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Bases for certain varieties of completely regular semigroups

Mario Petrich

Abstract. Completely regular semigroups equipped with the unary operation of
inversion within their maximal subgroups form a variety, denoted by C R. The
lattice of subvarieties of CR is denoted by L(CR).

For each variety in an
⋂
-subsemilattice Γ of L(C R), we construct at least

one basis of identities, and for some important varieties, several. We single out
certain remarkable types of bases of general interest. As an application for the
local relation L, we construct L-classes of all varieties in Γ. Two figures illustrate
the theory.
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Classification: 20M07, 20M10

1. Introduction and summary

Completely regular semigroups (alias unions of groups) provided with the unary

operation of inversion within their maximal subgroups form a variety CR. The

lattice of subvarieties of CR is denoted by L(CR). The paper [2], published

in 1982, contains a compendium of bases of identities of the varieties commonly

known at that time. As a result, we arrived at a diagram of varieties with at

least one basis of identities of each. As time passed, new varieties emerged, most

of which with their bases, and their position in the lattice L(CR) as well. As

a result, we now have a number of simpler bases, and bases for new ones, as well

as their relationship under inclusion, in the upper part of the original diagram.

In order to update the process initiated in the paper [2], we have constructed

in [6] an
⋂

-subsemilattice of L(CR) which includes all presently known varieties

suitable to be encompassed into a system.

This paper is a follow up of [6], and represents the second part of a trilogy. The

third part [7] will cover kernel, trace, etc., and classes of all the varieties covered in

the first two papers. We recommend browsing through [6] while watching for [7].

The idea in [6] is to extract an
⋂

-subsemilattice of L(CR), as large as feasible

(with a sublattice again as large as possible), then providing each of its members

with a basis of identities (present paper), and classes of these varieties of certain

(equivalence) relations (third paper).
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42 M. Petrich

It is often useful to have several bases for the varieties which play an important

role in the theory. For they may have different form thereby giving away more

information about the nature of the variety. Moreover, different bases may prove

adequate in diverse situations.

Given a finite number of identities, we may construct a single identity in a triv-

ial manner. But we generally want an identity as simple as feasible with as few

variables as possible, which may take some effort.

By sections, the paper has the following content. In Section 2, we briefly discuss

some notation and terminology used throughout the paper. This is followed by

a few citations from the literature in Section 3 with certain useful convention.

Section 4 contains Diagram 1 of the varieties under study. Sections 5–7 contain

the bases of varieties in Diagram 1 by sorting them into intervals of the lattice

L(CR). In Section 8, we discuss certain types of bases. We conclude the paper

with Section 9 by applying the bases constructed to determine L-classes of all

varieties under consideration exhibited in Diagram 2.

2. Notation and terminology

For notation, terminology and results, the paper depends heavily on the mono-

graph [10], which we will often use without explicit reference. Throughout the

paper, S represents an arbitrary completely regular semigroup, unless stated oth-

erwise.

A finite meet (that is, the intersection of varieties) will generally be repre-

sented by juxtaposition of their acronyms. By duality, we mean interchanging

left and right for words and concepts. Acronyms for most varieties studied can

be found in [10, pages 470 and 471]. The juxtaposition of acronyms is provided

with parentheses for easy and unambiguous identification of the variety.

Except in the last section, we write operators on the left and compose them

from right to left of the argument. From [10, Section II.7], we have the H-, L-,

and C-operators. We may derive from [8] the T-operator with Tθ being the

greatest element of the T-class of θ (T for trace).

Recall that E(S) denotes the set of all idempotents of S, and C(S) the sub-

semigroup of S generated by E(S), called the core of S.

Let A be the variety of abelian groups, and O the variety of orthogroups. We

will often encounter the following varieties:

◦ HA : which coincides with the overabelian completely regular semigroups

(that is, having all subgroups abelian);

◦ LO: locally orthodox completely regular semigroups;

◦ CHA : completely regular semigroups whose core is overabelian;
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◦ C : central completely regular semigroups in which the product of any

two idempotents lies in the center of the maximal subgroup containing it.

If w is a word, then h(w) and t(w) denote the first and last variables in w, called

the head and tail of w, respectively. Recall that we write w0 = ww−1 = w−1w.

Note that BG is the variety of cryptogroups (alias bands of groups whence the

acronym). Correspondingly, BA stands for bands of abelian groups.

3. Citation and conventions

We list here a minimum of citations from the literature which are either used

frequently or are not available in the form we need.

Fact 3.1. Let V = [uα = vα]α∈A ∈ L(CR).

(i) TV = [(xuαy)
0 = (xvαy)

0] if h(uα) = h(vα) and t(uα) = t(vα) for all

α ∈ A.

(ii) CV = {S ∈ CR : C(S) ∈ V }.

(iii) TO = C(BG ).

(iv) (TO)CHA = C(BA ).

(v) Let a, b, c ∈ S be such that Da = Db ≤ Dc. Then (ab)0 = (acb)0.

Proof: (i) See [11, Theorem 3.9].

(ii) See [9, Theorem 3.1].

(iii) See [11, Proposition 3.5].

(iv) Using part (iii) and [10, Proposition II.7.6 (i)], we get

(TO)CHA = CBG ∩ CHA = C(BG ∩HA ) = C(BA ).

(v) This is straightforward. �

The following convention will save much space and possibly make the proofs

more transparent.

Convention 3.2. In parts of a theorem which contain the equality of certain

statements, we will tacitly denote them by letters A,B,C, . . . starting with the

first one, continuing with the second, etc., and write the proof in some order, say

A ⊆ B, B ⊆ A, . . . or A ⊆ B, B ⊆ C, etc.

4. A diagram of varieties

Part of Diagram 1 stems from [6]. It represents an
⋂

-subsemilattice Γ of L(CR)

containing the sublattice encompassed by heavy lines. Three sections of the paper

contain one or more bases of all varieties in Γ. This is done by decomposing Γ into
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CR (Thm 5.1)

CHA TO (Thm 5.2)

C (TO)CHA BG (Thm 5.3)

HA (TO)C (BG )CHA RBG (Thm 5.4)

(TO)HA (BG )C (RBG )CHA

BA (RBG )C

RBA
LO

(LO)CHA (LO)TO

(LO)C LO(TO)CHA
(LO)BG

(LO)HA

(Thm 6.1)

LO(TO)C LO(BG )CHA
(LO)RBG

LO(TO)HA LO(BG )C
LO(RBG )CHA

NBG (Thm 7.1)

LO(BA ) LO(RBG )C (NBG )CHA CS

(Thm 7.2)
(LO)RBA (NBG )C

(CS )CHA

O NBA
(CS )C

O(HA )

(Thm 6.2)

O(BG ) (CS )HA

O(BA ) O(RBG )

B

(Thm 6.3)

O(RBA ) O(NBG )

ReB

(Thm 6.4)

O(NBA ) ReG

NB

ReA

RB

S G
(Thm 7.3)

SA G

S
A

T

Diagram 1.
⋂

-subsemilattice Γ with inclosed sublattice of L(CR).

non-overlapping intervals of the following form. In Diagram 1 they are pictured

from lower left to upper right, and are maximal as such. Some of them are

marked by the reference to the theorem in which they are treated. In the proofs,

they depend on their labeling since we will refer to the acronyms without further

specification.
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5. The interval [RBA ,CR]

Starting with the top of Diagram 1, bases of identities of CR, CHA , C ,

and HA are given in Theorem 5.1. Theorem 5.2 provides bases for the meets

of TO with each of the four varieties in Theorem 5.1. We repeat this pattern

with the variety BG of cryptogroups in Theorem 5.3, and with the variety RBG

of regular cryptogroups in Theorem 5.4. This makes up the content of the present

section.

