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Remarks on WDC sets

Dušan Pokorný, Luděk Zaj́ıček

Abstract. We study WDC sets, which form a substantial generalization of sets
with positive reach and still admit the definition of curvature measures. Main
results concern WDC sets A ⊂ R2. We prove that, for such A, the distance
function dA = dist(·, A) is a “DC aura” for A, which implies that each closed
locally WDC set in R2 is a WDC set. Another consequence is that compact
WDC subsets of R2 form a Borel subset of the space of all compact sets.
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1. Introduction

In [10] (cf. also [8], [7] and [11]), the authors introduced the class of WDC sets

which form a substantial generalization of sets with positive reach and still admit

the definition of curvature measures. The following question naturally arises, see

[8, Question 2, page 829] and [7, 10.4.3].

Question. Is the distance function dA = dist (·, A) of each WDC set A ⊂ Rd

a DC aura for A (see Definition 2.3)?

We answer this question positively in the case d = 2 (Theorem 3.3 below); it

remains open for d ≥ 3. The proof is based on a characterization (proved in [11])

of closed locally WDC sets in R2 and the main result of [12] which asserts that

(1.1) dA is a DC function if A ⊂ R2 is a graph of a DC function g : R → R.

Recall that a function is called DC, if it is the difference of two convex functions.

Let us note that each set A as in (1.1) is a WDC set (it is easy to show that

the function (x, y) 7→ |g(x) − y| is a DC aura for graph g, cf. the proof of [11,

Proposition 6.6]).

Theorem 3.3 easily implies that each closed locally WDC set in R2 is WDC.

Further, we use Theorem 3.3 to prove that compact WDC subsets of R2 form

a Borel subset of the space of all compact sets of R2 (Theorem 4.1 (i)). The

importance of this result is the fact that it suggests that (at least in R2) a theory
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of point processes on the space of compact WDC sets (analogous to the concept

of point processes on the space of sets with positive reach introduced in [16]) can

be build.

Concerning the compact WDC subsets of Rd for d > 2, we are able to prove

only a weaker fact that they form an analytic set (Theorem 4.1 (ii)) which is not

probably sufficient for the above mentioned application.

2. Preliminaries

2.1 Basic definitions. The symbol Q denotes the set of all rational numbers.

In any vector space V , we use the symbol 0 for the zero element. We denote by

B(x, r) (U(x, r)) the closed (open) ball with centre x and radius r. The boundary

and the interior of a setM are denoted by ∂M and intM , respectively. A mapping

is called K-Lipschitz if it is Lipschitz with a (not necessarily minimal) constant

K ≥ 0.

The metric space of all real-valued continuous functions on a compact K

(equipped with the usual supremum metric ̺sup) will be denoted C(K).

In the Euclidean space Rd, the norm is denoted by |·| and the scalar product

by 〈·, ·〉. By Sd−1 we denote the unit sphere in Rd.

The distance function from a set A ⊂ Rd is dA := dist (·, A) and the metric

projection of z ∈ Rd to A is ΠA(z) := {a ∈ A : dist (z, A) = |z − a|}.

2.2 DC functions. Let f be a real function defined on an open convex set

C ⊂ Rd. Then we say that f is a DC function, if it is the difference of two

convex functions. Special DC functions are semiconvex and semiconcave func-

tions. Namely, f is a semiconvex (semiconcave, respectively) function, if there

exist a > 0 and a convex function g on C such that

f(x) = g(x)− a|x|2 (f(x) = a|x|2 − g(x), respectively), x ∈ C.

We will use the following well-known properties of DC functions.

Lemma 2.1. Let C be an open convex subset of Rd. Then the following asser-

tions hold:

(i) If f : C → R and g : C → R are DC, then for each a ∈ R, b ∈ R the

functions |f |, af + bg, max(f, g) and min(f, g) are DC.

(ii) Each locally DC function f : C → R is DC.

(iii) Each DC function f : C → R is Lipschitz on each compact convex set

Z ⊂ C.
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(iv) Let fi : C → R, i = 1, . . . ,m, be DC functions. Let f : C → R be

a continuous function such that f(x) ∈ {f1(x), . . . , fm(x)} for each x ∈ C.

