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Abstract. We study the multiplicative lattices L which satisfy the condition a =
(a : (a : b))(a : b) for all a, b ∈ L. Call them sharp lattices. We prove that every totally
ordered sharp lattice is isomorphic to the ideal lattice of a valuation domain with value
group Z or R. A sharp lattice L localized at its maximal elements are totally ordered sharp
lattices. The converse is true if L has finite character.

Keywords: multiplicative lattice; Prüfer lattice; Prüfer integral domain

MSC 2020 : 06F99, 13F05, 13A15

1. Introduction

We recall some standard terminology. A multiplicative lattice is a complete lat-

tice (L,6) (with bottom element 0 and top element 1) which is also a commutative

monoid with identity 1 (the top element) such that

a
(

∨

α

bα

)

=
∨

α

(abα) for each a, bα ∈ L.

When x 6 y (x, y ∈ L), we say that x is below y or that y is above x. An element x

of L is cancellative if xy = xz (y, z ∈ L) implies y = z. For x, y ∈ L, (y : x) denotes

the element
∨

{a ∈ L; ax 6 y}; so (y : x)x 6 y.

An element c of L is compact if c 6
∨

S, with S ⊆ L, implies c 6
∨

T for some

finite subset T of S (here
∨

W denotes the join of all elements inW ). An element in L

is proper if x 6= 1. When 1 is compact, every proper element is below some maximal

element (i.e., maximal in L− {1}). Let Max(L) denote the set of maximal elements

of L. By “(L,m) is local”, we mean that Max(L) = {m}. A proper element p is

prime if xy 6 p (with x, y ∈ L) implies x 6 p or y 6 p. Every maximal element is
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prime, L is a (lattice) domain if 0 is a prime element. An element x is meet-principal

(or weak meet-principal) if

y ∧ zx = ((y : x) ∧ z)x ∀ y, z ∈ L (or (y : x)x = x ∧ y ∀ y ∈ L).

An element x is join-principal (or weak join-principal) if

y ∨ (z : x) = ((yx ∨ z) : x) ∀ y, z ∈ L (or (xy : x) = y ∨ (0 : x) ∀x ∈ L).

And x is principal if it is both meet-principal and join-principal. If x and y are

principal elements, then so is xy. The converse is also true if L is a lattice domain

and xy 6= 0. In a lattice domain, every nonzero principal element is cancellative.

The lattice L is principally generated if every element is a join of principal elements.

Moreover, L is a C-lattice if 1 is compact, the set of compact elements is closed under

multiplication and every element is a join of compact elements. In a C-lattice, every

principal element is compact.

The C-lattices have a well behaved localization theory. Let L be a C-lattice and L∗

the set of its compact elements. For p ∈ L a prime element and x ∈ L, the localization

of x at p is

xp =
∨

{a ∈ L∗; as 6 x for some s ∈ L∗ with s 66 p}.

Then Lp := {xp; x ∈ L} is again a lattice with multiplication (x, y) 7→ (xy)p, join

{(bα)} 7→ (
∨

bα)p and meet {(bα)} 7→ (
∧

bα)p. For x, y ∈ L, we have:

⊲ x 6 xp, (xp)p = xp, (x ∧ y)p = xp ∧ yp, and xp = 1 if and only if x 66 p.

⊲ x = y if and only if xm = ym for each m ∈ Max(L).

⊲ (y : x)p 6 (yp : xp) with equality if x is compact.

⊲ The set of compact elements of Lp is {cp : c ∈ L∗}.

⊲ A compact element x is principal if and only if xm is principal for eachm ∈ Max(L).

In [1] a study of sharp integral domains was done. An integral domain D is a sharp

domain if whenever A1A2 ⊆ B with A1, A2, B ideals of D, we have a factorization

B = B1B2 with Bi ⊇ Ai ideals of D, i = 1, 2. Moreover, sharp domains and some

of their generalizations have been investigated by various authors, see also [8]. In

the present paper we extend almost all results in [1] to the setup of multiplicative

lattices. Our key definition is the following.

