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Abstract. We extend the Noble and Ulmer theorem and the Juhász and Hajnal theorems
in set-theoretic topology. We show that a statement analogous to that in the former theorem
is valid for a family of almost topological convergences, whereas statements analogous to
those in the latter theorems hold for a pretopologically Hausdorff convergence.
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1. Introduction

For a set X we denote its cardinality by cardX . For a topological space X

we designate the cellularity, the spread and the density of X by c(X), s(X) and

d(X), respectively. The starting point of our consideration is the following triplet of

theorems in set-theoretic topology.

(I) (Noble and Ulmer) Let {Xi}i∈I be a family of topological spaces, α an infinite

cardinal. Assume that c
(

∏

i∈J

Xi

)

6 α whenever J is a finite subset of I. Then

we have c
(

∏

i∈I

Xi

)

6 α.

(II) (Juhász and Hajnal) If X is a Hausdorff topological space, then

cardX 6 22
s(X)

.

(III) (Juhász and Hajnal) If X is a Hausdorff topological space, then

d(X) 6 2s(X).
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The proofs and the sources of these theorems are supplied in [9], Chapter II. The

purpose of this paper is to extend these theorems in a setting of convergence theory.

Our main theorems are Theorem 1, Theorem 6 and Theorem 8, which extend (I),

(II) and (III) above, respectively.

Now we briefly review the history of convergence theory. To this end we recall the

Kuratowski closure axioms:

(cl 1) ∅ = ∅;

(cl 2) A ⊂ Ā;

(cl 3) A ∪B = Ā ∪B;

(cl 4) ¯̄A = Ā.

These axioms are equivalent to the standard definition of a topological space in the

following sense: If X is a topological space, then its closure operator 2X ∋ A 7→

Ā ∈ 2X satisfies (cl 1)–(cl 4). Conversely, given an operator cl : 2X ∋ A 7→ Ā ∈ 2X

satisfying (cl 1)–(cl 4), the family {O ∈ 2X : cl(X \ O) = X \ O} gives a topology

on X , whose closure operator equals cl. Čech built the notion of closure spaces

(cf. [2], Chapter 14): A set X endowed with a map 2X ∋ A 7→ Ā ∈ 2X satisfying

(cl 1)–(cl 3) is called a closure space or a pretopological space. We will see later the

usefulness of this notion. Choquet (see [3]) put forward a further generalization of

the notion of topological spaces. He built the notion of pseudotopologies by means

of filters. He also investigated pretopologies. Pseudotopologies and pretopologies are

important subclasses of convergence spaces. The theory of convergence spaces has

been developed by many authors; see [5] and the references therein.

Let us describe the features of our work here. Theorem 1 asserts that the statement

of Noble and Ulmer’s theorem (I) remains true when {Xi}i∈I is replaced with a

family of almost topological convergences. In its proof the following property of the

pseudotopologizer, designated by S, plays a crucial role: we have

(1.1) S

(

∏

i∈Λ

ξi

)

=
∏

i∈Λ

Sξi

for every family {ξi}i∈Λ of convergences (see [5], Theorem VIII.3.9). This equality is

one of the most important results in convergence theory. A careful inspection of the

proofs of Juhász and Hajnal’s theorems (II) and (III) gives that the property (cl 4)

is not actually used there. This suggests that it may be possible to relax the usual

Hausdorffness condition when we extend these theorems in a Čech-Choquet pretopo-

logical setting. Theorems 6 and 8 show that this is the case; these theorems establish

that the statement of (II) and that of (III) remain valid when X is replaced with a

pretopologically Hausdorff convergence. We mention that a pretopologically Haus-

dorff convergence need not to be topologically Hausdorff; see [5], Example VII.1.9.
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Though we employ the basic frameworks of the proofs of Juhász and Hajnal’s the-

orems in demonstrating our Theorems 6 and 8, we must deal with several technical

matters proper to our situation; see (4.1) and Lemma 9. Furthermore, the notion of

grills, which is due to Choquet, is effectively utilized in our proofs. Our work here

builds bridges between set-theoretic topology and the theory of convergence spaces.

2. Preliminaries

From [5] we recall several notions and terminologies in the theory of convergence

spaces for the reader’s sake.