Theorem 5.1.

(i) CR = [ab = a(ba)0b] = [ab = a(b0a)0b] = [ab = a(ba0)0b]

= [ab = a(b0a0)0b].

(ii) CHA = [ax0a0y0a = ay0a0x0a] where a = wxyw

= [(aba)ab(aba) = (aba)ba(aba)]

where a = (xy)0(wz)0 and b = (yx)0(zw)0.

(iii) C = [a0b0a(b0a0)0 = (a0b0)0ab0a0]

= [(aba)ab(aba) = (aba)ba(aba)]

where a = (xy)0(wz)0 and b = yx(zw)0.

(iv) HA = [(aba)0ba = ab(aba)0] = [(aba)ab(aba) = (aba)ba(aba)]

= [(ab)0ba = ab(ba)0] = [(ab)2ba = ab(ba)2].

Proof: (i) A ⊆ B. Using [10, Lemma II. 2.3], we obtain

ab = ab(ab)−1ab = ab(ab)0b−1(ba)0a−1(ab)0ab

= abb−1(ba)0a−1ab = a(ba)0b.

B ⊆ A. This is trivial.

A = C = D = E. This follows similarly.

(ii) A = B. This follows directly from [10, Theorem II.6.5].

A ⊆ C. Let x = (i, g, λ), y = (j, h, µ), w = (k, s, σ), and z = (l, t, τ). Then

a = (xy)0(wz)0 = (i, p−1
µi pµk p

−1
τk , τ),

b = (yx)0(zw)0 = (j, p−1
λj pλl p

−1
σl , σ),

ab = (i, p−1
µi pµk p

−1
τk pτj p

−1
λj pλl p

−1
σl , σ),

ba = (j, p−1
λj pλl p

−1
σl pσi p

−1
µi pµk p

−1
τk , τ),

aba = (i, u, τ) for some suitable u ∈ G,

(aba)ab(aba) = (i, upτi p
−1
µi pµk p

−1
τk pτj p

−1
λj pλl p

−1
σl pσiu, τ),(1)

(aba)ba(aba) = (i, upτj p
−1
λj pλl p

−1
σl pσi p

−1
µi pµk p

−1
τk pτiu, τ).(2)

By [10, Proposition III. 6.1], the entries of P commute which by (1) and (2)

gives C.
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C ⊆ A. The given identity implies that the right sides of (1) and (2) are equal.

For j = k = µ = σ = 1, we get pτi pλl = pλl pτi, and by the above reference we

obtain CHA .

(iii) A = B. See [10, Theorem II. 6.4] or the original [1, Theorem 5.1 (a)].

A = C. The preamble here is the same as in part (ii).

A ⊆ C. We have the expression for a above. Now

a = (xy)0(wz)0 = (i, p−1
µi pµk p

−1
τk , τ),

b = yx(zw)0 = (j, hpµigpλk p
−1
τk , τ),

ab = (i, p−1
µi pµk p

−1
τk pτjhpµigpλk p

−1
τk pτi p

−1
µi pµk p

−1
τk , τ),

ba = (j, hpµigpλk p
−1
τk pτi p

−1
µi pµk p

−1
τk , τ),

aba = (i, v, τ) for some suitable v ∈ G,

(aba)ab(aba) = (i, vpτi p
−1
µi pµk p

−1
τk pτjhpµigpλk p

−1
τk pτiv, τ),(3)

(aba)ba(aba) = (i, vpτjhpµigpλk p
−1
τk pτi p

−1
µi pµk p

−1
τk pτiv, τ).(4)

By [10, Proposition III. 6.2], the entries of P are in the center of G, and thus (3)

and (4) are equal.

C ⊆ A. The given identity implies that the right sides of (3) and (4) are equal.

Set i = j = µ = τ = 1 and replace g by gp−1
λi . From the equality of (3) and (4),

we get

pµk p
−1
τk gp

−1
λk pλk p

−1
τk = gp−1

λk pλk p
−1
τk pµk p

−1
τk ,

whence pµkg = gpµk. The last reference now gives C.

(iv) A = B. See [10, Proposition II. 7.2 (i)].

B ⊆ C. Pre- and postmultiply the identity in B by aba.

C ⊆ D. Exchange a and b getting bab2abab = babab2ab. Now premultiplying

by (ab)−2a and postmultiplying by a(ba)−2, we get

(ab)−2abab2ababa(ba)−2 = (ab)−2ababab2aba(ba)−2,

that is, (ab)0ba = ab(ba)0.

D ⊆ A. In any group, the given identity implies commutativity.

D = E. This is straightforward. �

The equality A = B in Theorem 5.1 (i) is due to J.A. Gerhard (private com-

munication). We will generally use the basis of the variety D in part (iv) when

dealing with HA .

In the next theorem, we treat TO and its meet with varieties in Theorem 5.1.

Recall Fact 3.1 (iii).
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Theorem 5.2.

(i) TO = [(xa0b0y)0 = (x(a0b0)0y)0].

(ii) TO(CHA ) = [(xa0b0y)0u0y0v0y = (x(a0b0)0y)0v0y0u0y]

where y = wuvw.

(iii) (TO)C = [(xa0b0y)0z0y(z0y0)0 = (x(a0b0)0y)0(y0z0)0yz0y0].

(iv) (TO)HA = [(xa0b0y)0(yz)0zy = (x(a0b0)0y)0yz(zy)0].

Proof: (i) This follows directly from Fact 3.1 (i) since O = [(a0b0)0 = a0b0].

(ii) A ⊆ B. By Theorem 5.1 (ii) and part (i) above, we obtain

(xa0b0y)0u0y0v0y = (x(a0b0)0y)0y−1yu0y0v0y

= (xa0b0y)0y−1yv0y0u0y

= (x(a0b0)0y)0v0y0u0y.

B ⊆ A. Using the same references for u = w = y0, v = y we get TO, and for

a = b = y0, we obtain CHA .

(iii) This follows similarly from Theorem 5.1 (iii).

(iv) This follows similarly from Theorem 5.1 (iv). �

The variety BG of all cryptogroups is one of the principal subvarieties of CR.

In view of its importance, it is only fitting to have several bases for it. For each

of them sheds different light on BG , even though for application, only the first

one below would suffice.