Then f is DC on C.

Proof: Property (i) follows easily from definitions, see e.g. [14, page 84]. Prop-

erty (ii) was proved in [9]. Property (iii) easily follows from the local Lipschitzness

of convex functions. Assertion (iv) is a special case of [15, Lemma 4.8.] (“Mixing

lemma”). �

It is well-known (cf. [12]) that if ∅ 6= A ⊂ Rd is closed, then dA need not

be DC; however (see, e.g., [2, Proposition 2.2.2]),

(2.1) dA is locally semiconcave (and so locally DC) on Rd \A.

2.3 Clarke generalized gradient. If U ⊂ Rd is an open set, f : U → R is

locally Lipschitz and x ∈ U , we denote by ∂Cf(x) the generalized gradient of f

at x, which can be defined as the closed convex hull of all limits limi→∞ f ′(xi)

such that xi → x and f ′(xi) exists for all i ∈ N (see [3, Theorem 2.5.1]; ∂Cf(x)

is also called Clarke subdifferential of f at x in the literature). Since we identify

(Rd)∗ with Rd in the standard way, we sometimes consider ∂Cf(x) as a subset

of Rd. We will repeatedly use the fact that the mapping x 7→ ∂Cf(x) is upper

semicontinuous and, hence (see [3, Theorem 2.1.5]),

(2.2) v ∈ ∂Cf(x) whenever xi → x, vi ∈ ∂Cf(xi) and vi → v.

We also use that |u| ≤ K whenever u ∈ ∂Cf(x) and f is K-Lipschitz on a neigh-

bourhood of x. Obviously,

(2.3) ∂C(αf)(x) = α∂Cf(x).

Recall that

(2.4) f0(x, v) := lim sup
y→x,t→0+

f(y + tv)− f(y)

t

and (see [3])

(2.5) f0(x, v) = sup{〈v, ν〉 : ν ∈ ∂Cf(x)}.

We will need the following simple lemma.

Lemma 2.2. Let f be a Lipschitz function on an open set G ⊂ Rd, x ∈ G and

ε > 0.
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(i) If dist (0, ∂Cf(x)) ≥ 2ε, then

(2.6) ∃ v ∈ Sd−1, ̺ > 0 ∀ y ∈ U(x, ̺), 0 < α < ̺ :
f(y + αv)− f(y)

α
≤ −ε.

(ii) If (2.6) holds, then dist (0, ∂Cf(x)) ≥ ε.

Proof: (i) Let dist (0, ∂Cf(x)) ≥ 2ε. Since ∂Cf(x) is convex, there exists (see

e.g. [4, Theorem 1.5.]) v ∈ Sd−1 such that

dist (0, ∂Cf(x)) = − sup{〈v, ν〉 : ν ∈ ∂Cf(x)}.

So, by (2.5), f0(x, v) ≤ −2ε and thus (2.4) implies (2.6).

(ii) If (2.6) holds, choose corresponding v ∈ Sd−1 and ̺ > 0. Then f0(x, v) ≤
−ε by (2.4). Consequently, by (2.5), −|ν| ≤ 〈v, ν〉 ≤ −ε for each ν ∈ ∂Cf(x) and

so dist (0, ∂Cf(x)) ≥ ε. �

2.4 WDC sets. WDC sets (see the definition below) which provide a natural

generalization of sets with positive reach were defined in [10] using Fu’s notion of

an “aura” of a set (see, e.g., [7] for more information). Note that the notion of

a DC aura was defined in [10] and [8] by a formally different but equivalent way

(cf. [11, Remark 2.12 (v)]).

Definition 2.3 (cf. [11], Definitions 2.8, 2.10). Let U ⊂ Rd be open and f :

U → R be locally Lipschitz. A number c ∈ R is called a weakly regular value

of f if whenever xi → x, f(xi) > c = f(x) and ui ∈ ∂Cf(xi) for all i ∈ N then

lim infi |ui| > 0.