(a) We fix a set X . Let A and B be two families of subsets of X . A is said to be

coarser than B, in symbols, A 6 B, if for each A ∈ A there is a B ∈ B for

which B ⊂ A. We designate by A↑X the isotonization of A, that is,

A↑X = {B ∈ 2X : there exists an A ∈ A such that A ⊂ B};

X is called an ambient set. When there is no risk of confusion we will write

A↑X as A↑. A family F of subsets of X is called a filter base on X if F↑ is a

filter.

(b) Fix a set X . We designate by FX the set of all filters on X . A relation ξ is said

to be a convergence on X if it is contained in FX ×X and enjoys the following

properties:

F 6 G ⇒ limξ F ⊂ limξ G;(isotone)

x ∈ limξ{x}
↑,(centered)

where we define limξ F = {x ∈ X : (F , x) ∈ ξ} and use the abbreviation {x}↑ =

{{x}}↑; we say that X is the underlying set of ξ and write |ξ| = X . For a filter

base F on X , we write limξ F for limξ F↑.

(c) Let ξ and η be two convergences on X . We say that ξ is coarser than η, in

symbols, ξ 6 η, if limξ F ⊃ limη F for every F ∈ FX .

(d) Let ξ be a convergence. A subset O of |ξ| is said to be ξ-open if

O ∩ limξ F 6= ∅ ⇒ O ∈ F

for every filter F . Let x ∈ |ξ| and let N be a subset of |ξ|. We say that N is a

ξ-neighborhood of x if there exists a ξ-open set O such that x ∈ O ⊂ N .

(e) Let ξ be a convergence, C a subset of |ξ|. We say that C is ξ-closed if |ξ| \C is

ξ-open.
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(f) A convergence ξ is said to be Hausdorff if card
(

limξ F
)

6 1 for every F ∈ F|ξ|.

(g) For a family {Fi}i∈K of filters on a set X , we denote by
∧

i∈K

Fi the infimum of

{Fi}i∈K in the poset (FX,6); it holds that
∧

i∈K

Fi =
⋂

i∈K

Fi.

(h) Let ξ be a convergence and let x ∈ |ξ|. The vicinity filter of ξ at x is defined by

Vξ(x) =
∧

x∈limξ F

F .

A convergence ξ is said to be a pretopology if x ∈ limξ Vξ(x) for each x ∈ |ξ|.

(i) Let A and B be two families of subsets of a set X . We say that A and B mesh,

in symbols, A#B, if A ∩ B 6= ∅ for every A ∈ A and B ∈ B; otherwise we say

that A and B are dissociated.

(j) Let A and B be two filters on a set X . The set {A,B} admits the least upper

bound in the poset (FX,6) if and only if A and B mesh.

(k) For a convergence ξ and a subset A of |ξ|, we designate by adhξ A the (principal)

adherence of A, that is,

adhξ A =
⋃

F#A

limξ F ,

where we write F#A for F#{A}. For a family G of subsets of |ξ|, we define

adh♮ξ G = {adhξ A : A ∈ G}. Note that if G is a filter, then adh♮ξ G is a filter

base.

(l) A pretopology ξ is called a topology if the operator adhξ is idempotent, that is,

adhξ
(

adhξ A
)

= adhξ A

for every A ∈ 2|ξ|.

(m) A convergence ξ is said to be regular at a point x if, for any filter F ,

x ∈ limξ F ⇒ x ∈ limξ adh
♮
ξ F .

A convergence ξ is called regular if ξ is regular at each x ∈ |ξ|.

(n) Given a convergence ξ and a family A of subsets of |ξ|, let adhξ A stand for the

adherence of A:

adhξ A =
⋃

F|ξ|∋H#A

limξ H.

We say that a convergence ξ is compact if adhξ F 6= ∅ for every filter F .

(o) Let X be a set. A maximal element of the poset (FX,6) is called an ultrafilter

on X . The set of all ultrafilters on X is designated by UX . For a filter F on X ,

we set β(F) = {U ∈ UX : F 6 U}.
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(p) A convergence ξ is called a pseudotopology if

limξ F =
⋂

U∈β(F)

limξ U

for each filter F .

(q) For a set X , we designate by o = oX the coarsest convergence on X , that is,

limoX F = X for every F ∈ FX ; we call oX the chaotic convergence on X .

