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Abstract. In the present article, we consider a nonlinear time fractional system of variant
Boussinesq-Burgers equations. Using Lie group analysis, we derive the infinitesimal groups
of transformations containing some arbitrary constants. Next, we obtain the system of
optimal algebras for the symmetry group of transformations. Afterward, we consider one of
the optimal algebras and construct similarity variables, which reduces the given system of
fractional partial differential equations (FPDEs) to fractional ordinary differential equations
(FODEs). Further, under the invariance condition we construct the exact solution and
the physical significance of the solution is investigated graphically. Finally, we study the
conservation law of the system of equations.
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1. Introduction

The fractional differential equation (FDEs) and it applications for modeling of

nonlinear physical phenomena has been the topic of great interest among the scientific

researchers in the recent year. The concept of fractional order derivatives and it

development starts with the letter of L’Hopital to Leibniz asking, for the nth order

derivative of the linear function f(x) = x is Dnx/Dxn, what would be the result if

n = 1/2? In reality, the description of a complex nonlinear physical phenomenon and

it dynamic processes depends not only on its current state but also on its historical
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states (nonlocal property), which can be successfully modelled using the theory of

derivatives and integrals of fractional order (see [16], [9], [26], [2]).

The variant Boussinesq type of equations are the class of nonlinear evolution equa-

tions with many applications in physical sciences and engineering fields. For exam-

ple, in plasma physics, these equations give rise to the ion acoustic solitons [24], [21];

in geophysical fluid dynamics, they describe a long wave in shallow seas and deep

oceans [20], etc. In particular, the time fractional variant Boussinesq-Burger system

is an evolution equations for surface water waves with weak nonlinearity and weak

dispersion. This model with the structure of horizontal and vertical flow velocity is

very helpful in the study of coastal hydrodynamics.

In order to understand the complete physical phenomena in a better way, it is

very essential to solve them exactly. On the contrary, it is extremely hard to get

the exact solution. During the last decade, many mathematicians and physicists

have devoted considerable effort to find the numerical as well as analytical solutions

for the FPDEs. In order to obtain the numerical solutions, different techniques are

used by various researchers; for example, the homotopy analysis method [19], the

homotopy perturbation method [6], the Adomian decomposition method [29], [30],

and the variational iteration method [10].

Although many scientific researchers have studied the variant Boussinesq-Burger

system in different prospectives, the group invariance properties of the time frac-

tional variant Boussinesq-Burger system are much less understood and scientific

researchers are actively working in this field. Lie group analysis is one of the most

powerful and systematic techniques to handle such problems. The symmetry group

of transformations and invariance properties of FPDEs is discussed in [4], [8]. On

the contrary, the authors in [17], [3], [18], [28], [11] studied the group classifica-

tion, symmetry reductions and exact solutions of FPDEs arising in many physical

phenomena. For the explicit and exact solutions of the variant Boussinesq system,

the reader is referred to [25], [27], [7]. The authors in [15], [12] discussed the lump,

breather and solitary wave solutions, while for the optical solitons of various physical

models, we referred to [14], [13].

The work in this article is represented as follows: in Section 2, from the application

of Lie group analysis, the symmetric group of transformations under which the given

equation remains invariant are derived. Next, depending on the parameters in the

transformations, a set of optimal algebras is obtained in Section 3. In Section 4,

the symmetry reduction is presented, whereas derivation of the exact solution of

the FPDEs through one of the optimal algebras and the discussion of the nonlinear

property of the solution with respect to fractional order α with the help of 2D and

3D-plots is placed in Section 5. Further, the conservation laws of a given equation

are studied in Section 6 and finally we give our brief conclusion in Section 7.

438



2. Symmetry group of transformations

The time fractional variant Boussinesq-Burgers equations [19], which were derived

by Sachs [23] in the year 1988 as a model for water waves is considered as follows:

(2.1)
∂αu

∂tα
+ uvx + vux + vxxx = 0,

∂αv

∂tα
+ ux + vvx = 0,

where u(x, t) denotes the height of the water surface above the horizontal level at

the bottom, v(x, t) horizontal velocity and α is the parameter standing for the order

of the fractional time derivative and satisfying 0 < α < 1.

