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Keywords: graph energy; vertex cover number; matching number; bound

MSC 2020 : 05C50

1. Introduction

We consider finite, undirected, and simple graphs throughout this paper. Let G be

a graph with the vertex set V (G) and edge set E(G). By n(G) and m(G) we always

denote the numbers of vertices and edges in G, respectively. We also denote by NG(v)

the neighborhood of the vertex v in G. A vertex v is called isolated if |NG(v)| = 0.

We refer to the quantity |NG(v)| as the degree of v in G, and write ∆(G) for the

maximum vertex degree of G. As usual, let Kn, Kp,q (p+ q = n), Cn, and Pn denote

the complete graph, the complete bipartite graph, the cycle, and the path with n

vertices, respectively.

The vertex-disjoint union of two graphs G and H is denoted by G ∪ H , and the

vertex-disjoint union of k copies of G is written as kG. For a subset U of V (G), we

denote by G − U the graph obtained from G by deleting the vertices in U together

with all edges incident to them; in particular, if U = {v}, then we always write
G − v instead of G − {v}. For an induced subgraph F of G, we denote by G − F

the induced subgraph of G with the vertex set V (G)−V (F ), which is also called the
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complement of F in G. For a subset Ω of E(G), we denote by G − Ω the spanning

subgraph of G obtained by deleting all edges in Ω from G. If G − Ω is the union

of two complementary induced subgraphs, then Ω is called a cut set of G. For an

edge e with endpoints x and y, we sometimes denote it by xy. We also denote by [e]

or [xy] the subgraph of G induced by {x, y}. Notice that G − [e] or G − [xy] is the

subgraph of G obtained by deleting e as well as its two endpoints x and y from G.

A matching of a graphG is a set of edges with no shared endpoints. The maximum

number of edges in a matching of G is called the matching number of G and is

denoted by β(G); the corresponding matching is called a maximum matching of G.

If a matching covers all vertices in G, then it is called a perfect matching of G.

A vertex cover of a graph G is a set of vertices that contains at least one endpoint of

every edge in G. The minimum number of vertices in a vertex cover of G is called the

vertex cover number of G and is denoted by τ(G); the corresponding vertex cover is

called a minimum vertex cover of G.

The adjacency matrix of a graph G (of order n), denoted by A(G), is the n × n

matrix (aij) in which aij = 1 if the vertices vi and vj are adjacent, and aij = 0 other-

wise. The eigenvalues of A(G), denoted by λ1(G), λ2(G), . . . , λn(G), are referred to

as the eigenvalues of the graph G, which form the spectrum of G. The energy E(G)

of G is defined to be the sum of the absolute values of all its eigenvalues, namely,

E(G) =
n
∑

i=1

|λi(G)|.

The motivation for this definition comes from chemistry, where the first results on

graph energy were reported as early as the 1940s, see [6]. However, in the last two

decades research on graph energy has much intensified, and a large number of results

on graph energy have been obtained; for details see a recent book [13] by Li, Shi and

Gutman.

Here, we are mainly concerned with the bounds on graph energy. One of early

and classical upper bounds on graph energy was due to McClelland (see [14]), who

showed that if G is a graph with n vertices and m edges, then

(1.1) E(G) 6
√
2mn

with equality if and only if G is either an empty graph or a regular graph of degree

one. After the bound (1.1), various upper bounds on E(G) were obtained; for exam-

ple, Wang and Ma in [17] proved that if G is a graph with vertex cover number τ

and maximum vertex degree ∆, then

(1.2) E(G) 6 2τ
√
∆
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with equality if and only if G is the vertex-disjoint union of τ copies of K1,∆ together

with some possible isolated vertices. For some other results on this aspect, one can

refer to the papers [4], [12], [15], [16], [19], [20] and the book [13].

