Mathematica Bohemica

Edy Tri Baskoro; Toméa$ Vetrik
A note on the size Ramsey numbers for matchings versus cycles
Mathematica Bohemica, Vol. 146 (2021), No. 2, 229-234

Persistent URL: http://dml.cz/dmlcz/148934

Terms of use:

© Institute of Mathematics AS CR, 2021

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized

documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz


http://dml.cz/dmlcz/148934
http://dml.cz

146 (2021) MATHEMATICA BOHEMICA No. 2, 229-234

A NOTE ON THE SIZE RAMSEY NUMBERS
FOR MATCHINGS VERSUS CYCLES

EDY TRI BASKORO, Bandung, TOMAS VETRIK, Bloemfontein

Received December 30, 2018. Published online June 2, 2020.
Communicated by Riste Skrekovski

Abstract. For graphs G, F1, Fy, we write G — (Fy, F») if for every red-blue colouring of
the edge set of G we have a red copy of F or a blue copy of Fs in G. The size Ramsey number
7(Fy1, F») is the minimum number of edges of a graph G such that G — (Fy, F2). Erdés
and Faudree proved that for the cycle Cy, of length n and for ¢ > 2 matchings t Ko, the size
Ramsey number 7(tKa, Cy) < n+ (4t +3)y/n. We improve their upper bound for ¢t = 2 and
t = 3 by showing that #(2K2,Cr) < n+2v3n+9 for n > 12 and #(3K2, Cr) < n+6/n+9
for n > 25.
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1. INTRODUCTION

Ramsey theory studies problems which can be grouped under the common theme
that every large system contains a highly organized subsystem. Ramsey-type theo-
rems have roots in various branches of mathematics and the theory developed from
them has influenced areas such as set theory, number theory, ergodic theory, geom-
etry and theoretical computer science.

The size Ramsey number was introduced by Erdés et al. (see [3]) who investigated
the size Ramsey number for various graphs. Size Ramsey numbers for all pairs of
connected graphs having at most four vertices were found by Faudree and Sheehan
(see [4]). Bounds on the size Ramsey number for trees were presented by Ke in [5],
paths and stars were investigated by Lortz and Mengersen in [6]. Modifications of
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the size Ramsey number have been studied extensively, too (see [1] and [7] for results
on the size multipartite Ramsey numbers).

We denote the edge set of a graph G by E(G) and the number of edges in G by
|E(G)|. For an edge set Ey C E(G), the edge-induced subgraph of G consists of the
edges in F; and the vertices incident to edges in Fj.

A cycle of length n (an n-cycle) C,, = viva...v,v1 is a graph with n vertices vy,
Vo, ...,V, and n edges v1vV2, VaV3, . .., Vp—1V, and v,v1. Similarly, a path vivs ... v,
of length n — 1 contains n — 1 edges vyvo, Vovs, ..., Vn_1V,. For t > 1, the graph
which consists of t independent edges (matchings) is denoted by t Ko (it is a 1-regular
graph having 2¢ vertices).

For simple graphs G, Fy, F», we write G — (F, F») if for each 2-colouring (say
red and blue) of E(G) we necessarily get a red copy of F; or a blue copy of F5 in G.
The size Ramsey number 7(F1, Fy) is the minimum number of edges in a graph G
such that G — (F1, F3).

Erdds and Faudree (see [2]) mentioned that the difficulty in calculating #(t K2, Cy,)
is surprising. They proved that for a fixed ¢ > 2, there exist positive constants ¢y, ca,
such that n+ c1/n < #(tK2,Cy) < n+ c2y/n. Their upper bound depends on ¢ and
it has the form

F(tKs,Cp) < n+ (4 + 3)v/n.

We considerably improve this bound for ¢ = 2 and ¢ = 3 by showing that
7(2K2,Cp) < n+2v3n+9 for n > 12 and 7#(3K2,Cp) <n+6y/n+9 for n > 25.

2. RESULTS

Let us present upper bounds on the size Ramsey numbers 7#(2K>,C,) and
7#(3K3a,Ch).

Theorem 2.1. Let n > 12. Then #(2K3,C,) < n+2v3n+ 9.

Proof. Let k be an integer where ko +2 <n < (k+ 1)+ 2, and ¢ = b/%nJ.
Then we can write
n=kp+2+p,

where 0 < p < o — 1. Let t1,t2 € Z, where 1 < t; +1 < to < k+2 and (t1,t2) #
(0,k +2). Let G be a graph having n’ = (k + 3) vertices v, v1,v2,...,v,—1 and
EG) = {vvit1: i=0,1,2,...,n' — 1}
U{vjvjr20: 5= 0,0,20,...,(k+2)p}
U {0 0V(t1 +1)p—p» Vt29V(ta+1)p—p
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the indices are taken modulo n'. Since n > 12, we have ¢ > 2 and vy, ,U(4, +1)p—p>
VtypU(ts+1)p—p & {Vivig1: 1 =0,1,2,...,n" —1}. Thus

[E@)|=k+3)p+(k+3)+2=n—p+3p+k+3.