A set A ⊂ Rd is called WDC if there exists a DC function f : Rd → [0,∞)

such that A = f−1(0) and 0 is a weakly regular value of f . In such a case, we

call f a DC aura (for A).

A set A ⊂ Rd is called locally WDC if for any point a ∈ A there exists a WDC

set A∗ ⊂ Rd that agrees with A on an open neighbourhood of a.

(Note that a weakly regular value of f need not be in the range of f , and so ∅
is clearly a WDC set by our definition. Also, unlike WDC sets which are always

closed, locally WDC sets need not to be closed.)

Note that a set A ⊂ Rd has a positive reach at each point if and only if there

exists a DC aura for A which is even semiconvex, see [1].

3. Distance function of a WDC set in R2 is a DC aura

First we present (slightly formally rewritten) [11, Definition 7.9].

Definition 3.1. (i) A set S ⊂ R2 will be called a basic open DC sector (of

radius r) if S = U(0, r) ∩ {(u, v) ∈ R2 : u ∈ (−ω, ω), v > f(u)}, where



Remarks on WDC sets 85

0 < r < ω and f is a DC function on (−ω, ω) such that f(0) = 0, R(u) :=
√

u2 + f2(u) is strictly increasing on [0, ω) and strictly decreasing on

(−ω, 0].
By an open DC sector (of radius r) we mean an image γ(S) of a basic

open DC sector S (of radius r) under a rotation around the origin γ.

(ii) A set of the form γ({(u, v) ∈ R2 : u ∈ [0, ω), g(u) ≤ v ≤ f(u)}) ∩ U(0, r),

where γ is a rotation around the origin, 0 < r < ω and f, g : R → R are DC

functions such that g ≤ f on [0, ω), f(0) = g(0) = f ′

+(0) = g′+(0) = 0 and

the functions Rf (u) :=
√

u2 + f2(u), Rg(u) :=
√

u2 + g2(u) are strictly

increasing on [0, ω), will be called a degenerated closed DC sector (of

radius r).

We will use the following complete characterization of closed locally WDC sets

in R2 (see [11, Theorem 8.14]).

Theorem PRZ. Let M be a closed subset of R2. Then M is a locally WDC

set if and only if for each x ∈ ∂M there is ̺ > 0 such that one of the following

conditions holds:

(i) M ∩ U(x, ̺) = {x},
(ii) there is a degenerated closed DC sector C of radius ̺ such that

M ∩ U(x, ̺) = x+ C,

(iii) there are pairwise disjoint open DC sectors C1, . . . , Ck of radius ̺ such

that

(3.1) U(x, ̺) \M =

k
⋃

i=1

(x+ Ci).

Lemma 3.2. Let f be an L-Lipschitz function on R. Denote d := dist (·, graphf).
Then |ξ2| ≥ 1/

√
L2 + 1 whenever ξ = (ξ1, ξ2) ∈ ∂Cd(x) and x ∈ R2 \ graph f .

Proof: Pick x ∈ R2 \ graph f . Without any loss of generality we can assume

that x = 0. We will assume that f(0) < 0; the case f(0) > 0 is quite analogous.

Denote r := d(0) and P := Πgraph f (0). Set g(u) := −
√
r2 − u2, u ∈ [−r, r].

Clearly f ≤ g on [−r, r] and (u, v) ∈ P if and only if f(u) = g(u) = v. We will

show that

(3.2) |u| ≤ Lr√
1 + L2

whenever (u, v) ∈ P .

To this end, suppose (u, v) ∈ P . If u > 0, then

L ≥ f(t)− f(u)

t− u
≥ g(t)− g(u)

t− u
for each 0 < t < u,
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and consequently L ≥ g′
−
(u). Therefore u < r and L ≥ u(r2 − u2)−1/2. Analo-

gously considering g′+(u), we obtain for u < 0 that u > −r and u(r2 − u2)−1/2 ≥
−L. In both cases we have L ≥ |u|(r2 − u2)−1/2 and an elementary computation

gives (3.2).

Using (3.2) we obtain that if (u, v) ∈ P then

(3.3) v = g(u) ≤ −
√

r2 −
( Lr√

1 + L2

)2

= − r√
1 + L2

.