Theorem 5.3.

(i) BG = [(ab)0 = (a0b0)0] = [(a0b)0 = (ab0)0] = [(axb)0 = (ax0b)0]

= [(aba)0 = (a0ba0)0] = [a(aba)0 = (aba)0a] = [a0(ba)0 = (ab)0a0]

= [(a0(ba)0)0 = ((ab)0a0)0] = [(a0(bc)0)0 = ((ab)0c0)0].

(ii) (BG )CHA = [ax0a0y0(a0b0)0 = ay0a0x0(ab)0] where a = wxyw.

(iii) (BG )C = [a0b0a = ab0a0] = [a0x0y0a = ax0y0a0] = [aba0b0 = a0b0ab].

(iv) BA = [aba0 = a0ba].

Proof: (i) A = B. See [10, Theorem II. 8.1].

A = C = D = E. This is straightforward.

A ⊆ F. Indeed,

a(aba)0 = a(a0ba)0 = a(a0ba)(a0ba)−1 = aba(a0ba)−1

= (aba)0(aba)(a0ba)−1 = (aba)0a(a0ba)(a0ba)−1

= (aba)0a(a0ba)0 = (aba)0a(aba)0

and similarly (aba)0a = (aba)0a(aba)0, which imply that a(aba)0 = (aba)0a.
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F ⊆ A. For any S ∈ F, we have

ab = abab(ab)−1 = (aba)0ab = a(aba)0b ∈ a2bS,

a2b = a(ab) = a(aba)0ab = (aba)0a(ab) ∈ abS,

so that a2bS = abS, and dually, Sab2 = Sab, which by [10, Theorem II. 8.1] gives

S ∈ BG = A.

A ⊆ G. Indeed,

a0(ba)0 = a0(b0a0)0 = a0b0a0(b0a0)−1

= (a0b0)0a0b0a0(b0a0)−1 = (a0b0)0a0(b0a0)0

and similarly, (ab)0a0 = (a0b0)0a0(b0a0)0, which imply that a0(ba)0 = (ab)0a0.

G ⊆ A. The substitution b → a0b gives a0(a0ba)0 = (aa0b)0a0, so that

(a0ba)0 = (ab)0a0. For any S ∈ G, the last identity yields a0ba ∈ (ab)0a0S.

Postmultiplying by a−1b(a0b)−1, we get a0b ∈ abS. Also (ab)0a0 ∈ a0bS and

postmultiplying by ab we obtain ab ∈ a0bS, whence a0bS = abS. It follows that

abS = a2bS and dually, Sab = Sab2. The above reference yields S ∈ BG = A.

B ⊆ I. Indeed,

(a0(bc)0)0 = (a0(b0c0)0)0 = (a0b0c0)0 = ((a0b0)0c0)0 = ((ab)0c0)0.

I ⊆ H. Set c = a.

H ⊆ A. The argument here is similar to that for G ⊆ A.

(ii) A ⊆ B. This follows directly from Theorem 5.1 (ii) and part (i) above.

B ⊆ A. With the same references as above, letting x = y = a, we get (a0b0)0 =

(ab)0, that is BG , and for b = a, we obtain ax0a0y0a = ay0a0x0a whence CHA .

(iii) A = B. See [1, Theorem 5.1 (b)].

A = C. See [2, Lemma 6.6].

B = D See [2, Lemma 6.8].

(iv) See [2, Lemma 6.5]. �

We will generally use the first basis in Theorem 5.3 (i). Next we consider

regular cryptogroups.

Theorem 5.4.

(i) RBG = [(axya)0 = (axaya)0] = [(ax0y0a)0 = (axaya)0]

= [(axyxa)0 = (axayaxa)0].

(ii) (RBG )CHA = [(axya)0u0a0v0a = (axaya)0v0a0u0a] where a = wuvw.

(iii) (RBG )C = [b(axya)0b0 = b0(axaya)0b].

(iv) RBA = [(axya)0ba = (axaya)0aba0].
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Proof: (i) A = B. See [10, Proposition V.4.4].

B ⊆ C. In particular, (ax0y0a)0 = (ax0ay0a)0. Since A = B, it follows that BG

implies (ax0ay0a)0 = (axaya)0 and thus (ax0y0a)0 = (axaya)0.

C ⊆ B. We first show that BG holds. For any S ∈ C, we have

(ab)0 = (abab)0 ∈ (aba0)S = (a0aa0ba0)S = (a0a0b0a0)S ⊆ a0b0S,

and conversely,

(a0b0)0 ∈ (a0b0a0)S = (a0a0b0a0)S = (a0aa0ba0)S ⊆ (ab)0S.

It follows that (ab)0R(a0b0)0 and dually, (ab)0L (a0b0)0, whence (ab)0 = (a0b0)0,

that is BG . Part B follows.

B ⊆ D. The substitution x → yx implies (ayxya)0 = (ayxaya)0, and inter-

changing x and y, we obtain

(5) (axyxa)0 = (axyaxa)0.

In the given identity, the substitution y → yx gives

(6) (axyxa)0 = (axayxa)0.

Now (6), (5) and BG , which holds since A = B, and Fact 3.1 (v) yield

(axyxa)0 = (axayxa)0(axyaxa)0 = ((axayxa)0(axyaxa)0)0

= (axayxaaxyaxa)0 = (axayaxa)0.

D ⊆ A. For x = a−1, the given identity yields (a0ya0)0 = (aya)0 which by

Theorem 5.3 (i) gives BG .

Recall from [10] the notation i(w) and f(w) and let

u = axyxa and v = axayaxa.

In a band, we have i(u) = i(v) and f(u) = f(v), which by [10, Theorem V.1.9 (xii)]

implies that [u0 = v0] ∩ B = ReB. For any S ∈ B, we get S/H ∈ ReB and

thus S ∈ RBG = A.

(ii) A ⊆ B. This follows easily from Theorem 5.1 (ii) and part (i) above.

B ⊆ A. Using the same references and setting u = v = a, we obtain RBG ,

and letting x = y = a, we get CHA .

(iii) This follows from Theorem 5.3 (iii) and part (i) above.

(iv) This follows from Theorem 5.3 (iv) and part (i) above. �

The first basis in Theorem 5.4 (i) is the most useful one.
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6. The interval [ReB, LO]

The interval [ReB, LO] is the disjoint union of the intervals [(LO)RBA , LO]

and [ReB,O]. The former interval is obtained by forming the meets of varieties

in [RBA ,CR] with LO. Recall that for any word w, the expression w ∈ E

stands for the identity w2 = w.

Theorem 6.1. Let z = (xa)0(ya)0.

(i) LO = [(ax)0(ay)0 ∈ E] = [z ∈ E].

(ii) (LO)CHA = [zu0a0v0a = zv0a0u0a] where a = wuvw.

(iii) (LO)C = [zb0a(b0a0)0 = z0(a0b0)0ab0a0].

(iv) (LO)HA = [z(ab)0ba = z0ab(ba)0].