Definition 1. A lattice L is a sharp lattice if whenever a1a2 6 b with a1, a2, b∈L,

we have a factorization b = b1b2 with ai 6 bi ∈ L, i = 1, 2.
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In Section 2 we work in the setup of C-lattices (simply called lattices). After

obtaining some basic facts (see Propositions 2 and 3), we show that if (L,m) is

a local sharp lattice and m = x1 ∨ . . . ∨ xn with x1, . . . , xn join principal elements,

thenm = xi for some i, see Theorem 6. While a lattice whose elements are principal is

trivially a sharp lattice (see Remark 5), the converse is true in a principally generated

lattice whose elements are compact, see Corollary 8.

In Section 3, we work in the setup of C-lattice domains generated by principal

elements (simply called lattices). It turns out that every nontrivial totally ordered

sharp lattice is isomorphic to the ideal lattice of a valuation domain with value

group Z or R, see Theorem 16. A nontrivial sharp lattice L is Prüfer (i.e., its

compacts are principal) of dimension one (see Theorem 17), thus, the localizations

at its maximal elements are totally ordered sharp lattices. The converse is true if L

has finite character (see Definition 18) because in this case (a : b)m = (am : bm) for

all a, b ∈ L − {0} and m ∈ Max(L), see Proposition 19. A countable sharp lattice

has all its elements principal, see Corollary 23.

For basic facts or terminology, our reference papers are [2] and [11].

2. Basic results

In this section, the term lattice means a C-lattice.

We begin by giving several characterizations for the sharp lattices. As usual, we

say that a divides b (denoted a | b) if b = ac for some c ∈ L.

Proposition 2. For a lattice L the following statements are equivalent:

(i) L is sharp.

(ii) a = (a : (a : b))(a : b) for all a, b ∈ L.

(iii) (a : b) | a for all a, b ∈ L.

(iv) (a : b) | a whenever a, b ∈ L, 0 < a < b < 1 and a is not a prime.

P r o o f. (i) ⇒ (iii) Since (a : (a : b))(a : b) 6 a, and L is sharp, we have

a factorization a = a1a2 with a1 > (a : (a : b)) and a2 > (a : b). We get

a2 6 (a : a1) 6 (a : (a : (a : b))) = (a : b) 6 a2,

where the equality is easy to check, so (a : b) = a2 divides a.

(iii) ⇒ (ii) From a = x(a : b) with x ∈ L, we get x 6 (a : (a : b)), so

a = x(a : b) 6 (a : (a : b))(a : b) 6 a.

(ii) ⇒ (i) Let a1, a2, b ∈ L with b > a1a2. By (ii) we get b = (b : (b : a1))(b : a1)

and clearly a1 6 (b : (b : a1)) and a2 6 (b : a1).
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(iv) ⇔ (iii) Follows from observing that:

(1) (a : b) = (a : (a ∨ b)) and (2) (a : b) ∈ {a, 1} if a is a prime. �

Proposition 3. If L is a sharp lattice and m ∈ L a maximal element, there is no

element properly between m and m2.

P r o o f. If m2 < x < m, then (x : m) = m, so (x : (x : m)) = m, thus

x = (x : m)(x : (x : m)) = m2, a contradiction, see Proposition 2. �

Recall that a ring R is a special primary ring if R has a unique maximal ideal M

and if each proper ideal of R is a power of M , see [9], page 206.

Corollary 4. The ideal lattice of a Noetherian commutative unitary ring R is

sharp if and only if R is a finite direct product of Dedekind domains and special

primary rings.

P r o o f. Combine Propositions 2 and 3 and [6], Theorem 39.2, Proposition 39.4.

�

Remark 5. Let L be a lattice.

(i) If all elements of L are weak meet principal, then L is sharp (see Proposition 2).

In particular, this happens when a ∧ b = ab for all a, b ∈ L.