By [6, Lemma 4.2] and (3.3) we obtain

∂Cd(0) = conv
{1

r
(−u,−v) : (u, v) ∈ P

}

⊂ R×
[

1√
L2 + 1

,∞
)

and the assertion of the lemma follows. �

Theorem 3.3. LetM 6= ∅ be a closed locallyWDC set in R2. Then the distance

function dM is a DC aura for M . In particular, M is a WDC set.

Proof: Denote d := dM . For each x ∈ ∂M choose ̺ = ̺(x) by Theorem PRZ.

We will prove that

(a) distance d is DC on U(x, ̺/3),

(b) there is ε = ε(x) > 0 such that |ξ| ≥ ε whenever y ∈ U(0, ̺/3) \M and

ξ ∈ ∂Cd(y).

Without any loss of generality we can assume that x = 0.

If Case (i) from Theorem PRZ holds, then d(y) = |y|, y ∈ U(0, ̺/3), and so d

is convex and therefore DC on U(0, ̺/3). Similarly, condition (b) holds as well,

since if y ∈ U(0, ̺/3) \M and ξ ∈ ∂Cd(y) then ξ = y/|y| and so |ξ| = 1.

If Case (ii) from Theorem PRZ holds, we know thatM∩U(0, ̺) is a degenerated

closed DC sector C of radius ̺. Let γ, f , g and ω be as in Definition 3.1. Without

any loss of generality we may assume that γ is the identity map.

By Lemma 2.1 (iii) we can choose L > 0 such that both f and g are L-Lipschitz

on [0, ̺] and define

f̃(u) :=















f(u) if 0 ≤ u ≤ ̺,

f(̺) if ̺ < u,

2Lu if u < 0,

and g̃(u) :=















g(u) if 0 ≤ u ≤ ̺,

g(̺) if ̺ < u,

−2Lu if u < 0.

It is easy to see that both f̃ and g̃ are 2L-Lipschitz and they are DC by

Lemma 2.1 (iv).

Put

M0 := {(u, v) ∈ R2 : u ≥ 0, g̃(u) ≤ v ≤ f̃(u)},
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M1 := {(u, v) ∈ R2 : u ≥ 0, f̃(u) < v} ∪
{

(u, v) ∈ R2 : u < 0, − u

2L
< v
}

,

M2 := {(u, v) ∈ R2 : u ≥ 0, g̃(u) > v} ∪
{

(u, v) ∈ R2 : u < 0,
u

2L
> v
}

and

M3 :=
{

(u, v) ∈ R2 :
u

L
< v < − u

L

}

.

Clearly R2 =M0 ∪M1 ∪M2 ∪M3 and M1, M2, M3 are open.

Set d̃ := dist (·,M0) and for each y ∈ R2 define

d0(y) := 0, d1(y) := dist (y, graph f̃), d2(y) := dist (y, graph g̃), d3(y) := |y|.

Functions d1 and d2 are DC on R2 by (1.1), d0 and d3 are convex and therefore

DC on R2.

Using (for K = 1/L,−1/L, 1/(2L),−1/(2L)) the facts that the lines with the

slopes K and −1/K are orthogonal and M0 ⊂ {(u, v) : u ≥ 0, −Lu ≤ v ≤ Lu},
easy geometrical observations show that

(3.4) d̃(y) = di(y) if y ∈Mi, 0 ≤ i ≤ 3,

and so Lemma 2.1 (iv) implies that d̃ is DC.

Now pick an arbitrary y ∈ R2 \M0 =M1 ∪M2 ∪M3 and choose ξ = (ξ1, ξ2) ∈
∂C d̃(y). Using (3.4), we obtain that if y ∈ M3 then ξ = y/|y| and so |ξ| = 1.

Using Lemma 3.2, we obtain that if y ∈M1 ∪M2, then |ξ| ≥ |ξ2| ≥ 1/
√
4L2 + 1.

Now, since d = d̃ on U(0, ̺/3) both (a) and (b) follow.