Proof: (i) A = B. See [10, Corollary II. 7.5].

B = C. This follows by duality in view of the definition of LO.

(ii)–(iv) This follows easily from Theorem 5.1 (ii)–(iv) and part (i) above. �

Next we combine Theorems 5.2 and 6.1.

Theorem 6.2.

(i) (LO)TO = [(xz)0(xa0b0y)0 = ((xz)0(x(a0b0)0y)0)0].

(ii) LO(TO)CHA = [(xz)0(xa0b0y)0u0y0v0y = (xz)0(x(a0b0)0y)0v0y0u0y]

where y = wuvw.

(iii) LO(TO)C = [(xz)0(xa0b0y)0c0y(c0y0)0 = (xz)0(x(a0b0)0y)0(y0c)0yc0y0].

(iv) LO(TO)HA = [(xz)0(xa0b0y)0(yc)0cy = (xz)0(x(a0b0)0y)0yc(cy)0].

(v) O = [a0b0 = (a0b0)0] = [ab = ab0a0b]

= [(ab)0 = (ab)0(ba)0(ab)0] = [(aba)0 = (ab)0(ba)0].

(vi) O(HA ) = [(ab)0ba = ab0a0b(ba)0] = [ab = (ab)0a0bab0(ab)0].

Proof: (i) A ⊆ B. In view of Theorems 6.1 (i) and 5.2 (i), we obtain

(xz)0(xa0b0y)0 = (xz)0(x(a0b0)0y)0 = ((xz)0(x(a0b0)0y)0)0.

B ⊆ A. Using the same references for a = b = x we get LO, and for z = x, we

obtain TO.

(ii)–(iv) This follows easily from Theorem 5.1 (ii)–(iv) and part (i) above.

(v) A = B. This is obvious.

A ⊆ C. Indeed,

ab = aa0b0b = aa0b0a0b0b = ab0a0b.

C ⊆ A. Trivially a0b0 = a0b0a0b0 whence O.

A ⊆ D. Let S ∈ A. Then S = (Y ;Sα) is a semilattice Y of rectangular

groups Sα. Hence ab, ba ∈ Sα for some α ∈ Y . Thus (ab)0(ba)0 ∈ E(Sα) and

(ab)0 = (ab)0(ba)0(ab)0 since E(Sα) is a rectangular band.
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D ⊆ A. Let S ∈ D and e, f ∈ E(S). Then (ef)0 = (ef)0(fe)0(ef)0 whence by

[10, Lemma II. 4.4 (ii)], we have

ef = ef(fe)0(ef)0 = e(fe)0(ef)0 = (ef)0e(ef)0 = (ef)0

and O follows.

A ⊆ E. Let S ∈ A and a, b ∈ S. Then

(ab)0(ba)0 = (abab)0(baba)0 = (aba)0(ab)0(ba)0(aba)0

where (aba)0, (ab)0 and (ba)0 are D-related, hence they are contained in a rect-

angular band. Therefore (ab)0(ba)0 = (aba)0.

E ⊆ A. In view of [10, Theorem II. 5.3], it suffices to consider S ∈ E ∩ CS .

Hence let a = (i, g, λ), b = (j, h, µ) ∈ M(I,G,Λ;P ) = S. By hypothesis, we have

(i, p−1
λi , λ) = (i, p−1

µi , µ)(j, p
−1
λj , λ), whence p−1

λi = p−1
µi pµi p

−1
λj . Suppose that P is

normalized. For j = µ = 1, the normalization gives p−1
λi = 1. Therefore pλi = 1

for all i ∈ I, λ ∈ Λ, and S is a rectangular group.

(vi) A ⊆ B. This follows at once from Theorem 5.1 (iv) and part (v) above.

B ⊆ A. Let S ∈ B and e, f ∈ E(S). Then (ef)0fe = efef(fe)0 whence

(ef)0e = efe(fe)0 = efe. Postmultiplying by f , we get ef = (ef)2 giving O. In

a group, the given identity implies commutativity.

A = C. See [10, Proposition II. 7.2 (ii)]. �

We can use any basis in Theorem 6.2 (v) to form a basis of TO in Theorem 5.2.

Next we treat locally orthodox cryptogroups.

Theorem 6.3.

(i) (LO)BG = [(axaya)0 = (ax)0a0(ya)0] = [(axay)0 = (ax)0(ay)0]

= [(xaya)0 = (xa)0(ya)0].

(ii) LO(BG )CHA = [(uava)0y0a0x0a = (ua)0(va)0x0a0y0a]

where a = wxyw.

(iii) LO(BG )C = [b0(axaya)0b = b(ax)0a0(ya)0b0].

(iv) (LO)BA = [axay = (ax)0ayxa(ay)0].

(v) O(BG ) = [(ab)0 = a0b0] = [a0(bc)0 = (ab)0c0] = [(axya)0 = (ax)0(ya)0].

(vi) O(BA ) = [ab = a0bab0] = [(ab)2 = a2b2].

(vii) B = [a = a0] = [a = a2].

Proof: (i) A = C. See [10, Corollary II. 8.6].

A = D. First, A is self-dual, and thus A = D follows from A = C.

A ⊆ B. Using A = C = D, we obtain

(axaya)0 = (ax)0(aya)0 = (ax)0(a0aya)0

= (ax)0(a0a)0(ya)0 = (ax)0a0(ya)0.
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B ⊆ A: Let S ∈ B and e, f, g ∈ E(S) satisfy e ≥ f and e ≥ g. Then (efege)0 =

(ef)0e(ge)0 whence (fg)0 = fg, so that S ∈ LO. For y = a−1, we get (axa)0 =

(ax)0a0, and for x = a−1, we obtain (aya)0 = a0(ya)0 whence (ax)0a0 = a0(xa)0.

Theorem 5.3 (i) now implies that S ∈ BG = A.

(ii) This easily follows from Theorem 5.1 (ii) and part (i) above.

(iii) A ⊆ B. This follows from Theorem 5.3 (ii) and part (i) above.

B ⊆ A. With the same references for b = a0 we get (LO)BG , and for x = y =

a, we obtain (BG )C .

(iv) A ⊆ B. By Theorem 5.3 (iv) and part (i) above, we get

axay = (axay)0axay = (ax)0(ay)0(ax)(ay) = (ax)0ayax(ay)0.

B ⊆ A. Let S ∈ B. We first prove that S ∈ BG . The substitution x → a−2,

y → ya in the given identity yields

(7) a0ya = a0aya2a−2(aya)0 = ay(aya)0.

Using (7) twice, we obtain

a0y = a0y(a0y)0 = (a0ya)a−1(a0y)0 = ay(aya)0a−1(a0y)0 ∈ ayS,

ay = ay(ayay)0 = ay(aya)0(ay)0 = a0ya(ay)0 ∈ a0yS

and thus a0yRay.

With the substitution x → a−1x, y → a0 in the given identity, we get

a0xa = (a0x)0a0xa.