(r) A convergence ξ is said to be T1 if limξ{x}↑ = {x} for each x ∈ |ξ|.

For further background materials, one can consult [5].

3. Extension of Noble and Ulmer’s theorem (I)

By S and T we designate the pseudotopologizer and the topologizer, respectively;

for a convergence ξ, Sξ is the finest among pseudotopologies coarser than ξ, and Tξ

is the finest among topologies coarser than ξ. A convergence ξ is said to be almost

topological if Sξ = Tξ.

For a convergence ξ, we define its cellularity c(ξ) by

c(ξ) = sup{cardG : G is a family of disjoint nonempty ξ-open sets}.

The following result extends Noble and Ulmer’s theorem (I).

Theorem 1. Let {ξi}i∈I be a family of almost topological convergences, α an

infinite cardinal. Suppose that c
(

∏

i∈J

ξi

)

6 α whenever J is a finite subset of I. It

then holds that c
(

∏

i∈I

ξi

)

6 α.

For a convergence ξ and an element x of |ξ|, we denote by Nξ(x) the set of all

the ξ-neighborhoods of x. Since Nξ(x) = NTξ(x) (see [5], page 141), the following

assertion holds.

Proposition 2. For a convergence ξ, we have c(ξ) = c(Tξ).

Let us prove the following implication.

Lemma 3. Let {ξi}i∈K be a family of almost topological convergences. Then

T

(

∏

i∈K

ξi

)

=
∏

i∈K

Tξi.
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P r o o f. We have Sξi = Tξi for each i ∈ K by assumption, from which and (1.1)

we obtain

(3.1) S

(

∏

i∈K

ξi

)

=
∏

i∈K

Tξi.

Since
∏

i∈K

Tξi is a topology by [5], Corollary V.4.33, so is S
(

∏

i∈K

ξi

)

, and thus

S
(

∏

i∈K

ξi

)

6 T
(

∏

i∈K

ξi

)

. But Sη > Tη for every convergence η; see [5], equa-

tion (VIII.3.2). So S
(

∏

i∈K

ξi

)

= T
(

∏

i∈K

ξi

)

. This, together with (3.1), yields the

implication. �

We are now in a position to complete the proof of Theorem 1.

P r o o f of Theorem 1. Combining the assumption with Proposition 2 and

Lemma 3, we have c
(

∏

i∈J

Tξi

)

6 α for any finite subset J of I. This, together with

Noble and Ulmer’s theorem (I), yields that c
(

∏

i∈I

Tξi

)

6 α. Combining this with

Proposition 2 and Lemma 3 again, we arrive at the conclusion. �

An almost topological convergence is not necessarily topological. See [5], Exer-

cise VIII.3.14 for a simple example. Here is an even simpler one:

E x am p l e 4 (An almost topological convergence on {0, 1} which is not a pseu-

dotopology). Let X = {0, 1}. The filters on X are {0}↑, {1}↑ and {0, 1}↑, and the

ultrafilters on X are {0}↑ and {1}↑. We define a relation ξ on FX ×X by

limξ{0}
↑ = {0, 1}, limξ{1}

↑ = {0, 1} and limξ{0, 1}
↑ = {0}.

One can easily check that ξ is a convergence on X . Because

⋂

U∈β({0,1}↑)

limξ U = limξ{0}
↑ ∩ limξ{1}

↑ = {0, 1} 6= limξ{0, 1}
↑,

the relation ξ is not a pseudotopology. Next, we will verify that ξ is almost topo-

logical. To this end, let η be a convergence satisfying η 6 ξ. We then have η = o

or η = ξ. Indeed, it holds that limo F ⊃ limη F ⊃ limξ F for every filter F on X

since o 6 η 6 ξ, from which we have limη{0}↑ = limη{1}↑ = {0, 1} and either

limη{0, 1}↑ = {0} or limη{0, 1}↑ = {0, 1}. In the former case, η = ξ, while in the

latter case, η = o. Hence, Sξ = Tξ = o, that is, ξ is almost topological.

It is useful to recall the following result, which gives a sufficient condition for a

convergence to be almost topological.
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Theorem 5 ([5], Corollary IX.2.4). A compact Hausdorff regular convergence is

almost topological.