The Lie group of point transformations (see, [8], [3], [22]) which leaves the system

of FPDEs (2.1) invariant and is useful to reduce FPDEs to FODEs as well as to find

invariant solutions is given by

x∗ = x+ εξx(x, t, u) +O(ε2),(2.2)

t∗ = t+ εξt(x, t, u) +O(ε2),

u∗ = u+ εηu(x, t, u) +O(ε2),

v∗ = v + εηv(x, t, u) +O(ε2),

where ξx, ξt, ηu and ηv in (2.2) are the infinitesimals Lie group of transformations

and they are to be determined.

From straightforward analysis and tedious calculation, we obtain the infinitesimals

as follows:

ξx = αC2x+ C3, ξt = 2C2t+ C1, ηu = −2αC2u, ηv = −αC2v,

where C1, C2, and C3 are arbitrary constants. The infinitesimal generators associated

with C1, C2, and C3 are given as follows:

V1 =
∂

∂t
, V2 = αx

∂

∂x
+ 2t

∂

∂t
− 2αu

∂

∂u
− αv

∂

∂v
, V3 =

∂

∂x
.

The form of the operators Vi, i = 1, 2, 3, suggests their signification, as V1 and V3

generate the symmetry of time and space translations, respectively, whereas V2 is

associated with the scaling transformations.
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3. Optimal algebra

3.1. Commutator table. In order to calculate the invariant, we first construct

the commutative table for the vector fields such that [Vi, Vj ] = ViVj − VjVi, where i

and j represent the row and column, respectively.

∗ V1 V2 V3

V1 0 2V1 0

V2 −2V1 0 −αV3

V3 0 αV3 0

Considering X =
3∑

i=1

aiVi and Y =
3∑

j=1

bjVj , we write the adjoint operator as

Adexp(εY )X = (a1V1 + a2V2 + a3V3)− ε(θ1V1 + θ2V2 + θ3V3) +O(ε2).

3.2. Adjoint table. The adjoint representation of the vector operators X and Y

is given by

(3.1) Adexp(εY )X = e−εY XeεY = X − ε[Y,X ] +
1

2!
ε2[Y, [Y,X ]]− . . .

From equation (3.1), we obtain the following adjoint table:

Adj V1 V2 V3

V1 V1 V2 − 2εV1 V3

V2 e2εV1 V2 eεαV3 −X4

V3 V1 V2 − 2ε2V3 V3

Then we take the adjoint action of Vi on Vi and construct the following matrices.

Let us take

(3.2) Adexp(ε1V1)Vi = Adexp(ε1V1)(a1V1 + a2V2 + a3V3)

= (a1 − 2a2ε1)X1 + a2X2 + a3X3.

The matrix corresponding to equation (3.2) is given by:

(3.3) A1 =




1 0 0

−2ε1 1 0

0 0 1




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Similarly, one can construct the matrices A2 and A3 for the adjoint action of V2

and V3 on Vi, respectively, as shown below:

A2 =




e2ε2 0 0

0 1 0

0 0 eαε2


 and A3 =




1 0 0

0 1 −ε23
0 0 1


 .

Further, the general adjoint transformation matrix A is written as

A = A1A2A3 =




e2ε2 0 0

−2ε1e
2ε2 1 −ε23

0 0 eαε2



 .

3.3. Optimal algebra. We classify the optimal by using the adjoint transforma-

tion equations as:

(3.4) (a∗1, a
∗

2, a
∗

3) = (a1, a2, a3)A.

Solving equation (3.4) for different case, finally we get that the optimal algebras are

V1, V2, and V3.

4. Symmetry reduction

For the similarity reduction of equation (2.1), let us consider the optimal algebra V2

and we get the corresponding characteristic equations as

dx

αx
=

dt

2t
= −

du

2αu
= −

dv

αv
,

and the corresponding similarity variables are obtained as

(4.1) η = xt−α/2, u = t−αU(η), v = t−α/2V (η).

Using the similarity variables from (4.1) and in the sense of Riemann Liouville

derivatives, the equation (2.1) can be reduced to a nonlinear ODE of fractional order

through the following theorem.