Using this twice, we obtain

xa0 = (xa0)0xa0 = (xa)0a−1(axa)0 = (xa)0a−1(ax)0 ∈ Sax(axa0)

⊆ Sa0x(axa)0 ⊆ S(a0x)0axa0 = Sa0xa ⊆ Sxa,

xa = (xa)0xa = (xa)0a0xa = (xa)0(a0x)0axa0 ∈ Sxa0,

whence xa0L xa. Since R is a left congruence and L is a right congruence, we

deduce that H is a congruence, that is, S ∈ BG .

Now by (7), we obtain

a0xa = ax(axa)0 = axa0(axa0)0 = axa0

and by Theorem 5.3 (iv), we get BA . Using this, we obtain

(ax)0(ay)0 = (ax)−1axay(ay)−1 = (ax)−1[(ax)0(ay)(ax)](ay)0(ay)−1

= (ax)−1(ax)[(ay)(ax)0(ay)0](ay)−1 = (ax)0(ay)0(ax)0(ay)0
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and (ax)0(ay)0 is an idempotent. Next

axay = (ax)0[(ay)(ax)(ay)0] = (ax)0(ay)0axay

whence (axay)0 = (ax)0(ay)0(axay)0. Similarly

axay = [(ax)0(ay)(ax)](ay)0 = (ax)(ay)(ax)0(ay)0

and thus (axay)0 = (axay)0(ax)0(ay)0. Since (ax)0(ay)0 is an idempotent,

it follows that (axay)0 ≤ (ax)0(ay)0. But (axay)0D(ax)0(ay)0 and therefore

(axay)0 = (ax)0(ay)0, that is, (LO)BG . This together with BA yields

(LO)BA = A.

(v) A = B. See [10, Theorem II. 8.5].

A ⊆ C. Clearly both a band and a Clifford semigroup satisfy the identity in C.

The claim now follows from [10, Theorem II. 8.5].

C ⊆ B. For c = b0, the given identity yields a0(bb0)0 = (ab0)0b0 whence

a0b0 = (ab)0.

B ⊆ D. This is obvious.

D ⊆ A. For x = y, by Theorem 6.2 (v), we get O. Next

a0(ba)0 = (aa0)0(ba)0 = (aa0ba)0 = (aba)0

and dually (ab)0a0 = (aba)0 and thus a0(ba)0 = (ab)0a0 which by Theorem 5.3 (i)

yields BG . Obviously D implies O.

(vi) A ⊆ B. Using Theorems 6.2 (v) and 5.3 (iv), we have

ab = ab0a0b = a0b0ab = a0bab0.

B ⊆ C. Premultiplying by a and postmultiplying by b, we get a2b2 = (ab)2.

C ⊆ A. We first prove BG . For x = a and y = (aba)0, the given iden-

tity implies a(aba)0a(aba)0 = aa(aba)0(aba)0 and premultiplying by a−1, we get

(aba)0a(aba)0 = a(aba)0. Similarly, for x = (aba)0 and y = a, the same identity

yields (aba)0a(aba)0 = (aba)0a and thus a(aba)0 = (aba)0a. Now Theorem 5.3 (i)

gives BG . The given identity obviously implies O and HA , whence also O(BA ).

(vii) This is trivial. �

Theorem 6.3 (vi) answers [2, Problem 7.3] in the affirmative. Our next result

concerns locally orthodox regular cryptogroups.

Theorem 6.4.

(i) (LO)RBG = [(axya)0 = (ax)0a0(ya)0].

(ii) LO(RBG )CHA = [(axya)0u0a0v0a = (ax)0a0(ya)0v0a0u0a]

where a = wuvw.
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(iii) LO(RBG )C = [(axya)0b0a = (ax)0a0(ya)0ab0a0]

= [b0(axya)0b = b(ax)0a0(ya)0b0].

(iv) (LO)RBA = [(axya)0ba = (ax)0a0(ya)0aba0].

(v) (RO)BG = [a(xy)0a = ax0a0y0a] = [a0x0y0a0 = (axaya)0]

= [axya = (axaya)0a(xy0x0y)a(axaya)0].

(vi) ReB = [axya = axaya].

Proof: (i) A ⊆ B. This follows immediately from Theorems 5.4 (i) and 6.3 (i).

B ⊆ A. Let S ∈ B and e, f, g ∈ E(S) satisfy e ≥ f and e ≥ g. Then

(efge)0 = (ef)0e0(ge)0 implies fg ∈ E(S) and thus B ⊆ LO. Next,

(axa)0 = (axa0a)0 = (ax)0a0(a0a)0 = (ax)0a0

and thus

(a(xa)ya)0 = (axa)0a0(ya)0 = (ax)0a0(ya)0,

whence (axya)0 = (axaya)0. Therefore by Theorem 5.4 (i), we get RBG .

(ii), (iii), (iv) This follows easily from Theorem 5.3 parts (ii), (iii), and (iv),

respectively, and part (i) above.

(v) A = B. See [10, Theorem V. 5.3].

A ⊆ C. This follows from Theorems 5.4 (i) and 6.3 (v).

C ⊆ A. Let S ∈ C and e, f ∈ E(S). For e = a = x and f = y, by hypothesis, we

have efe = (efe)0. Therefore efe = efe(efe)0 = efefe, whence (efe)2 = (efe)3,

which implies ef = (ef)2 and thus S ∈ O. By the above references, we conclude

that S ∈ RBG .

A ⊆ D. By Theorems 5.4 (i) and 6.2 (v), we obtain

axya = (axya)0axya(axya)0 = (axaya)0axy0x0ya(axaya)0.

D ⊆ A. The given identity implies that (axya)0 ≤ (axaya)0 and since

(axya)0D(axaya)0, it yields (axya)0 = (axaya)0, and Theorem 5.4 (i) gives

RBG . For a = (xy)0, the given identity implies

xy = (xy)0xy0x0y(xy)0 = xy0x0y,

which by Theorem 6.2 (v) yields O.

(vi) A ⊆ B. This follows directly from the definition of ReB.

B ⊆ A. For x = y = a0, we get a2 = a3, whence a = a2. �

For a different proof of A = B in Theorem 6.4 (i), see [3, Lemma 6.3]. Ob-

serve the resemblance of the first basis in Theorem 6.3 (i) and the basis in Theo-

rem 6.4 (i).
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7. The interval [T ,N BG ]

This is a somewhat simpler subject than in the preceding two sections. It is

more familiar in view of the better known structure thanks to the Rees theorem

and strong semilattices thereof. Hence we may take a faster pace in the statements

and proofs. Our next subject is the case of normal cryptogroups.

Theorem 7.1.

(i) N BG = [(axya)0 = (ayxa)0] = [(axyb)0 = (ayxb)0]

= [axa(aya)0 = (aya)0axa] = [a0x(aya)0 = (aya)0xa0].

(ii) (N BG )CHA = [ax0a0y0a = ay0a0x0a].

(iii) (N BG )C = [ax0a0ya = aya0x0a] = [b0(axya)0b = b(ayxa)0b0].