(ii) If L is sharp, then every p ∈ L−{1} whose only divisors are p and 1 is a prime

element because (p : b) = p or 1 for all b ∈ L (see Proposition 2). The converse is

not true. Indeed, let L be the lattice 0 < a < b < c < 1 with a2 = b2 = ab = 0,

ac = a, bc = b, c2 = c. Here every x ∈ L − {c, 1} has nontrivial factors, while

the lattice is not sharp because (a : b) = b does not divide a.

(iii) A finite lattice 0 < a1 < . . . < an < 1, n > 2, is sharp provided a2i+1 > ai
for 1 6 i 6 n − 1. By Proposition 2 (iv), it suffices to show that whenever

(ai : aj) = ak with 1 6 i < j, k 6 n, it follows that ak divides ai. Indeed, from

(ai : aj) = ak we get ajak 6 ai 6 a2i+1 6 ajak, so ai = ajak.

(iv) Using similar arguments, it can be shown that a lattice whose poset is 0 < a <

b < c < 1 is sharp if and only if c2 > b and either b2 > a or (b2 = 0 and bc = a).

In this case, a computer search finds 13 sharp lattices out of 22 lattices.

We give the main result of this section.

Theorem 6. Let L be a sharp lattice.

(i) If x, y ∈ L are join principal elements and (x : y)∨(y : x) = x∨y, then x∨y = 1.

(ii) If (L,m) is local and m = x1 ∨ . . .∨ xn with x1, . . . ,xn join principal elements,

then m = xi for some i.
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P r o o f. (i) Since L is sharp and (x ∨ y)2 6 x2 ∨ y, we can factorize x2 ∨ y = ab

with x ∨ y 6 a ∧ b. Since x is join principal and (y : x) 6 x ∨ y, we get

x ∨ y 6 a 6 (x2 ∨ y) : b 6 (x2 ∨ y) : (x ∨ y) = (x2 ∨ y) : x = x ∨ (y : x) = x ∨ y.

Thus a = x∨ y = b, as a and b play symmetric roles. So x2 ∨ y = ab = (x∨ y)2. As y

is join principal and (x2 : y) 6 (x : y) 6 x ∨ y, we finally get

1 = ((x2 ∨ xy ∨ y2) : y) = (x2 : y) ∨ x ∨ y = x ∨ y.

(ii) Suppose that n > 2 and no xi can be deleted from the given representation

m = x1 ∨ . . . ∨ xn. It is straightforward to show that a factor lattice of a sharp

lattice is again sharp. Modding out by x3 ∨ . . .∨ xn, we may assume that n = 2. As

(x1 : x2) ∨ (x2 : x1) 6 m = x1 ∨ x2, we get a contradiction from (i). �

Before giving an application of Theorem 6, we insert a simple lemma.

Lemma 7. Let L be a sharp lattice and p ∈ L a prime element. If L is sharp,

then so is Lp.

P r o o f. Let a1, a2, b ∈ L with (a1a2)p 6 bp. As L is sharp, we have bp = c1c2 for

some ai 6 ci ∈ L (i = 1, 2), so bp = (c1c2)p and (ai)p 6 (ci)p. �

Following [3], we say that a lattice L is weak Noetherian if it is principally

generated and each x ∈ L is compact.

Corollary 8. Let L be a weak Noetherian lattice. Then L is sharp if and only if

its elements are principal.

P r o o f. The “only if part” is covered by Remark 5 (i). For the converse, pick

an arbitrary maximal element m ∈ L. It suffices to prove that m is principal,

see [3], Theorem 1.1. As m is compact, we can check this property locally (see [3],

Lemma 1.1), so we may assume that L is local (see Lemma 7). Apply Theorem 6 (ii)

to complete the proof. �
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3. Sharp lattice domains

In this section, the term lattice means a C-lattice domain generated by principal

elements.

First we introduce an ad-hoc definition.

Definition 9. A lattice L is a pseudo-Dedekind lattice if (x : a) is a principal

element whenever x, a ∈ L and x is principal.

Proposition 10. Every sharp lattice is pseudo-Dedekind.