It remains to prove (a) and (b) if Case (iii) from Theorem PRZ holds. Let Ci,

i = 1, . . . , k, be the open DC sectors as in (iii). Denote Ai := R2 \ Ci and define

δi := dist (·, Ai), i = 1, . . . , k.

Note that, for y ∈ U(0, ̺/3), one has

d(y) =

{

δi(y) if y ∈ Ci,

0 if y ∈M.

Therefore (by Lemma 2.1 (iv)) it is enough to prove that (a) and (b) hold with

d and M being replaced by δi and Ai, respectively, i = 1, . . . , k. Fix some i ∈
{1, . . . , k}. Without any loss of generality we can assume that Ci is a basic open

DC sector of radius ̺ with corresponding fi and ωi. Now define

f̃i(u) :=















fi(u) if u ∈ [−̺, ̺],
fi(−̺) if u < −̺,
fi(̺) if u > ̺.
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Then f̃i is Lipschitz and DC on R. Put d̃i(y) = dist (y, graph f̃i). Then d̃i is DC

by (1.1) and 0 is a weakly regular value of d̃i by Lemma 3.2. And since di = d̃i
on U(0, ̺/3) we are done.

Since d is locally DC on R2 \M by (2.1) and on the interior of M (trivially),

(a) implies that d is locally DC and so DC by Lemma 2.1 (ii). Further, (b) im-

mediately implies that 0 is a weakly regular value of d and thus d = dM is an

aura for M . �

Remark 3.4. By Theorem 3.3, in R2 closed locally WDC sets and WDC sets

coincide. This gives a partial answer to the part of [10, Problem 10.2] which asks

whether the same is true in each Rd.

4. Complexity of the system of WDC sets

In the following, we will work in each moment in an Rd with a fixed d, and so

for simplicity we will use the notation, in which the dependence on d is usually

omitted.

The space of all nonempty compact subsets of Rd equipped with the usual

Hausdorff metric ̺H is denoted by K. It is well-known (see, e.g., [13, Proposi-

tion 2.4.15 and Corollary 2.4.16]) that K is a separable complete metric space. For

a closed setM ⊂ Rd, we set K(M) := {K ∈ K : K ⊂M}, which is clearly a closed

subspace of K. The set of all nonempty compact WDC subsets of M ⊂ Rd will

be denoted by WDC(M).

In this section, we will prove the following theorem.

Theorem 4.1. (i) WDC(R2) is an Fσδσ subset of K(R2).

(ii) Set WDC(Rd) is an analytic subset of K(Rd) for each d ∈ N.

Before the proof of this theorem, we introduce some spaces, make a number of

observations, and prove a technical lemma.

First observe that WDC(Rd) =
⋃

∞

n=1 WDC(B(0, n)) and so, to prove Theo-

rem 4.1, it is sufficient to prove that for each r > 0,

(4.1)
for d = 2 (d ∈ N, respectively), WDC(B(0, r))

is an Fσδσ (analytic, respectively) subset of K(B(0, r)).

Further observe that it is sufficient to prove (4.1) for r = 1. Indeed, denoting

H(x) := x/r, x ∈ Rd, it is obvious that H∗ : K 7→ H(K) gives a homeomorphism

of K(B(0, r)) onto K(B(0, 1)) and H∗(WDC(B(0, r)) = WDC(B(0, 1)) (clearly f

is an aura for K if and only if f ◦H−1 is an aura for H∗(K)).

To prove (4.1) for r = 1, we will consider the space X of all 1-Lipschitz func-

tions f : B(0, 4) → [0, 4] such that f ≥ 1 on B(0, 4) \ U(0, 3), equipped with the
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supremum metric ̺sup. Obviously, X is a closed subspace of C(B(0, 4)) and so it

is a separable complete metric space.

The motivation for introducing X is the fact that

(4.2) if K ∈ K(B(0, 1)), then fK := dK ↾B(0,4)∈ X .

Since we are interested in K ∈ WDC(B(0, 1)), we define also two subspaces of X :

A := {f ∈ X : 0 is a weakly regular value of f |U(0,4)},
D := {f ∈ X : f = g − h for some convex Lipschitz functions g, h on B(0, 4)}.

