ni), (yi,mi))i is a countable entourage

in ̥(X) such that (ni)i is a strictly monotone sequence in Z+ and (xi)i converges

to x. Then (ni,mi)i is an entourage in Z+ and (yi)i converges to x. Since f is

a continuous map f(xi)i and f(yi)i both converge to f(x). Thus we can conclude

that
((f(xi), ni), (f(yi),mi))i

is an entourage in ̥(Y ).

Now we show ̥(f) is coarsely proper: If B ⊆ ̥(Y ) is bounded we can write

B =
⋃

iBi × i with Bi ⊆ Y , i ∈ Z+, where the number of i that appear is finite.

Then
f−1(B) =

⋃

i

f−1(Bi)× i

is bounded.

◦ If f is a homeomorphism then there is a topological inverse g : Y → X of f .

Now f ◦ g = idY and g ◦ f = idX . Then

̥(f) ◦̥(g) = ̥(f ◦ g) = ̥(idY ) = id̥(Y )

and
̥(g) ◦̥(f) = ̥(g ◦ f) = ̥(idX) = id̥(X).

�

Corollary 26. Denote by kTop the category of compact topological spaces and

continuous maps and by Coarse denote the category of coarse spaces and coarse

maps modulo close. Then ̥ is a functor

̥ : kTop → Coarse.

Proposition 27. Denote by F0 a coarse ultrafilter on Z+, the choice is not

important. For every y ∈ Y denote by iy the inclusion y × Z+ → ̥(Y ). The

map
ηY : Y → ν ′ ◦̥(Y )

y 7→ ν ′(iy)(F0)

for every metric space Y defines a natural transformation η : 1kTop → ν ′ ◦̥.

Proof: If f : Y → Z is a continuous map between compact spaces we show the

diagram

Y
f

//

ηY

��

Z

ηZ

��

ν ′ ◦̥(Y )
ν ′◦̥(f)

// ν ′ ◦̥(Z)
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commutes. Down and then right: a point y ∈ Y is mapped by ηY to ν ′(iy)(F0).

Then

ν ′ ◦̥(f)(ν ′(iy)(F0)) = ̥(f)∗ ◦ iy∗(F0) = (̥(f) ◦ iy)∗(F0) = if(y)∗(F0).

Right and then down: a point y ∈ Y is mapped by f to f(y). Then

ηZ(f(y)) = ν ′(if(y))(F0).

The map ηY is continuous for every compact space Y : Let (yi)i be a net in Y

that converges to y. Then (ν ′(iyi
)(F0))i converges in ηY (Y ) to ν ′(iy)(F0): Let

A ⊆ ν ′ ◦̥(Y ) be a set such that ν ′(iy)(F0) ∈ cl(A)c. Thus there is some B ∈ F0

such that y × B 6fA. Now for almost all i the relation (yi × B) 6fA holds, thus

ν ′(iyi
)(F0) ∈ cl(A)c for almost all i. �
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