P r o o f. The assertion follows from Proposition 2 because a factor of a nonzero

principal element is principal [3], Lemma 2.3. �

Example 11. There exist pseudo-Dedekind lattices which are not sharp. For

instance, let M be the (distributive) lattice of all ideals of the multiplicative monoid

N0 = N ∪ {0}, see [2], page 138. Every a ∈ M has the form a =
⋃

{yN0| y ∈ S}

for some S ⊆ N0. If x ∈ N0, then (xN0 : a) =
⋂

{(xN0 : yN0) : y ∈ S} = zN0 (for

some z ∈ N0) is a principal element. So M is a pseudo-Dedekind lattice. But M

is not sharp because for a = 4N0 ∪ 9N0 and b = 2N0 ∪ 3N0, we get (a : b) = b2

and (a : (a : b)) = b, so (a : b)(a : (a : b)) = b3 6= a. See also [1], Example 8 for

a ring-theoretic example of this kind.

A lattice L is a Prüfer lattice if every nonzero compact element of L is principal.

It is well known (see [2], Theorem 3.4) that L is a Prüfer lattice if and only if Lm is

totally ordered for each maximal element m.

Indeed, the “if part” follows from the fact that a locally principal nonzero compact

element is principal. For the converse, we may assume that L is a Prüfer local lattice.

Let a, b be principal nonzero elements of L. Then a ∨ b = c is compact, hence

principal. We get c = (a : c)c ∨ (b : c)c = ((a : c) ∨ (b : c))c, so 1 = (a : c) ∨ (b : c)

since c is cancellative. As L is local, one of the terms, say (a : c), equals 1, hence

b 6 c 6 a. So every two principal elements are comparable, thus, L is totally ordered.

We show that a sharp lattice is Prüfer.

Remark 12. If L is a pseudo-Dedekind lattice, then the set P of all principal

elements of L is a cancellative GCD monoid in the sense of [7], Section 10.2. Indeed,

the LCM of two elements x, y ∈ P is x ∧ y = y(x : y).

Proposition 13. Every sharp lattice is Prüfer.

P r o o f. As L is principally generated, it suffices to show that a∨ b is a principal

element for each pair of nonzero principal elements a, b ∈ L. Dividing a, b by

their GCD (see Remark 12), we may assume that (a : b) = a and (b : a) = b. Then

a ∨ b = 1 (see Theorem 6). �
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Example 14. Let Z− denote the set of all integers 6 0 together with the sym-

bol −∞. Then Z− is a lattice under the usual addition and order. Note that Z− is

isomorphic to the ideal lattice of a discrete valuation domain, so Z− is sharp.

Let R1 denote the set of all intervals (r,∞] and [r,∞] for r ∈ R>0 together

with {∞}. Then R1 is a lattice under the usual interval addition and inclusion.

To show that R1 is sharp, it suffices to check that a = (a : (a : b))(a : b) for all

a, b ∈ R1 − {{∞}} with a 6 b, see Proposition 2. This is done in the table below.

a b (a : b) (a : (a : b))

[r,∞] [t,∞] [r − t,∞] [t,∞]

(r,∞] (t,∞] [r − t,∞] (t,∞]

[r,∞] (t,∞] [r − t,∞] [t,∞]

(r,∞] [t,∞] (r − t,∞] [t,∞]

Note that R1 is isomorphic to the ideal lattice of a valuation domain with value

group R.

We embark to show that every nontrivial totally ordered sharp lattice is isomorphic

to Z− or R1 above. Although the following lemma is known, we insert a proof for

reader’s convenience.

Lemma 15. Let L 6= {0, 1} be a totally ordered lattice with maximal element m

and p ∈ L, 0 6= p 6= m, a prime element. Then

(i) p is not principal.

(ii) (z : (z : p)) = p for each nonzero principal element z 6 p.

(iii) If L is also pseudo-Dedekind, then Spec(L) = {0,m}.

P r o o f. As p 6= m, there exists a principal element p < y 6 m.