Their complexity is closely related to the complexity of WDC(B(0, 1)), as the

following lemma indicates.

Lemma 4.2. Let ∅ 6= K ⊂ B(0, 1) ⊂ Rd be compact. Then:

(i) K is WDC if and only if there is a function g ∈ D ∩ A such that K =

g−1(0).

(ii) If d = 2, then K is WDC if and only if fK := dK ↾B(0,4)∈ D ∩A.

Proof: (i) Suppose first that K is WDC and f is an aura for K. Using Lem-

ma 2.1 (iii), we can choose α > 0 so small that the function αf is 1-Lipschitz on

B(0, 4) and 0 ≤ αf(x) ≤ 4 for x ∈ B(0, 4). Set

h(x) := max(|x| − 2, αf(x)), x ∈ Rd, and g := h ↾B(0,4) .

Then clearly K = g−1(0). Since h is DC on Rd by Lemma 2.1 (i), we obtain

g ∈ D by Lemma 2.1 (iii). Finally, g ∈ A since g = αf on U(0, 2).

Conversely, suppose that K = g−1(0) for some g ∈ A ∩D and set

f(x) :=

{

min(g(x), 1), if x ∈ U(0, 4),

1, otherwise.

Since f is DC on U(0, 4) by Lemma 2.1 (i) and f = 1 on Rd \B(0, 3), we see that

f is locally DC and so DC by Lemma 2.1 (ii). Since 0 is clearly a weakly regular

value of f , we obtain that f is an aura for K.

(ii) If K is WDC, first note that fK ∈ X (see (4.2)). Since dK is an aura

for K by Theorem 3.3, we obtain immediately that fK ∈ A, and also fK ∈ D by

Lemma 2.1 (iii).

If fK ∈ A ∩D, then K is WDC by (i). �

For the application of Lemma 4.2 (ii) we need the simple fact that

(4.3) Ψ: K 7→ fK , K ∈ K(B(0, 1)), is a continuous mapping into X .
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Indeed, if K1,K2 ∈ K(B(0, 1)) with ̺H(K1,K2) < ε and x ∈ B(0, 4), then clearly

dK1
(x) < dK2

(x) + ε, dK2
(x) < dK1

(x) + ε, and consequently ̺sup(fK1
, fK2

) ≤ ε.

Further observe that

(4.4) D is an Fσ subset of X.

To prove it for each n ∈ N set

Cn := {g ∈ C(B(0, 4)) : g is convex n-Lipschitz and |g(x)| ≤ 4n+4, x ∈ B(0, 4)}.

Now observe that if f ∈ D then we can choose n ∈ N and convex n-Lipschitz

functions g, h such that f = g − h, g(0) = 0 and consequently ‖g‖ ≤ 4n, ‖h‖ ≤
4n + 4, and so g, h ∈ Cn. Consequently, D = X ∩⋃∞

n=1(Cn − Cn). Each Cn is

clearly closed in C(B(0, 4)) and so it is compact in C(B(0, 4)) by the Arzelà–Ascoli

theorem. Consequently also Cn − Cn = σ(Cn × Cn), where σ is the continuous

mapping σ : (g, h) 7→ g − h, is compact, and (4.4) follows.

The most technical part of the proof of Theorem 4.1 is to show that A is an

Fσδσ subset of X . To prove it, we need some lemmas.

Lemma 4.3. Let f ∈ X . Then f ∈ A if and only if

(4.5) ∃ 0 < ε ∀x ∈ f−1(0, ε), ν ∈ ∂Cf(x) : |ν| ≥ ε.

Proof: If (4.5) holds, then we easily obtain f ∈ A directly from the definition

of a weakly regular value.

To prove the opposite implication, suppose that f ∈ A and (4.5) does not hold.