As for the lower bounds on graph energy, Caporossi et al. in [4] showed that for

any graph G with m edges,

(1.3) E(G) > 2
√
m

with equality if and only if G is a complete bipartite graph plus arbitrarily many

isolated vertices. For some other lower bounds on graph energy one may refer to [1],

[2], [3], [8], [11], [13], [14], [16] and the references cited therein. Recently, Wang and

Ma in [17] proved that if G is a bipartite graph, then

(1.4) E(G) > 2β(G)

with equality if and only if G is the vertex-disjoint union of some complete bipartite

graphs with perfect matchings and some possible isolated vertices. Wong et al.

in [18] further extended the lower bound (1.4) to general graphs and gave a partial

characterization of the graphs which attain the bound, i.e., if all cycles (if any) of G

are pairwise vertex-disjoint, then E(G) = 2β(G) if and only if G is the disjoint union

of some copies of K2 and some copies of C4 together with some isolated vertices.

In this note, we continue the study of upper and lower bounds on graph energy in

terms of the vertex cover number or matching number. We shall give a novel upper

bound on E(G) in terms of the vertex cover number, which improves the bound (1.2).

We also present a complete characterization of the graphs satisfying E(G) = 2β(G).

2. Lemmas and results

We first list some necessary lemmas. Let r(B) denote the rank of a matrix B.

The rank of a graph G, denoted by r(G), is defined to be the rank of its adjacency

matrix A(G), that is, r(G) = r(A(G)).

Lemma 1 ([10]). Let X1, X2, . . . , Xt be matrices of the same size, and let X =

X1 +X2 + . . .+Xt. Then r(X) 6 r(X1) + r(X2) + . . .+ r(Xt).

Lemma 2 ([5]). Let G1, G2, . . . , Gt be graphs and G = G1 ∪G2 ∪ . . .∪Gt. Then

r(G) = r(G1) + r(G2) + . . .+ r(Gt).

Lemma 3 ([5]). If G is a graph of order n > 2, then r(G) = 2 if and only if G is

a complete bipartite graph.
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Lemma 4 ([9]). If Ω is a cut set of a graph G, then E(G − Ω) 6 E(G).

Lemma 5 ([9]). If F is an induced subgraph of a graph G, then E(F ) 6 E(G)

with equality if and only if every edge of G is that of F .

Now we are ready to give the main results of this note.

Proposition 6. If G is a graph with r(G) = r and τ(G) = τ , then r 6 2τ .

P r o o f. Without loss of generality, suppose that {v1, v2, . . . , vτ} is a minimum
vertex cover of the graph G. Let G1, G2, . . . , Gτ be spanning subgraphs of G such

that

E(G1) = {v1vk : vk ∈ NG(v1)}

and

E(Gi) = {vivk : vk ∈ (NG(vi)− {v1, . . . , vi−1})}, i = 2, . . . , τ.

It is easy to see that E(Gi) ∩E(Gj) = ∅ for any i 6= j, and

E(G) = E(G1) ∪ E(G2) ∪ . . . ∪ E(Gτ ).

Therefore, we obtain

A(G) = A(G1) +A(G2) + . . .+A(Gτ ).

Consequently, by Lemma 1, we have

(2.1) r(G) 6 r(G1) + r(G2) + . . .+ r(Gτ ).

On the other hand, we can easily see that

Gi
∼= K1,mi

∪ (n−mi − 1)K1,

where i = 1, 2, . . . , τ and mi = |E(Gi)|. Moreover, by Lemmas 2 and 3, we have

r(Gi) = r(K1,mi
) = 2, i = 1, 2, . . . , τ,

which, together with (2.1), yields the desired result, completing the proof. �

Proposition 7. If G is a graph with m > 1 edges and r(G) = r, then

E(G) 6
√
2mr with equality if and only if r is even and, G is the vertex-disjoint

union of r/2 complete bipartite graphs Kpi,qi with piqi = 2m/r (i = 1, . . . , r/2) and

some possible isolated vertices.
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P r o o f. Without loss of generality, suppose that λ1, λ2, . . . , λr are the nonzero

eigenvalues of G such that λ1 > λ2 > . . . > λr. It is well known that λ
2
1 + λ2

2 + . . .+

λ2
r = 2m. Thus, by the definition of E(G) and the Cauchy-Schwarz inequality, we

have

E(G) =

r
∑

i=1

|λi| 6

√

√

√

√r

r
∑

i=1

λ2
i =

√
2mr

with equality if and only if |λ1| = |λ2| = . . . = |λr | =
√

2m/r.