It can be checked that k < 3¢ + 6 (where k = 3¢ + 6 only if 1(n + 1) is a square).
Therefore

|E(G)| <n+6p+9<n+2V3n+9.

It remains to show that G contains a red 2K or a blue C,,. Assume that G does
not contain a red 2K5. We show that GG contains a blue C,,. Let us consider two
cases.

Case 1. A graph induced by red edges is a subgraph of a star. Let v; be the
center of this star. Without loss of generality we can suppose that 1 < i < ¢.
We have a blue path va,va,11...V(kt3)p—1v0 of length (k + 1) and a blue
cycle C' = voU2,V2p41 - - V(kt3)p—1v0 Of length (k + 1)¢ + 1. Then we can
replace the path v,y Vi, ... 0(¢,41), having length ¢ in C’ by the blue path
VtapU(ta+1)p—pV(ta+1)p—pt1 - - - Utz +1)p Of length p + 1 to obtain a blue cycle C
of length ko +p+2 =n.

Case 2. A graph induced by red edges is a 3-cycle. The graph G contains 3-cycles
only if p = ¢ — 2 (cycles vy, Vs, 41V, p+2Vt, for i = 1,2). Without loss of generality
we can suppose that 1 = 0 and the 3-cycle vgv1v2vg is red. Then G contains blue
cycles C' and C described in the previous case. The proof is complete. O

Theorem 2.2. Let n > 25. Then #(3K5,C,) < n+ 64/n+9.

Proof. Let k be an integer such that kw+3 < n < (k+1)w+3, where w = |/n].
Then we can write

(2.1) n=kw+3+p,

where 0 < p < w — 1. Let t1,ts,t3 € Z, where 1 <t1 +1 <ta <t3—1<k+1
and (t1,t3) # (0,k + 2). Let G be a graph having n’ = (k + 3)w vertices vy, v1,

Vo, ..., Vn—1 and

E(G) ={viviz1: 1 =10,1,2,...,n =1} U{vjvj1w: j =0,w,2w,...,n" —w}

oot =[5 22 5o [5])

U{vsVsqaw—1: § = 0,w,2w,...,n" —w} U{vn00441)0—p: @ =1,2,3},

231



the indices are taken modulo n’. Then

(22) |EG)=(k+3)w+3k+3)+3=n—-3-p)+3w+3(k+3)+3
<n+3w+3k+9.

It can be checked that k < [/n]. Note that k¥ = [\/n] only if n has the form
n=>0%>—b+3+p (where 0 <p<b—4). Thenw =b—1 and k = b. We obtain

(2.3) w+k:2(b—%)<2\/ﬁ,

since n = (b— 3)> 4+ 4 + p. From (2.2) and (2.3) we get |E(G)| <n+6y/n+9.

If k = w, then from (2.1) we know that /n is not an integer (w < 4/n) and by (2.2),
we obtain |E(G)| <n+ 6y/n+9. If k < w, again by (2.2), |[E(G)| <n+6yn+9.

It remains to show that G has a red 3K5 or a blue C,,. Assume that GG does not
contain a red 3K5. We show that G contains a blue C,,. Let us consider a few cases.

Case 1. A graph induced by red edges is a subgraph of two stars. Let v; and v; be
the centers of these stars. Without loss of generality we can suppose that 1 <i < w
and 1 <j—1i < %n’. If j < 2w — 2, then G has a blue path vgva,_1v9, of length 2
and also a blue cycle C" = vgva,—1V24 - - - V(k43)w—1v0 of length (k+ 1)w+2. We can
replace the path vy, Vi,0 41 - - - Vs 41y Of length w in C” by the blue path

VtswU(tz+1)w—pU(tz+1)w—p+1 - - - V(tz+1)w

of length p + 1 to obtain a blue cycle of length kw + p + 3 = n.

Let j > 2w — 1. If i # w, then G contains a blue path vov V41 .. V|30/2) Of
length L%wj + 1, and if # = w, then G contains a blue path vovy ... V|, /2]V|3w/2] Of
length |$w] + 1.

Note that |3(c — 1)w] < j < [4(c+ 1)w] for some even ¢ > 4. If j # [3(c+ 1)w],
then vl_(c—l)w/QJUL(c+l)w/2JUL(c+1)w/2J+l - U(e/241))w is a blue path having length
f%w} +1,and if j = I_%(C—l— 1)wJ, then V] (c—=1)w/2] V] (c—Dw/2]+1 - - - V(c/2)wV(c/2+1)w is
a blue path of length [w] + 1.