We will give an extension of this theorem. To this end we recall a terminology

from [4]. For a convergence ξ, let rξ stand for the partial regularization of ξ, that

is, x ∈ limrξ F if there is a filter G such that x ∈ limξ G and F > adh♮ξ G. We

have ξ > rξ. We also recall that a Hausdorff topological space X is called H -closed

if X is closed in any Hausdorff topological space in which it is embedded. In [8] a

reasonable extension of the notion of an H -closed topological space is presented in a

pretopological setting. In the same spirit we define the H -closedness of a convergence

as follows: A convergence ξ is said to be H-closed if it is Hausdorff and rξ is compact.

Now, the following assertion holds true: A regular H-closed convergence is almost

topological. This follows at once from Theorem 5 and the fact that ξ 6 rξ if ξ is

regular. We mention that the theory of H -closed topological spaces was initiated by

Alexandroff and Urysohn (see [1]) and has been extensively developed (cf. [7], [6]).

4. Extension of the Juhász-Hajnal theorem (II)

We recall several notions and terminologies from [5], which are needed to state

our second main theorem. For a convergence ξ, we denote by S0ξ the pretopological

modification of ξ, that is, S0ξ is the finest one among pretopologies coarser than ξ; we

say that ξ is pretopologically Hausdorff if S0ξ is Hausdorff. Since Vξ(x) = VS0ξ(x) for

each x ∈ |ξ| (see [5], equation (V.1.9)), we infer that ξ is pretopologically Hausdorff

if and only if it holds that whenever x0, x1 ∈ |ξ| satisfy x0 6= x1, Vξ(x0) and Vξ(x1)

are dissociated.

For a map f : X → Y and a filter F on X , we define f [F ] = {f(F ) : F ∈ F},

which is a filter base on Y .

Let (X, ξ) be a convergence space, A a subset of X . By iAX : A → X we denote

the inclusion map of A in X , i.e. iAX(x) = x for each x ∈ A. The convergence ξ|A
induced on A by ξ is defined by

x ∈ limξ|A F ⇔ x ∈ limξ i
A
X [F ].

For a set X , we designate by ι = ιX the finest convergence on X , that is, for any

F ∈ FX and x ∈ X ,

x ∈ limι F ⇒ F = {x}↑.

We call ιX the discrete convergence on X . For a convergence ξ, we define its

spread by

s(ξ) = sup{cardY : Y is a subset of |ξ| for which ξ|Y is discrete}.
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We are now ready to state our second main result, which extends the Juhász-Hajnal

theorem (II).

Theorem 6. Let ξ be a pretopologically Hausdorff convergence. It then holds that

card |ξ| 6 22
s(ξ)

.

We introduce some notation which is needed in the proof of this theorem. For

a cardinal α, we denote its cardinal successor by α+. For a set S and a positive

integer r, we put [S]r = {X ∈ 2S : cardX = r}. For a set X and a family A of

subsets of X , we designate by A# the grill of A, that is,

A# = {H ∈ 2X : A ∩H 6= ∅ whenever A ∈ A}.

The following claim is also needed, which is an immediate consequence of [5],

Proposition III.1.11.

Proposition 7. If ξ is a T1 convergence and Y is a finite subset of |ξ|, then ξ|Y
is discrete.

P r o o f of Theorem 6. We proceed by an argument similar to that in [9], Chap-

ter II, (6). Set X = |ξ|. By the Zermelo theorem there exists a relation “<”

which well-orders X . Since ξ is pretopologically Hausdorff, we infer that, for each

(x, y) ∈ X2 with x 6= y, there exist Uxy ∈ Vξ(x) and Vxy ∈ Vξ(y) such that

Uxy ∩ Vxy = ∅. We consider the four subsets F1, F2, F3 and F4 of [X ]3 defined

as follows: for x, y, z ∈ X with x < y < z,

{x, y, z} ∈ F1 ⇔ z ∈ Uxy and x ∈ Vyz;

{x, y, z} ∈ F2 ⇔ z /∈ Uxy and x ∈ Vyz;

{x, y, z} ∈ F3 ⇔ z /∈ Uxy and x /∈ Vyz;

{x, y, z} ∈ F4 ⇔ z ∈ Uxy and x /∈ Vyz.