(iv) N BA = [axaya = ayaxa] = [axa0ya = aya0xa] = [axay0a = ay0axa].

(v) O(N BG ) = [axy0a = ay0xa] = [axy0b = ay0xb]

= [ax0y0a = ay0x0a] = [ax0y0b = ay0x0b]

= [a(xy)0a = a(yx)0a] = [a(xy)0b = a(yx)0b].

(vi) O(N BA ) = [axya = ayxa] = [axyb = ayxb].

(vii) N B = [axy0a = ayxa] = [axy0b = ayxb].

Proof: (i) A = B. See [10, Theorem IV. 1.6].

A ⊆ C,D,E. By the same reference, any semigroup in A is a strong semilat-

tice of completely simple semigroups, which reduces the problem to Rees matrix

semigroups. We omit the details.

C ⊆ B. This is trivial.

D,E ⊆ A. In both cases, simple verification will show that they satisfy D-

majorization, which by the first cited reference shows that A holds.

(ii) See [2, Lemma 4.6].

(iii) A = B. See [2, Lemma 4.5].

A ⊆ C. This follows directly from Theorem 5.3 (iii) and part (i) above.

C ⊆ A. By the same reference for b = a0 we get N BG , and for x = y = a we

obtain (BG )C .

(iv) A = B. See [2, Lemma 4.4].

B ⊆ C,D. This is trivial.

C,D ⊆ A. Let S ∈ C and e, f, g ∈ E(S) satisfy e ≥ f , e ≥ g, and fDg. Then

efege = egefe whence fg = gf and thus f = g. By [10, Theorem IV.1.6], we get

S ∈ N BG . The given identity in a group implies commutativity.

(v) This follows in a straightforward manner using [10, Theorem IV. 2.7].

(vi) This is similar to part (v).

(vii) This is very easy. �

For completely simple case, we have a spectrum of different bases as follows.
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Theorem 7.2.

(i) CS = [a0 = (aba)0] = [a0 = (ab)0a] = [(ab)0 = (axb)0].

(ii) (CS )CHA = [a0 = ax0a0y0a(ay0a0x0a)−1]

= [ax0a0y0a = ay0(aba)0x0a0].

(iii) (CS )C = [a0 = ab0(a0b0a)−1] = [a0 = ax0a0ya(aya0x0a)−1]

= [a = a0b0a(ab)0(ba)0] = [ab0a0 = a0(bxb)0a].

(iv) (CS )HA = [a0 = ab(a0ba)−1] = [a0 = axay(ayxa)−1]

= [a = (ab)0bab−1(ba)0] = [a0ba = ab(axb)0a0].

(v) ReG = [a0 = a0b0a0] = [ab = ax0b].

(vi) ReA = [a0 = axya(ayxa)−1] = [a = a(ab)−1ba] = [axya = ayb0xa].

(vii) RB = [a = aba] = [ab = axb].

Proof: (i) See [10, Proposition III. 1.1].

(ii) A = B. See [10, Proposition III. 6.7 (i)].

A ⊆ C. Let S ∈ A. In view of [10, Proposition III. 6.1], we may set S =

M(I,G,Λ;P ) where P is normalized and its entries commute. Let

a = (i, g, λ), x = (j, b, µ), y = (k, t, ν), b = (l, s, θ) ∈ S

so that

ax0a0y0a = (i, gpλj p
−1
µj pµi p

−1
λi pλk p

−1
νk pνi g, λ),(8)

ay0a0x0a = (i, gpλk p
−1
νk pνi p

−1
λi pλj p

−1
µj pµi g, λ).(9)

Comparing (8) and (9), we conclude that these two elements are equal.

C ⊆ A. Since the given identities are heterotypical, C is a completely simple

variety. Comparing (8) and (9), and setting λ = i = 1, we get p−1
µj p

−1
νk = p−1

νk p
−1
µj

whence pνkpµj = pµjpνk. It remains to apply [10, Proposition III. 6.1].

(iii) A = B. This follows from [10, Proposition III. 6.7 (ii)].

A = C. See [2, Lemma 3.5].

A ⊆ D. Let S ∈ A. In view of [10, Proposition III. 6.2], we may set S =

M(I,G,Λ;P ) where P is normalized and its entries lie in the center of G. For

a = (i, g, λ), b = (j, h, µ) ∈ S, we have

(10) a0b0a(ab)0(ba)0 = (i, p−1
λi pλj p

−1
µj pµi gpλi p

−1
µi pµj p

−1
λj , λ) = (i, g, λ) = a.

D ⊆ A. Since the given identity is heterotypical, any S ∈ D is completely

simple. By (10), we have

g = p−1
λi pλj p

−1
µj pµi gpλi p

−1
µi pµj p

−1
λj

and setting µ = j = 1, we get g = p−1
λi gpλi whence pλig = gpλi. Now apply [10,

Proposition III. 6.2].
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A = E. The argument required here is very similar to that in the proof of A ⊆ C

and C ⊆ A in part (i) using [10, Proposition III. 6.2] and is somewhat simpler.

(iv) A = B. This follows from [10, Proposition III. 6.7 (iii)].

A = C. See [2, Lemma 3.4].

A = D. The argument here is similar to the proof of A = D in part (iii) by

using [10, Proposition III. 6.3].

A ⊆ E. Let S ∈ A. In view of [10, Proposition III. 6.3], we may set S =

M(I,G,Λ;P ) where P is normalized and G is abelian. For

a = (i, g, λ), b = (j, h, µ), x = (k, t, ν) ∈ S,

we have

a0ba = (i, p−1
λi pλj hpµi g, λ),

ab(axb)0a0 = (i, gpλj hpµi p
−1
µi pµi p

−1
λi , λ)

and these two elements are equal.

E ⊆ A. The given identity is heterotypical, so the variety is completely simple.

This identity in a group implies commutativity.

(v) This is well known.

(vi) A = B. See [2, Lemma 3.3].

A ⊆ C. Any rectangular band and any abelian group satisfy the identity in C.

C ⊆ A. Let S ∈ C and e, f ∈ E(S). Then e = e(ef)−1fe = (ef)−1e

whence ef = (ef)−1ef = (ef)0 and E(S) is a subsemigroup of S. But then

e = e(ef)e = efe and E(S) is a rectangular band. In a group, the identity in C

implies commutativity.

A = D. This is straightforward.

(viii) This is well known. �

Observe that parts (ii)–(iv) and (vi) of Theorem 7.2 are related to the same

parts of Theorem 7.1, and also to Theorem 5.3 (iv).

We complete the list of bases with the following simple cases.

Theorem 7.3.

(i) S G = [ab0 = b0a] = [a0b0 = b0a0] = [(ab)0 = (ba)0].

(ii) SA = [ab = ba].

(iii) S = [ab0 = ba].

(iv) G = [a0 = b0].

(v) A = [a = b−1ab].

Proof: (i) A ⊆ B ⊆ C. This follows from [10, Theorem IV. 2.4].