(i) As y is principal, we get p = y(p : y) = yp because p is a prime so p = (p : y).

Hence, p is not cancellative, so it is not principal.

(ii) Let z 6 p be a nonzero principal element. Note that (z : (z : p)) 6= 1, otherwise

zy = (z : p)y > (z : y)y = z, so zy = z, a contradiction because z is cancellative.

Since p 6 (z : (z : p)), it suffices to show that x 66 (z : (z : p)) for each principal

x 66 p. As p is prime, we have z 6 p < x2. If x 6 (z : (z : p)), then x(z : p) 6 z, so

z = x2(z : x2) 6 x2(z : p) 6 zx, hence z = zx, thus x = 1, a contradiction. �

Theorem 16. For a totally ordered lattice L 6= {0, 1}, the following are equiva-

lent:

(i) L is sharp.

(ii) L is pseudo-Dedekind.

(iii) L is isomorphic to Z− or R1 of Example 14.
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P r o o f. (i) ⇒ (ii) follows from Proposition 10.

(ii) ⇒ (iii) Let m be the maximal element of L. Let G be the monoid of nonzero

principal elements of L. Then G is a cancellative totally ordered monoid with respect

to the opposite of the order induced from L. Let a, b ∈ G. Since L is totally ordered,

we get that a divides b or b divides a. Moreover, since Spec(L) = {0,m} (see

Lemma 15), a divides some power of b. By [5], Proposition 2.1.1, the quotient

group of G can be embedded as an ordered subgroup K of (R,+); hence K is

cyclic or dense in R. If K is cyclic, it follows easily that L is isomorphic to Z−

of Example 14. Suppose that K is dense in R, so there exists an ordered monoid

embedding v : G → R>0 with dense image. We claim that v is onto. Deny, so

there exists a positive real g /∈ v(G). Let a ∈ G with v(a) > g and set b :=
∨

{x ∈ G : v(x) > g}. Since L is pseudo-Dedekind, it follows that c = (a : b) is

a principal element. On the other hand, a straightforward computation shows that

(3.1) c =
∨

{x ∈ G : v(x) > v(a)− g},

so v(c) > v(a)−g, in fact v(c) > v(a)−g because g /∈ v(G). As K is dense in R, there

exists d ∈ G with v(c) > v(d) > v(a) − g, so c < d. On the other hand, formula (1)

gives d 6 c, a contradiction. It remains that v(G) = R>0. Now it is easy to see

that sending [r,∞] into v−1(r) and (r,∞] into
∨

{x ∈ G : v(x) > r} we get a lattice

isomorphism from R1 to L.

(iii) ⇒ (i) follows from Example 14. �

We prove the main result of this paper.

Theorem 17. Let L 6= {0, 1} be a sharp lattice. Then Lm is isomorphic to Z−

or R1 (see Example 14) for every m ∈ Max(L) and L is a one-dimensional Prüfer

lattice.

P r o o f. As L is a Prüfer lattice (see Proposition 13), we may change L by Lm and

thus assume that L is totally ordered and sharp (see Lemma 7). Apply Theorem 16

and Lemma 15 to complete. �

We extend the concepts of “finite character” and “h-local” from integral domains

to lattices.

Definition 18. Let L be a lattice.

(i) L has finite character if every nonzero element is below only finitely many

maximal elements.

(ii) L is h-local if it has finite character and every nonzero prime element is below

a unique maximal element.
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The next result extends [10], Lemma 3.8 to lattices.

Proposition 19. Let L be an h-local lattice. If a, b ∈ L− {0} and m ∈ Max(L),

then (a : b)m = (am : bm).

P r o o f. We first prove two claims.

Claim 1 : If n ∈ Max(L)− {m}, then an 66 m.

Suppose that an 6 m. Let S be the set of all products bc, where b, c ∈ L are

compact elements with b 66 m and c 66 n. Note that S is multiplicatively closed.