To complete the proof, we now just need to prove that |λ1| = |λ2| = . . . = |λr | =
√

2m/r if and only if r is even and G has r/2 nontrivial connected components,

which are complete bipartite graphs Kpi,qi with piqi = 2m/r (i = 1, . . . , r/2).

Suppose first that |λ1| = |λ2| = . . . = |λr| =
√

2m/r. Then for k = 1, 2, . . . , r, λk

is equal to
√

2m/r or −
√

2m/r. Bearing in mind that λ1 + λ2 + . . . + λr = 0, one

may conclude that r must be even and

λ1 = . . . = λr/2 =
√

2m/r and λr/2+1 = . . . = λr = −
√

2m/r.

Moreover, the Perron-Frobenius theorem tells us that the largest eigenvalue of a con-

nected graph is simple (see, e.g. [7], Theorem 1.3.6, page 15). Therefore, each non-

trivial connected component C of G has only one positive eigenvalue
√

2m/r and

one negative eigenvalue −
√

2m/r, which, together with Lemma 3, yields that C is

a complete bipartite graph Kp,q with pq = 2m/r. Also, it is easy to see that G

has r/2 such nontrivial connected components.

Conversely, if r is even and G has r/2 nontrivial connected components, which are

complete bipartite graphs Kpi,qi with piqi = 2m/r (i = 1, . . . , r/2), then it is clear

that |λ1| = |λ2| = . . . = |λr | =
√

2m/r.

This completes the proof. �

Propositions 6 and 7 yield an upper bound on graph energy in terms of the vertex

cover number.

Theorem 8. If G is a graph with m > 1 edges and τ(G) = τ , then

(2.2) E(G) 6 2
√
mτ

with equality if and only if G is the vertex-disjoint union of τ copies of K1,m/τ

together with some possible isolated vertices.

P r o o f. Set r(G) = r for convenience. From Propositions 6 and 7, it follows that

(2.3) E(G) 6
√
2mr 6 2

√
mτ,

as desired.
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Moreover, if G is the vertex-disjoint union of τ copies of K1,m/τ together with

some possible isolated vertices, then E(G) = τE(K1,m/τ ) = 2
√
mτ , i.e., the equality

holds in (2.2).

Conversely, if the equality holds in (2.2), then by (2.3), we have E(G) =
√
2mr

and r = 2τ , which imply that G is the vertex-disjoint union of τ complete bipartite

graphs Kpi,qi with piqi = m/τ (i = 1, . . . , τ) and some possible isolated vertices

(by Proposition 7). For i = 1, . . . , τ , without loss of generality, suppose that pi 6 qi.

Then we have τ(Kpi,qi) = pi > 1 and hence,

τ = τ(G) = τ(Kp1,q1) + . . .+ τ(Kpτ ,qτ ) = p1 + . . .+ pτ ,

which yields that p1 = . . . = pτ = 1 and q1 = . . . = qτ = m/τ . Consequently, we

may conclude that G is the vertex-disjoint union of τ copies of K1,m/τ together with

some possible isolated vertices.

The proof of Theorem 8 is completed. �

From the definition of vertex cover, it is easily seen that the number of edges in

a graph G does not exceed the sum of degrees of the vertices in any of its vertex

covers. Therefore, we have m 6 τ∆, which implies that the upper bound (2.2) is

better than the upper bound (1.2).

The next result gives a lower bound on graph energy in terms of the matching

number.

Theorem 9. For any graph G,

(2.4) E(G) > 2β(G)

with equality if and only if G is the vertex-disjoint union of some complete bipartite

graphs with perfect matchings and some possible isolated vertices.