Then there exist points xn ∈ f−1(0, 1/n), n ∈ N, and νn ∈ ∂Cf(xn) such that

|νn| < 1/n. Choose a subsequence xnk
→ x ∈ B(0, 4). Since 0 ≤ f(xnk

) < 1/nk,

we have f(xnk
) → f(x) = 0, and consequently x ∈ U(0, 4). Since νnk

→ 0,

we obtain that 0 is not a weakly regular value of f |U(0,4), which contradicts

f ∈ A. �

Denote Q∗ := Q ∩ (0, 1) and for every ε ∈ Q∗ and d ∈ N pick a finite set

S
d
ε ⊂ Sd−1 such that for every v ∈ Sd−1 there is some ν ∈ S

d
ε satisfying |v−ν| < ε.

Lemma 4.4. Let f be a function from X . Then f ∈ A if and only if

(4.6)
∃ ε ∈ Q∗ ∀ p, q ∈ Q∗, 0 < p < q < ε ∃ ̺ ∈ Q∗ ∀x ∈ U(0, 4): (f(x) /∈ (p, q)

∨ ∃ ν ∈ S
d
ε ∀ y ∈ U(x, ̺), 0 < α < ̺ : f(y + αν) − f(y) ≤ −εα).

Proof: First suppose that (4.6) holds and choose ε ∈ Q∗ by (4.6). We will show

that

(4.7) ∀x ∈ f−1(0, ε), ν ∈ ∂Cf(x) : |ν| ≥ ε.
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To this end, consider an arbitrary x ∈ f−1(0, ε) and choose p, q ∈ Q∗ such that

0 < p < q < ε and f(x) ∈ (p, q). Choose ̺ ∈ Q∗ which exists for ε, p, q by (4.6).

So there exists ν ∈ S
d
ε such that

∀ y ∈ U(x, ̺), 0 < α < ̺ : f(y + αv) − f(y) ≤ −εα.

Therefore Lemma 2.2 (ii) gives that |ν| ≥ ε for each ν ∈ ∂Cf(x). Thus (4.7) holds

and so f ∈ A by Lemma 4.3.

Now suppose f ∈ A. Using (4.5), we can choose ε ∈ Q∗ such that

(4.8) ∀x ∈ f−1(0, ε), ν ∈ ∂Cf(x) : |ν| ≥ 4ε.

To prove (4.6), consider arbitrary p, q ∈ Q∗, 0 < p < q < ε. Using Lemma 2.2 (i),

we easily obtain that for each z ∈ K := f−1([p, q]) there exist ̺(z) > 0 and

v(z) ∈ Sd−1 such that

(4.9) ∀ y ∈ U(z, ̺(z)), 0 < α < ̺(z) : f(y + αv(z))− f(y) ≤ −2εα.

Choose ̺ ∈ Q∗ as a Lebesgue number, see [5], of the open covering {U(z, ̺(z))}z∈K

of the compact K. For an arbitrary x ∈ U(0, 4), either f(x) /∈ (p, q) or x ∈ K. In

the second case, by the definition of Lebesgue number, there exists z ∈ K such

that U(x, ̺) ⊂ U(z, ̺(z)). Then clearly ̺ < ̺(z) and so (4.9) implies

(4.10) ∀ y ∈ U(x, ̺), 0 < α < ̺ : f(y + αv(z))− f(y) ≤ −2εα.

By the choice of S
d
ε there is some ν ∈ S

d
ε such that |v(z)− ν| < ε. By (4.10) for

each y ∈ U(x, ̺) and 0 < α < ̺,

f(y + αv(z))− f(y) ≤ −2εα.

Consequently, using 1-Lipschitzness of f ∈ X , we obtain

f(y + αν)− f(y) ≤ f(y + αv(z))− f(y) + |f(y + αν) − f(y + αv(z))|
≤ f(y + αv(z))− f(y) + |ν − v(z)|α
≤ −2εα+ εα = −εα,

and so (4.6) holds. �

Corollary 4.5. The set A is an Fσδσ subset of X .

Proof: For each quadruple y ∈ Rd, ν ∈ Sd−1, α > 0, ε > 0 we set

C(y, ν, α, ε) := {f ∈ X : f(y + αν)− f(y) ≤ −εα}.
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(Of course, we have C(y, ν, α, ε) = ∅ if y /∈ U(0, 4) or y+αν /∈ U(0, 4).) Further,

for each triple x ∈ U(0, 4), 0 < p < q, we set

D(x, p, q) := {f ∈ X : f(x) /∈ (p, q)}.