C ⊆ D. This is straightforward.
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D ⊆ A. If we write S as a semilattice Y of completely simple semigroups Sα,

then the given identity immediately implies that all Sα are groups. Now apply

the cited reference.

(ii)–(v) This is straightforward. �

Given an identity u = v such that a ∈ c(u) = c(v), {a} 6= c(u), where c(w)

is the content of w, we can form the variety [a = uv−1] which is completely

simple. Another way of forming a completely simple variety is by letting b /∈ c(u)

and inserting b into the word v thereby obtaining a word v′. Then [u = v′] is

a completely simple variety. In order to retain some properties of the variety

[u = v], we may require that restricted to L(CS ), we have v = v′. The first

method introduces the superscript “ −1 ”, the second, one more variable. We

have examples of both in Theorem 7.2.

8. Comments and bases

Here we discuss two phenomena that came to light in the material dealt with

so far.

1. The first is related to Theorem 5.1 (iv) and amounts to a curious prop-

erty of any H -class of a completely regular semigroup, which even though quite

elementary, has escaped notice so far.

The second basis of the variety in Theorem 5.1 (iv) can be written as

(aba)(ababa) = (ababa)(aba).

The reason for this identity forming a basis of HA is a consequence of the fol-

lowing result which seems to be of general interest.

Lemma 8.1. Let S ∈ CR and a, b ∈ S. Then aH b if and only if a = xyx and

b = xyxyx for some x, y ∈ S.

Proof: Let aH b, x = ab−1a and y = a−1ba−1ba−1. Then

xyx = (ab−1a)a−1ba−1ba−1(ab−1a) = a,

xyxyx = ayx = a(a−1ba−1ba−1)ab−1a = b.

Conversely, we obtain

xyx = (xy)−1xyxyx = xyxyx(xy)−1,

xyxyx = (xy)xyx = xyx(yx)

and thus aH b. �
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2. The second item deals with bases consisting of a single identity of the form

uv = vu for some words u and v. Next we extract from Section 5 several examples.

For brevity, we write u ⇄ v to indicate the case that u and v commute, that

is, uv = vu. An identity of the form u0 = v0 where u and v contain the same set

of variables, is equivalent to u0v0 = v0u0. We omit such bases. For the remaining

cases, we state

(a) the acronym,

(b) the pair of words,

(c) the theorem, its part, and the letter which indicates its order within that

part of the theorem.

Variety Basis Theorem

HA aba ⇄ ababa 5.1 (iv) C

BG a ⇄ (aba)0 5.3 (i) F

(BG )C a ⇄ a0b0a0 5.3 (iii) B

BA a ⇄ a0ba0 5.3 (iv) B

N BG axa ⇄ (aya)0 7.1 (i) D

N BG a0xa0 ⇄ (aya)0 7.1 (i) E

(N BG )CHA a0x0a0 ⇄ a0y0a0 7.1 (ii) B

(N BG )C a0x0a0 ⇄ a0ya0 7.1 (iii) B

N BA a0xa0 ⇄ a0ya0 7.1 (iv) C

S G a ⇄ b0 7.3 (i) B

S G a0 ⇄ b0 7.3 (i) C

SA a ⇄ b 7.3 (ii) B

It is an interesting query: what do all these varieties have in common? A much

more difficult question would be to characterize varieties with such a type of basis.

9. L-classes of varieties in Γ

Recall from [9] that the L-relation on L(CR) is defined by

U LV ⇐⇒ U ∩ M = V ∩ M ,

where M stands for the class of all completely regular monoids. Clearly L is an

equivalence relation all of whose classes are intervals. Hence for any V ∈ L(CR),

we may denote its L-class by V L = [VL,V
L]. Recall that LO is the variety of
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locally orthogroups, which may now be written as OL, but we will still mostly

use the notation LO for it.

As an application of the bases we found in Sections 5–7, we present in this

section the computation of L-classes of all varieties in the set Γ. Why this is now

possible will be clear from the next result.

Fact 9.1. Let V = [uα = vα]α∈A ∈ L(CR).

(i) A basis for VL is obtained as follows. For each α ∈ A, delete all variables

in a proper (possibly empty) subset of variables for all choices.

(ii) V L = [uα(x
0xix

0) = vα(x
0xix

0)]α∈A where x /∈
⋃

α∈A c(uαvα).

(iii) The mapping V → VL (V ∈ L(CR)) is a complete endomorphism

of L(CR).

(iv) The mapping V → V L (V ∈ L(CR)) is a complete
⋂

-endomorphism

of L(CR).

Proof: (i) See [9, Proposition 5.5] which deals with the varieties in [S ,CR]. It

is easy to check that for every V ∈ L(CS ), we have VL = V ∩ G , and is thus

generated by submonoids of V , so that VL has the required form.

(ii) This is one of the two choices for a basis of V L in [10, Proposi-

tion II. 7.3 (iii)].

(iii) See [9, Theorem 5.3] or [10, Proposition IX. 8.5].

(iv) See [10, Proposition II. 7.3 (i)]. �

Fact 9.1 parts (iii) and (iv) will be very useful when we consider meets of

varieties. For U ,V ∈ Γ, where U ⊆ V , the notation [U ,V ] will have two

meanings, namely in Γ and in L(CR) since U ,V ∈ L(CR). It should be obvious

from the context which meaning is assigned to it in various contexts. For example,

[U ,V ] has in Γ only a finite number of elements, while [U ,V ] ⊆ L(CR) generally

will not. Occasionally we will add
⋂

Γ when we refer to the first meaning. In

the second case, we will sometimes assert that [U ,V ] is an L-class qua sublattice

of L(CR).

The purpose of this section is to identify the set of L-classes of varieties in Γ.

The result is incomplete, for we are unable to identify V L for a few V even though

Fact 9.1 (ii) provides a basis for it. It is definitely illuminating to follow where

these varieties are in Diagram 1.

We begin by providing three lemmas.

Lemma 9.2. If V ∈ [RBA ,CR] ∩ Γ, then VL = V .

Proof: In view of Fact 9.1 parts (iii) and (iv), it suffices to consider the varieties

HA , C , CHA , CR, TO, BG , RBG .
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In order to use Fact 9.1 (i), we must refer to Section 5 for a possibly simple basis

for each of these varieties.

HA : in any basis in Theorem 5.1 (iv), if we drop one variable, we get a trivial

identity. Hence (HA )L = HA .

C : ditto in Theorem 5.1 (iii).

CHA : the first basis in Theorem 5.1 (ii) has three variables. Hence we must

delete up to two variables each time.