P r o o f. It should be mentioned that the inequality (2.4) has been proven in [18].

But for completeness, we reprove this inequality here. In addition, a noncomplete

characterization of the graphs for which the equality holds in (2.4) was also given

in [18]. We here present a complete one by using the method of Wang and Ma which

was used in the case of bipartite graphs (see [17]), with some necessary modification.

We first prove the inequality (2.4). Clearly, if β(G) = 1, the unique nontrivial

connected component ofG isK3 orK1,q (q > 1). Furthermore, it is easy to check that

E(K3) = 4 > 2β(K3) or E(K1,q) = 2
√
q > 2β(K1,q). Therefore, the inequality (2.4)

holds for β(G) = 1.
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If β(G) > 2, we may assume, for contradiction, that G is a graph with E(G) <

2β(G) and has the minimum possible matching number. The minimality of G yields

that

(2.5) if there is a graph G∗ satisfying β(G∗) < β(G), then E(G∗) > 2β(G∗).

Let M be a maximum matching of G with e ∈ M , and let Ω be the cut set such

that G− Ω ∼= [e] ∪ (G− [e]), that is, the set of edges which are incident to e. Since

M −{e} is a matching of G− [e], we have β(G− [e]) > β(G)− 1. On the other hand,

since the union of a maximum matching of G − [e] and {e} is a matching of G, we
have β(G− [e]) + 1 6 β(G). Thus, it follows that β(G− [e]) = β(G)− 1 < β(G) and

consequently, by (2.5) we obtain E(G− [e]) > 2β(G− [e]). However, by Lemma 4,

E(G) > E(G− Ω) = E([e]) + E(G − [e]) > 2 + 2β(G− [e]) = 2β(G),

contradicting the assumption E(G) < 2β(G). This proves that the inequality (2.4)

holds for β(G) > 2 as well, completing the proof of the inequality (2.4).

We next discuss the equality case of the inequality (2.4). We first suppose that G

is the vertex-disjoint union of some complete bipartite graphs with perfect match-

ings and some possible isolated vertices. That is to say, every nontrivial connected

component of G is a complete bipartite graph with a perfect matching, say Kp,p.

Moreover, we have E(Kp,p) = 2p = 2β(Kp,p) and hence, the equality holds in (2.4).

Conversely, if E(G) = 2β(G), we shall prove that each nontrivial connected com-

ponent of G is a complete bipartite graph with a perfect matching. Without loss of

generality, we can suppose that G1, . . . , Gt (t > 1) are all the nontrivial connected

components of G. Noting that the inequality (2.4) yields that E(Gi) > 2β(Gi) for

each i ∈ {1, . . . , t}, we have

2β(G) = E(G) = E(G1) + . . .+ E(Gt) > 2β(G1) + . . .+ 2β(Gt) = 2β(G),

which implies that

(2.6) E(Gi) = 2β(Gi), i = 1, . . . , t.

Claim 1. Gi (i = 1, . . . , t) has a perfect matching.

P r o o f of Claim 1. Indeed, if Gi has no perfect matching, then there exists

a vertex vi ∈ Gi not covered by a maximum matching of Gi and hence, β(Gi− vi) =

2β(Gi). Furthermore, by Lemma 5 and the inequality (2.4), we obtain

E(Gi) > E(Gi − vi) > 2β(Gi − vi) = 2β(Gi),

which contradicts (2.6). Thus, Claim 1 holds. �
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Claim 2. Gi (i = 1, . . . , t) is a complete bipartite graph.

P r o o f of Claim 2. Clearly, if β(Gi) = 1, noting that Gi has a perfect matching,

we can easily see that Gi must be the complete bipartite graph K1,1. �

If β(Gi) = 2, then by (1.3) and (2.6), we have m(Gi) 6 (E(Gi)/2)
2 = β(Gi)

2 = 4,

from which we may conclude that Gi must be P4, K2,2 or K
+
1,3, where K

+
1,3 is the

graph obtained from K1,3 by joining two of its vertices of degree one. Further, by

a direct calculation, we have E(P4) ≈ 4.472 > 2β(P4), E(K2,2) = 4 = 2β(K2,2), and

E(K+
1,3) ≈ 4.962 > 2β(K+

1,3), which yield that Gi must be the complete bipartite

graph K2,2.