The sets F1, F2, F3 and F4 form a partition of [X ]3.

First, we consider the case where α ≡ s(ξ) is infinite. Seeking a contradiction,

we assume that cardX > 22
α

. It follows from the Erdős-Rado theorem (see [9],

Chapter II, (4)) that there is a subset Y of X with cardY = α+ such that [Y ]3 is a

subset of one of F1, F2, F3 and F4. We define

Z = {t ∈ Y : t has an immediate predecessor in the well-ordered set (Y,<)}.
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We prove that ξ|Z is discrete. First, consider the case [Y ]3 ⊂ F2. Pick a t ∈ Z

arbitrarily. We designate by z the immediate successor of t in (Y,<). Let us show

that t /∈ adhξ|Z{s ∈ Z : s < t}. For any s ∈ Z with s < t, we have s ∈ Vtz , so that

s ∈ U c
tz, U

c
tz being the complement of Utz in X . Thus, {s ∈ Z : s < t} ⊂ U c

tz ∩ Z,

from which

adhξ|Z{s ∈ Z : s < t} ⊂ adhξ|Z (U
c
tz ∩ Z).

So, it suffices to show that

(4.1) t /∈ adhξ|Z (U
c
tz ∩ Z).

By definition we have

Vξ|Z (t) =
∧

F∈FZ
t∈limξ iZX [F ]

F .

We will verify that

(4.2) Utz ∩ Z ∈ Vξ|Z (t).

Pick an F ∈ FZ with t ∈ limξ i
Z
X [F ] arbitrarily. Since Utz ∈ Vξ(t), we have Utz ∈

iZX [F ]↑, that is, there is an F ∈ F satisfying F ⊂ Utz. Thus Utz ∩ Z ∈ F , so

that (4.2) holds. We have from (4.2) that U c
tz ∩ Z /∈ Vξ|Z (t)

#. This, together

with [5], Proposition V.2.12, yields (4.1), and therefore t /∈ adhξ|Z{s ∈ Z : s < t}.

Next, we will show that t /∈ adhξ|Z{s ∈ Z : t < s}. For s ∈ Z with z < s, we have

s ∈ U c
tz. Since z ∈ Vtz , we have also z ∈ U c

tz. Thus {s ∈ Z : t < s} ⊂ U c
tz ∩ Z,

whereupon

adhξ|Z{s ∈ Z : t < s} ⊂ adhξ|Z (U
c
tz ∩ Z).

This, together with (4.1), yields t /∈ adhξ|Z{s ∈ Z : t < s}. Hence,

t /∈ adhξ|Z{s ∈ Z : s < t} ∪ adhξ|Z{s ∈ Z : t < s} = adhξ|Z{s ∈ Z : s 6= t},

that is, adhξ|Z{s ∈ Z : s 6= t} ⊂ {s ∈ Z : s 6= t}. So, Z \ {t} is ξ|Z-closed.

Let us consider the case where [Y ]3 ⊂ F1. Pick a t ∈ Z arbitrarily. We designate

by z the immediate successor of t in (Y,<). For s ∈ Z with s < t, we have s ∈

Vtz ⊂ U c
tz, and therefore {s ∈ Z : s < t} ⊂ U c

tz ∩Z. So, we obtain t /∈ adhξ|Z{s ∈ Z :

s < t} as in the discussion above. By w we denote the immediate predecessor of t in

(Y,<). For s ∈ Z with t < s, we have s ∈ Uwt ⊂ V c
wt. So,

adhξ|Z{s ∈ Z : t < s} ⊂ adhξ|Z (V
c
wt ∩ Z).
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Now, we have

t /∈ adhξ|Z (V
c
wt ∩ Z)

as in the derivation of (4.1). Thus t /∈ adhξ|Z{s ∈ Z : t < s}, and hence Z \ {t} is

ξ|Z-closed.

In the remaining two cases one can similarly verify that, for each t ∈ Z, Z \ {t}

is ξ|Z -closed. In any case, ξ|Z is a discrete convergence and cardZ = α+, which is

absurd. Therefore, we obtain

(4.3) cardX 6 22
α

.