Omit x: a = wyw and ay0a = ay0a,

omit y: this is dual,

omit w: a = xy whence

xyx0(xy)0y0xy = xyy0(xy)0x0xy

which holds trivially,

omit x, y: trivial,

omit w, x: a = y, yy0y0y = yy0y0y which is trivial,

omit w, y: this is dual,

CR = [x = x]: this follows by default,

TO: has only one basis in Theorem 5.2 (i),

omit x: (a0b0y)0 = ((a0b0)0y)0 can be obtained by setting x = a0 in the basis

for TO,

omit y: this is dual,

omit a: (xb0y)0 = (xb0y)0 which is trivial,

omit b: this is dual,

omit x, y: (a0b0)0 = (a0b0)0 which is trivial,

omit x, a: (b0y)0 = (b0y)0 which is trivial,

omit x, b or y, a or y, b: this is similar,

BG : all but two bases in Theorem 5.3 (i) have two variables, so any omission

results in triviality,

RBG : from the first basis in Theorem 5.4 (i), we get

omit a: trivial,
omit x: (aya)0 = (a2ya)0

omit y: (axa)0 = (axa2)0

}

these two together imply BG and RBG ⊆ BG ,

omit a, x: (ya)0 = (ya)0 which is trivial,

omit a, y: this is dual,

omit x, y: (a2)0 = (a3)0 which is trivial. �

Lemma 9.3. If V ∈ {HA ,BG ,BA ,B,N BG ,CS ,CR}, then V L = V .

Proof: We will use Fact 9.1 (ii) several times.

HA : (HA )L = [x0ax0bx0(x0bx0ax0)0 = (x0ax0bx0)0x0bx0ax0]. In a group,

this identity implies commutativity. Hence (HA )L ⊆ HA and equality prevails.

BG : The equality (BG )L = BG follows from [10, Proposition II. 8.4].
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BA : Fact 9.1 (iv) yields

(BA )L = (BG ∩HA )L = BG
L ∩ (HA )L = BG ∩HA = BA .

B: By the first reference, we have

B
L = [a = a0]L = [x0ax0 = (x0ax0)0]

and for x → a, we get BL = B.

N BG : By the equivalence of parts (i) and (ii) in [10, Theorem IV. 1.6], we

have S G
L = N BG whence N BG

L = N BG .

CS : The formula in Fact 9.1 (ii) for V L shows that if V is heterotypical,

then so is V L; this evidently implies that CS
L = CS .

CR: The equality CR
L = CR is trivial. �

In the next lemma, we will use the notation in [4, Section 2]. Let

R = I3 ∩ I3 and Z = H4 ∩ H4.

Lemma 9.4.

(i) RBG = R∩ BG .

(ii) [R,Z] is an L-class.

(iii) RBG
L = ZBG and RBA

L = ZBA .

(iv) S G
L = N BG and SA

L = N BA .

(v) G L = CS and A L = (CS )HA .

Proof: (i) By [4, Theorem 5.1], we have R = [(axya)0 = (axa0ya)0], and thus

by Theorem 5.4 (i), we get R ∩ BG ⊆ RBG . Again by these references, we

obtain RBG ⊆ R and trivially RBG ⊆ BG .

(ii) This follows from [5, Theorem 12.3]. (In this paper, on mid page 93,

Figure 2 refers to Diagram 2 on the (wrong) page 68.)

(iii) We can now write

RBG
L = (R∩ BG )L = RL ∩ BG

L = ZBG ,

RBA
L = (RBG ∩HA )L = RBG

L ∩ (HA )L = ZBG (HA ) = ZBA .

(iv) The first part follows directly from [10, Theorem IV. 1.6]. Next

SA
L = (S G ∩HA )L = N BG ∩ (HA )L = N BA .

(v) This follows easily from part (iv) and [10, Corollary IV. 1.11]. �

We are now ready for the only theorem in this section.
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Theorem 9.5.

(i) The following intervals are L-classes.

1. [T ,RB], [A , (CS )HA ], [G ,CS ],

2. [S ,N B], [SA ,N BA ], [S G ,N BG ],

3. [ReB,ZB], [O(RBA ), (LO)ZBA ], [O(RBG ), (LO)ZBG ],

[RBA ,ZBA ], [RBG ,ZBG ],

[OBA , (LO)BA ], [OBG , (LO)BG ],

[O(HA ), (LO)HA ], [O, LO],

4. {B}, {BA }, {BG }, {HA }, {CR}.

(ii) If V is any of the remaining varieties in [RBA ,CR) ∩ Γ, then VL = V ,

and its V L can be evaluated using Fact 9.1 parts (ii) and (iv).

(iii) Parts (i) and (ii) saturate Γ.

(iv) The L-classes in part (i) which are not contained in Γ are:

[ReB,ZB] ∩ Γ = {ReB},

[O(RBA ), (LO)ZBA ] ∩ Γ = [O(RBA ), (LO)RBA ],

[O(RBG ), (LO)ZBG ] ∩ Γ = [O(RBG ), (LO)RBG ],

[RBA ,ZBA ] ∩ Γ = {RBA },

[RBG ,ZBG ] ∩ Γ = {RBG }.

Proof: (i) We will freely use Fact 9.1 and Lemmas 9.2–9.4 without specific ref-

erence. For each interval [U ,V ] we will prove that U L = V and VL = U . The

argument proceeds by numbered line in the statement of the theorem and the

order within the line.

(1, 1): T L = RB, RBL = T , this is straightforward;

(1, 3): G L = CS , CS L = G , by the Rees theorem;

(1, 2): A L = (G ∩HA )L = G L ∩ (HA )L = (CS )HA ,

((CS )HA )L = CS L ∩ (HA )L = G (HA ) = A ;

(2, 1): S L = N B, N BL = S ;

(2, 3): [S G ,N BG ] is an L-class by [10, Theorem IV. 1.6];

(2, 2): SA
L = (S G ∩HA )L = S G

L ∩ (HA )L = N BG ∩HA = N BA ,

N BA = (N BG ∩HA )L = N BG L ∩ (HA )L = S G ∩HA = SA ;

(3, 1): ReBL = (R∩ B)L = RL ∩ BL = ZB,

(ZB)L = (Z ∩ B)L = ZL ∩ BL = R∩ B = ReB.

For example, BG
L = BG by [10, Proposition II. 8.4] and by Theorem 5.1 (iv),

HA has a basis with only two variables whence (HA )L = HA (also used above).

The remaining cases follow either similarly or are easy.

(ii) This forms part of Lemma 9.2.
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(iii) This requires simple inspection of Diagram 2.

(iv) This requires straightforward inspection and checking. �
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(LO)C LO(TO)CHA
(LO)BG

(LO)HA LO(TO)C LO(BG )CHA
(LO)RBG

LO(TO)HA LO(BG )C
LO(RBG )CHA

NBG

LO(BA ) LO(RBG )C (NBG )CHA CS

(LO)RBA (NBG )C (CS )CHA

O NBA (CS )C

O(HA ) O(BG ) (CS )HA

O(BA ) O(RBG )

B O(RBA ) O(NBG )

ReB O(NBA ) ReG

NB
ReA
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S G

SA G

S
A

T

Diagram 2. L-relation restricted to Γ (Theorem 9.5).

This section takes care of L-classes of varieties in Γ. The kernel, trace, core,

B∧ and B∨-classes are relegated to a separate publication. See [8] and [9] for

generalities.
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