If β(Gi) > 3, we may assume, for contradiction, that Gi is not a complete bipartite

graph. We can further suppose, without loss of generality, that Gi has the minimum

possible matching number. The minimality of Gi yields that

if there is a connected graph G∗∗ with a perfect matching such that(2.7)

E(G∗∗) = 2β(G∗∗) and β(G∗∗) < β(Gi),

then G∗∗ must be a complete bipartite graph.

Now, let Mi be a perfect matching of Gi with ei ∈ Mi, and let Hi = Gi − [ei]. It

is easy to see that Mi − {ei} is a perfect matching of Hi and hence,

(2.8) β(Hi) = β(Gi)− 1 < β(Gi).

We will further prove that Hi is a complete bipartite graph. Indeed, by (2.7) we just

need to show that Hi is a connected graph with E(Hi) = 2β(Hi).

First, let Ωi be the cut set such that Gi − Ωi
∼= [ei] ∪ Hi. Noting that the

inequality (2.4) gives that E(Hi) > 2β(Hi), and by (2.6), (2.8), and Lemma 4, we

have

2β(Gi) = E(Gi) > E(Gi − Ωi) = E([ei]) + E(Hi) > 2 + 2β(Hi) = 2β(Gi),

which yields that E(Hi) = 2β(Hi).

Second, we will show that Hi is a connected graph. Assume for contradiction

that H
(1)
i , H

(2)
i , . . . , H

(s)
i (s > 2) are all the connected components of Hi. Clearly,

H
(j)
i (j = 1, 2, . . . , s) has a perfect matching, and by the same arguments as we

proved (2.6), we can obtain

(2.9) E(H(j)
i ) = 2β(H

(j)
i ).
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Also, letK
(j)
i = Gi−H

(j)
i and let Ω

(j)
i be the cut set such that Gi−Ω

(j)
i

∼= H
(j)
i ∪K(j)

i .

It is easy to check that K
(j)
i is a connected graph with a perfect matching and

(2.10) β(K
(j)
i ) = β(Gi)− β(H

(j)
i ) < β(Gi).

Thus, noting that the inequality (2.4) gives that E(K(j)
i ) > 2β(K

(j)
i ), and by (2.6),

(2.9), (2.10), and Lemma 4, we have

2β(Gi) = E(Gi) > E(Gi−Ω
(j)
i ) = E(H(j)

i )+E(K(j)
i ) > 2β(H

(j)
i )+2β(K

(j)
i ) = 2β(Gi),

which yields that E(K(j)
i ) = 2β(K

(j)
i ). Now, by combining the above arguments, we

see that K
(j)
i is exactly a graph satisfying the condition in (2.7) and hence, K

(j)
i

must be a complete bipartite graph. This also implies that s = 2. Further, we let

e′i ∈ Mi∩E(H
(1)
i ), H ′

i = Gi− [e′i], and Ω
′

i be the cut set such that Gi−Ω′

i
∼= [e′i]∪H ′

i.

By the same arguments as done onHi, we can derive thatH
′

i is a graph with a perfect

matching such that E(H ′

i) = 2β(H ′

i) and β(H ′

i) < β(Gi). Also, since both K
(1)
i

and K
(2)
i are complete bipartite graphs, we can deduce that H ′

i is connected. Thus,

H ′

i is also a graph satisfying the condition in (2.7) and hence, H
′

i must be a complete

bipartite graph. This, as well as the fact that H
(1)
i has a perfect matching, implies