Finally, we consider the case where α = s(ξ) is finite. It follows from Proposition 7

that X is a finite set. Using Proposition 7 again, we have s(ξ) = card |ξ|, so that (4.3)

holds. �

5. Extension of the Juhász-Hajnal theorem (III)

For a convergence ξ, we define its density by

d(ξ) = min{cardS : S is a subset of |ξ| such that adhξ S = |ξ|}.

This definition of the density is equivalent to the one given in [5], Definition IV.9.28

and extends the notion of the density of a topological space.

We state our third main theorem, which extends the Juhász-Hajnal theorem (III).

Theorem 8. Let ξ be a pretopologically Hausdorff convergence. It then holds

that

d(ξ) 6 2s(ξ).

The following simple lemma is used in the proof of this theorem.

Lemma 9. Let ξ be a convergence and let Z and A be two sets with Z ⊂ A ⊂ |ξ|.

Then we have

adhξ|A Z ⊂
(

adhξ Z
)

∩ A.

P r o o f. Put X = |ξ|. We obtain

adhξ|A Z =
⋃

F#Z
F∈FA

limξ|A F =
⋃

F#Z
F∈FA

limξ i
A
X [F ]↑ ⊂

⋃

G#Z
G∈FX

limξ G = adhξ Z.

�
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We introduce a new term. We designate by Ord the class of all ordinals. Fix

α ∈ Ord. A function is said to be an α-sequence if its domain is {β ∈ Ord: β < α}.

We will identify the latter set with α.

P r o o f of Theorem 8. We employ a method parallel to that in [9], Chap-

ter II, (5). Put α = s(ξ) and X = |ξ|. First, we consider the case where α is

infinite. Seeking a contradiction, we suppose that d(ξ) > 2α. For each ordinal β with

β < (2α)+ and for eachX-valued β-sequence {rγ}γ<β, we haveX\adhξ{rγ}γ<β 6= ∅,

because β < d(ξ). By transfinite induction one can construct a sequence P =

{pβ}β<(2α)+ such that pβ ∈ X \ adhξ{pγ}γ<β for each β < (2α)+.

We will construct a sequence {qβ}β<α+ such that qβ /∈ adhξ{qγ}γ>β for each

β < α+. We proceed by a ramification argument. For γ < α+, let

Fγ = {f : f is a {0, 1}-valued γ-sequence}.

Set F =
⋃

γ<α+

Fγ . By transfinite induction we will construct a family {Pf}f∈F of

subsets of P as follows. We fix γ < α+ and suppose that we have defined Pg for

every g ∈
⋃

δ<γ

Fδ.

First, we consider the case where γ = 0. We have Fγ = {∅}. Put P∅ = P . Next,

we consider the case where γ is an ordinal successor; let δ be such that γ = δ + 1.

Consider two elements f and g of Fγ such that f |δ = g|δ and f(δ) 6= g(δ). We

consider the following two cases:

(a) cardPf |δ 6 1. We put Pf = Pg = ∅.

(b) cardPf |δ > 1. Choose a, b ∈ Pf |δ with a 6= b. Since ξ is pretopologically

Hausdorff, there exist Ua ∈ Vξ(a) and Ub ∈ Vξ(b) for which Ua ∩ Ub = ∅. Put

Pf = Pf |δ \ Ua and Pg = Pf |δ \ Ub. We have Pf ∪ Pg = Pf |δ .

Finally, we treat the case where γ is a limit ordinal which is not 0. For each

f ∈ Fγ , define Pf =
⋂

δ<γ

Pf |δ .

We will prove that there is a p ∈ P such that {p} 6= Pf for each f ∈ F . Since

cardFγ = 2cardγ 6 2α for each γ < α+, we have cardF 6 2α. We define F ′ =

{f ∈ F : Pf 6= ∅}. For each f ∈ F ′, we choose an element lf of Pf . Because

cardP = (2α)+ > cardF ′, there is a p ∈ P such that lf 6= p for each f ∈ F ′. Hence,

{p} 6= Pf for every f ∈ F .