Moreover, a is not above any member of S. Indeed, if bc 6 a and c 66 n, then

b 6 an 6 m. By [2], Theorem 2.2 and its proof, there exits a prime element p > a

such that p is not above any member of S. It follows that p 6 m ∧ n, which is

a contradiction because L is h-local. Indeed, if p 66 m, then b 66 m for a compact

b 6 p, so b = b · 1 ∈ S. Thus, Claim 1 is proved.

Claim 2 : The element s :=
∧

{an : n ∈ Max(L), n 6= m} is not below m.

Indeed, as L is h-local, a is below only finitely many maximal elements n1, . . . , nk

distinct from m, hence s = an1
∧ . . . ∧ ank

. By Claim 1, s is not below m, thus

Claim 2 is proved. To complete the proof, we use element s in Claim 2 as follows.

We have

sb(am : bm) 6
∧

{aq : q ∈ Max(L)} = a,

so s(am : bm) 6 (a : b), hence (am : bm) 6 (a : b)m because s 66 m. Since clearly

(a : b)m 6 (am : bm), we get the result. �

Theorem 20. For a finite character lattice L 6= {0, 1}, the following statements

are equivalent:

(i) L is sharp.

(ii) Lm is isomorphic to Z− or R1 (see Example 14) for every m ∈ Max(L).

P r o o f. (i) ⇒ (ii) is covered by Theorem 17.

(ii) ⇒ (i) From (ii) we derive that L has Krull dimension one, so L is h-local. Let

a, b ∈ L − {0}. It suffices to check locally the equality a = (a : (a : b))(a : b). But

this follows from Theorem 16 and Proposition 19. �

Say that elements a, b of a lattice L are comaximal if a ∨ b = 1. The following

result is [4], Lemma 4.

Lemma 21. Let L be a lattice and z ∈ L a compact element which is below

infinitely many maximal elements. There exists an infinite set {an : n > 1} of

pairwise comaximal proper compact elements such that z 6 an for each n.
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Proposition 22. Any countable pseudo-Dedekind Prüfer lattice L has finite char-

acter.

P r o o f. Suppose on the contrary there exists a nonzero element z ∈ L which is

below infinitely many maximal elements. Since L is principally generated, we may

assume that z is principal. By Lemma 21, there exists an infinite set (an)n>1 of

proper pairwise comaximal compact elements above z. As L is Prüfer, each an is

principal. Since L is countable, we get τ :=
∧

n∈A

an =
∧

n∈B

an for two nonempty

subsets B 6⊆ A of N. Pick k ∈ B − A, so ak > τ . Since every an is above z, we get

z = anbn for a nonzero principal element bn ∈ L and (z : bn) = an. We have

τ =
∧

n∈A

an =
∧

n∈A

(z : bn) =
(

z :
∨

n∈A

bn

)

,

so τ is a principal element because L is pseudo-Dedekind. From ak > τ we get

τ = akc for a nonzero principal element c ∈ L. Hence,

c 6 (τ : ak) =
∧

n∈A

(an : ak) =
∧

n∈A

an = τ = akc

because an ∨ ak = 1 for each n ∈ A. From akc = c, we get ak = 1, which is

a contradiction. �

A lattice L is a Dedekind lattice if every element of L is principal.

Corollary 23. A countable sharp lattice L is a Dedekind lattice.

P r o o f. Let m ∈ Max(L). As Lm is countable, Theorem 17 implies that Lm is

isomorphic to Z−, so each element of Lm is principal. By Proposition 22, L has finite

character. It follows easily that every element of L is compact and locally principal,

hence principal. �

Our concluding remark is in the spirit of [11], Remark 4.7.

Remark 24. Let L be a Prüfer lattice. Then L is modular because it is locally

totally ordered. By [2], Theorem 3.4, L is isomorphic to the lattice of ideals of some

Prüfer integral domain. In particular, it follows that a sharp lattice is isomorphic to

the lattice of ideals of some sharp integral domain.

Acknowledgement. We thank the referee whose suggestions improved the

quality of this paper.
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