It is easy to see that both C(y, ν, α, ε) and D(x, p, q) are always closed subsets

of X . It is easy to see that Lemma 4.4 is equivalent to

A =
⋃

ε∈Q∗

⋂

p,q∈Q∗,
0<p<q<ε

⋃

̺∈Q∗

⋂

x∈U(0,4)

(

D(x, p, q) ∪
⋃

ν∈S d
ε

⋂

y∈U(x,̺),
0<α<̺

C(y, ν, α, ε)

)

.

Therefore, since Q∗ is countable and each S
d
ε is finite, we obtain that A is an

Fσδσ subset of X . �

The proof of Theorem 4.1: We know that it is sufficient to prove (4.1) for

r = 1.

Suppose d = 2. Then Lemma 4.2 (ii) gives that WDC(B(0, 1)) = ψ−1(A∩D),

where ψ : K(B(0, 4)) → X is the continuous mapping from (4.3). Since A ∩D is

an Fσδσ subset of X by Corollary 4.5 and (4.4), we obtain (4.1) for r = 1 and

d = 2, and thus also assertion (i) of Theorem 4.1.

To prove assertion (ii) of Theorem 4.1, it is sufficient to prove that (in each Rd)

WDC(B(0, 1)) is an analytic subset of K(B(0, 1)). To this end, consider the

following subset S of K(B(0, 1))×X :

S := {(K, f) ∈ K(B(0, 1)) ×X : f−1(0) = K, f ∈ A ∩D}.

By Lemma 4.2 (i), WDC(B(0, 1)) = π1(S) (where π1(K, f) := K) and so it is

sufficient to prove that S is Borel. Denoting

Z := {(K, f) ∈ K(B(0, 1))×X : K = f−1(0), f ∈ X},

we have S = Z ∩ (K(B(0, 1)) × (A ∩ D)). So, since A ∩ D is Borel by Corol-

lary 4.5 and (4.4), to prove that S is Borel, it is sufficient to show that Z is Borel

in K(B(0, 1))×X . To this end, denote for each n ∈ N

Pn :=
{

(K, f) ∈ K(B(0, 1))×X : ∃x ∈ K : f(x) ≥ 1

n

}

,

Qn :=
{

(K, f) ∈ K(B(0, 1))×X : ∃x ∈ B(0, 4): dist (x,K) ≥ 1

n
, f(x) = 0

}

.

Since clearly

Z = (K(B(0, 1))×X) \
( ∞
⋃

n=1

Pn ∪
∞
⋃

n=1

Qn

)

,

it is sufficient to prove that all Pn and Qn are closed.
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So suppose that (Ki, fi) ∈ K(B(0, 1))×X, i = 1, 2, . . . , (K, f) ∈ K(B(0, 1))×X ,

̺H(Ki,K) → 0 and ̺sup(fi, f) → 0.

First suppose that n ∈ N and all (Ki, fi) ∈ Pn. Choose xi ∈ Ki with fi(xi) ≥
1/n. Choose a convergent subsequence xij → x ∈ Rd. It is easy to see that x ∈ K.

Since |fij (xij ) − f(xij )| → 0 and f(xij ) → f(x), we obtain fij (xij ) → f(x), and

consequently f(x) ≥ 1/n. Thus (K, f) ∈ Pn and therefore Pn is closed.

Second, suppose that n ∈ N and all (Ki, fi) ∈ Qn. Choose xi ∈ B(0, 4)

such that dist (xi,Ki) ≥ 1/n and fi(xi) = 0. Choose a convergent subsequence

xij → x ∈ B(0, 4). Since |fij (xij ) − f(xij )| → 0 and f(xij ) → f(x), we obtain

f(x) = 0. Now consider an arbitrary y ∈ K and choose a sequence yj ∈ Kij with

yj → y. Since |xij − yj | ≥ 1/n and xij → x, we obtain that |y − x| ≥ 1/n and

consequently dist (x,K) ≥ 1/n. Thus (K, f) ∈ Qn and therefore Qn is closed. �
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