Let us prove that there is a sequence of functions fγ ∈ Fγ , γ < α+, such that

p ∈ Pfγ for each γ < α+ and fγ |δ = f δ whenever δ < γ < α+. We proceed

by transfinite induction. We fix γ0 < α+ and suppose that there is a sequence of

functions fγ ∈ Fγ , γ < γ0, such that p ∈ Pfγ for each γ < γ0 and fγ |δ = f δ whenever

δ < γ < γ0. We define fγ0 as follows. First, consider the case where γ0 is an ordinal
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successor. Let γ′
0 be such that γ0 = γ′

0 + 1. Since p ∈ P
f
γ′
0
and {p} 6= P

f
γ′
0
, we

have cardP
f
γ′
0
> 1. Pick f, g ∈ Fγ0 for which fγ′

0 = f |γ′
0
= g|γ′

0
and f 6= g. Since

Pf ∪ Pg = P
f
γ′
0
and p ∈ P

f
γ′
0
, we have either p ∈ Pf or p ∈ Pg. If p ∈ Pf , we put

fγ0 = f ; otherwise, we set fγ0 = g. Next, we consider the case where γ0 is a limit

ordinal which is not 0. We define fγ0(δ) = f δ+1(δ) for δ < γ0. Finally, we treat the

case where γ0 = 0. We define fγ0 = ∅. In any case we have p ∈ Pfγ0 and fγ0 |δ = f δ

for each δ < γ0. Thus, there exists a sequence of functions fγ ∈ Fγ , γ < α+, such

that p ∈ Pfγ for each γ < α+ and fγ |δ = f δ whenever δ < γ < α+.

We are now in a position to define {qβ}β<α+ . Fix γ < α+. Then, there exist

a ∈ Pfγ and Uγ ∈ Vξ(a) such that Pfγ+1 = Pfγ \ Uγ . We define qγ = a.

Let us prove that qγ /∈ adhξ{qδ}δ>γ for each γ < α+. Fix γ < α+. We have qδ /∈ Uγ

for every δ > γ, because qδ ∈ Pfδ ⊂ Pfγ+1 . This, combined with Uγ ∈ Vξ(qγ),

implies that {qδ : δ > γ} /∈ Vξ(qγ)
#; from which and [5], Proposition V.2.12 we

obtain qγ /∈ adhξ{qδ}δ>γ .

Set Q = {qγ : γ < α+}. We define a sequence {̺γ}γ<α+ as follows. Fix γ < α+.

There is a unique ̺ < (2α)+ for which qγ = p̺. We define ̺γ = ̺. Put

F1 = {{qδ, qγ} : δ < γ, ̺δ < ̺γ},

F2 = {{qδ, qγ} : δ < γ, ̺δ > ̺γ}.

The sets F1 and F2 form a partition of [Q]2. We claim that there exists no infinite

subset A of Q for which [A]2 ⊂ F2, because there is no infinite decreasing sequence

of ordinals. This, combined with the Erdős theorem (see [9], Chapter II, (3)), yields

that there is a subset A of Q such that cardA = α+ and [A]2 ⊂ F1. We will

demonstrate that ξ|A is a discrete convergence. Put Γ = {γ < α+ : qγ ∈ A}. Fix

γ ∈ Γ. Since qγ /∈ adhξ{qδ}δ>γ , we have qγ /∈ adhξ{qδ}δ>γ,δ∈Γ; from which and

Lemma 9 we obtain qγ /∈ adhξ|A{qδ}δ>γ,δ∈Γ. Since {qδ}δ∈Γ,δ<γ ⊂ {pη}η<̺γ
and

since p̺γ
/∈ adhξ{pη}η<̺γ

, it holds that qγ /∈ adhξ{qδ}δ∈Γ,δ<γ . Combining this with

Lemma 9, we get qγ /∈ adhξ|A{qδ}δ∈Γ,δ<γ . Hence, adhξ|A(A \ {qγ}) ⊂ A \ {qγ},

whereupon A\{qγ} is ξ|A-closed. Thus ξ|A is a discrete convergence. This is absurd,

since cardA = α+ > s(ξ). Therefore, we obtain d(ξ) 6 2s(ξ).

We consider the case where α is finite. It follows from Proposition 7 that α =

card |ξ|, from which d(ξ) 6 α < 2α = 2s(ξ). �

A c k n ow l e d g em e n t. Thanks to the anonymous referee for valuable sugges-

tions and corrections.
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