that H
(1)
i

∼= K1,1. Similarly, we obtain H
(2)
i

∼= K1,1. Now, bearing in mind that

Gi − [ei] = Hi
∼= H

(1)
i ∪H

(2)
i and Gi −H

(j)
i = K

(j)
i (j = 1, 2) is a complete bipartite

graph, we may conclude that Gi −H
(j)
i

∼= K2,2 (j = 1, 2) and consequently, Gi must

be isomorphic to the graph C+
6 (see Figure 1 (a), where the middle vertical edge

is ei). However, a direct calculation shows that E(C+
6 ) ≈ 7.6568 > 2β(C+

6 ), which

contradicts (2.6). This proves that Hi is a connected graph.

(a) C+
6 (b) G#

Figure 1. The graphs C+6 and G
#

We can now complete this proof by showing that Gi must be a complete bipartite

graph for β(Gi) > 3 (contradicting the previous assumption). Since Hi has proven

to be a complete bipartite graph with a perfect matching, we can suppose, without

loss of generality, that {x(1)
i , x

(2)
i , . . . , x

(βi−1)
i } and {y(1)i , y

(2)
i , . . . , y

(βi−1)
i } are the
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two partite sets of Hi, and let ei = x
(βi)
i y

(βi)
i , where βi = β(Gi) > 3. Note that

{x(1)
i y

(1)
i , x

(2)
i y

(2)
i , . . . , x

(βi)
i y

(βi)
i } is a perfect matching of Gi, and by the same argu-

ments as done on Hi, we can deduce that Gi − [x
(k)
i y

(k)
i ] (k = 1, 2, . . . , βi − 1) is also

a complete bipartite graph with a perfect matching.

If βi = 3, then it is easy to check that Gi − [x
(l)
i y

(l)
i ] (l = 1, 2, 3) is isomorphic

to K2,2. This implies that x
(3)
i must be adjacent to exactly one vertex of each edge

in {x(1)
i y

(1)
i , x

(2)
i y

(2)
i } and y

(3)
i must be adjacent to the other two vertices that are

not adjacent to x
(3)
i . Further, if x

(3)
i is adjacent to the two vertices x

(1)
i and x

(2)
i

(or y
(1)
i and y

(2)
i ), then Gi

∼= K3,3; otherwise, Gi
∼= G# (see Figure 1 (b)). Now, by

a direct calculation, we have E(K3,3) = 6 = 2β(K3,3) and E(G#) = 8 > 2β(G#),

which yield that Gi must be the complete bipartite graph K3,3, as desired.

If βi > 4, then we see that Hi− [x
(1)
i y

(1)
i ]− [x

(2)
i y

(2)
i ] is a complete bipartite graph

with the two partite sets being {x(3)
i , . . . , x

(βi−1)
i } and {y(3)i , . . . , y

(βi−1)
i }. Moreover,

since Gi − [x
(1)
i y

(1)
i ] is a complete bipartite graph, Gi − [x

(1)
i y

(1)
i ] − [x

(2)
i y

(2)
i ] is

also a complete bipartite graph, whose partite sets are {x(3)
i , . . . , x

(βi−1)
i , x

(βi)
i } and

{y(3)i , . . . , y
(βi−1)
i , y

(βi)
i }, or {x(3)

i , . . . , x
(βi−1)
i , y

(βi)
i } and {y(3)i , . . . , y

(βi−1)
i , x

(βi)
i }.

This yields that Gi must be the complete bipartite graph Kβi,βi
(whose partite

sets are {x(1)
i , x

(2)
i , x

(3)
i , . . . , x

(βi−1)
i , x

(βi)
i } and {x(1)

i , x
(2)
i , x

(3)
i , . . . , y

(βi−1)
i , y

(βi)
i },

or {x(1)
i , x

(2)
i , x

(3)
i , . . . , x

(βi−1)
i , y

(βi)
i } and {x(1)

i , x
(2)
i , x

(3)
i , . . . , y

(βi−1)
i , x

(βi)
i }), as re-

quired.

The proof of Theorem 9 is thus completed. �
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