G also contains a blue path v|3,/2/V|3w/2]41 - - - V| (c—1)w/2) having length (%c— 2)w
and a blue path v(c/241)wV(c/241)w+1 - - - V(k+3)w—1v0 having length (k — %c + 2)w.

Thus G contains a blue cycle C” having length

(3140) + 511 (5o (s 54 o movv

From the definition of the edges vt,w¥(t,+1)w—p, it follows that the cycle C contains
a path vg,wVwi1 - .-V, +1)0 Of length w for some i € {1,2,3}. That path can be
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replaced by the blue path v¢,wv (¢, 4+ 1)w—pV(t; +1)w—p+1 - - - V(t;+1)w Of length p+1, which
implies that G has a blue cycle of length kw + p + 3 = n.

Case 2. A graph induced by red edges contains a 3-cycle. G contains 3-cycles
only if p = 1 (cycles vg,wV(t,+1)w—1Y(t;+1)wVtw fOr i = 1,2,3) or p = w — 2 (cycles
Vb, 0wVt w41Vt w2Vt for 1 = 1,2, 3).

Without loss of generality we can suppose that ¢; = 0 and the 3-cycle vy v,—1v,v0
is red for p = 1, and the 3-cycle vgvivavg is red for p = w — 2.

Case 2.1. A graph induced by red edges is a 3-cycle and a subgraph of a star.
Let v; be the center of this star. If j < 2w — 2, then G has a blue cycle
C" = vov2u—1V2y - - - V(ky3)w—1v0 Of length (k + 1)w 4 2. Let us replace the path
VtswVtswtl - - U(ta+1)w Of length w in C” by the blue path

Vt3wU(t34+1)w—pU(ts+1)w—p+1 -+ V(tz+1)w

of length p + 1 to obtain a blue cycle of length kw + p + 3 = n.

If j > 2w—1, then G contains a blue path vovy ... |y /2]V|3w/2) Of length L%wj +1
for p =1, and a blue path vov,Vy11 ... V|3u/2) Of length L%wj +1lforp=w-—-2.1¢t
can be shown as in the last three paragraphs of Case 1 that G has a blue cycle of
length n.

Case 2.2. A graph induced by red edges consists of two 3-cycles. Without loss of
generality we can suppose that v.,v.1+102042V20 OF V2wV(2—1)wVzw—1Vzw fOr some
z > 2 is the other red 3-cycle. Thus G contains a blue path

V18w/2]V|8w/2]4+1 -+ - V| (2=1/2)w ]| V| (241/2)w] V| (24+1/2)w ] +1 - - V(k+3)w—1V0

of length kw + [w] + 1. Note that we also have a blue path of length |iw] + 1
between vg and v|s, 2|, Which means that G contains a blue cycle C" of length
kw 4w + 2. This cycle contains a path v,,V;w 41 - - V(t,4+1)0 for some i € {1,2,3}.
That path can be replaced by the blue path vg,,v(s, +1)w—pViti+1)w—p+1 - - - V(ti+1)ws
so GG has a blue cycle of length kw +p+ 3 = n.

Case 3. A graph induced by red edges consists of a 5-cycle. Since n > 25, every
5-cycle of GG contains an edge v, V4, 41)w—p for some i, where 1 < i < 3. Without
loss of generality we can suppose that ¢; = 0 and the red 5-cycle contains the edge
VoUu—p-

All 5-cycles (except for two 5-cycles) containing the edge vov,—p consist only
of edges connecting some of the vertices vg,v1, ... yU|3w/2) Or some of the vertices
V(k42)ws V(k4+2)wt1s - - -» U w/2)- Lhen we have a blue cycle vovay,—1v2 - - - V(ky3)w—100
or a blue cycle v(,42),Vy—1Vw - Vikt2)w (of length (k4 1)w + 2). These cycles
contain the path vi,viw+1-- V(410w We Teplace this path by the blue path
VtswV(ts+1)w—pV(ts+1)w—pt1 - - - V(ts+1)w tO Obtain a blue cycle of length kw+p+3 = n.
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Those two exceptions are the 5-cycles
VoV (k42)wVw—1Vw—2Vw—-3V0 and  VoV2uw—1V2w V0w Vw—100

(note that these cycles exist only for particular values of p).
If the 5-cycle VOU(k42)wVw—1Vw—2Vw—300 is Ted, then the cycle

VoV2w—1V2w - - - V(k+3)w—100

is blue, and if the 5-cycle vgvoy,_1V2,UuVw—_1V0 is red, then we have a blue cycle
V0w /2)V|3w/2]V|5w/2|V|5w/2]+1 - - - V|w/2)- LThese blue cycles have length (k 4+ 1)w + 2
and it is easy to obtain a blue cycle having length kw +p+ 3 = n. O
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