Theorem 4.1. The transformation (4.1) reduces (2.1) to the following nonlinear

ordinary differential equation of fractional order:

(P 1−2α,n−α
2/α U)(η) + UVη + V Uη + Vηηη = 0,(4.2)

(P
1−3α/2,n−α
2/α V )(η) + Uη + V Vη = 0,
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with the Erdélyi-Kober fractional differential operator P τ,α
β of order:

(P τ,α
β ) =

n−1∏

j=0

(
τ + j −

1

β
ξ
d

dξ

)
(Kτ+α,n−α

β U)(η),(4.3)

n =

{
[α] + 1, α /∈ N

α, α ∈ N,

where

(Kτ,α
β U)(η) =





1

Γ(α)

∫
∞

1 (u− 1)α−1u−(τ+α)U(ηu1/β) du, α > 0

U(η), α = 0,

and

(Kτ,α
β V )(η) =






1

Γ(α)

∫
∞

1
(v − 1)α−1v−(τ+α)V (ηv1/β) dv, α > 0

V (η), α = 0,

is the Erdélyi-Kober fractional integral operator.

P r o o f. Let α be such that α ∈ (n, n+1), where n ∈ N . Then using the Riemann

Liouville derivative, we obtain

(4.4)
∂αu

∂tα
=

∂n

∂tn

[
1

Γ(n− α)

∫ t

0

(t− s)n−α−1s−αU(xs−α/2) ds

]
.

Consider h = t/s, from which it follows that ds = −th−2 dh and hence equation (4.4)

can be written as

(4.5)
∂αu

∂tα
=

∂n

∂tn

[
tn−2α 1

Γ(n− α)

∫
∞

1

(h− 1)n−α−1h−(n−2α+1)U(ηhα/2) dh

]

=
∂n

∂tn
[tn−2α(K1−α,n−α

α/2 U)(η)],

where

(K1−α,n−α
α/2 U)(η) =

1

Γ(n− α)

∫
∞

1

(h− 1)n−α−1h−(n−2α+1)U(ηhα/2) dh.

From the relation η = xt−α/2, one can obtain

(4.6) t
∂

∂t
ϕ(η) = t

∂η

∂t
ϕ′(η) = tx

(
−α

2

)
t−α/2−1ϕ′(η) =

−α

2
ηϕ′(η).
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Using (4.6) in (4.5), we obtain

∂n

∂tn
[tn−2α(K1−α,n−α

α/2 U)(η)] =
∂n−1

∂tn−1

[ ∂

∂t
(tn−2α(K1−α,n−α

α/2 U)(η))
]

=
∂n−1

∂tn−1

[
tn−2α

(
n− 2α−

α

2
η
d

dη

)
(K1−α,n−α

α/2 U)(η)
]
.

One can repeat the above procedure to get the following:

∂n

∂tn
[tn−2α(K1−α,n−α

α/2 U)(η)] =
∂n−1

∂tn−1

[ ∂

∂t
(tn−2α(K1−α,n−α

α/2 U)(η))
]

=
∂n−1

∂tn−1

[
tn−2α

(
n− 2α−

α

2
η
d

dη

)
(K1−α,n−α

α/2 U)(η)
]

= t−2α
n−1∏

j=0

(
n− 2α+ j −

α

2
η
d

dη

)
(K1−α,n−α

α/2 U)(η),

which yields

∂n

∂tn
[tn−2α(K1−α,n−α

α/2 U)(η)] = t−2α(P 1−2α,n−α
2/α U)(η).

and hence, we obtain

(4.7)
∂αu

∂tα
= t−2α(P 1−2α,n−α

2/α U)(η).

Similarly, for the second equation following the above procedure, we get

(4.8)
∂αv

∂tα
= t−3α/2(P

1−3α/2,n−α
2/α V )(η).

Finally, using (4.8), (4.7), and (4.1), in (2.1) one can obtain the reduced system of

fractional order ODEs (4.2). �

5. Exact solution

In this section, we discuss the analytical solution of the time-fractional variant

Boussinesq-Burger’s equations (2.1). For that, let us derive the fractional derivative

operators for the given system of fractional order PDEs by considering c = α/2,

d = α = β (for details see [5]) and hence, we obtain

(5.1)
∂βu

∂tβ
= t−2α

[(
1− d− β − cη

d

dη

)
(F−d,c

β U)(η)
]
.
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Similarly for v = V t−c, and η = xt−c where c = α/2 and by carrying out the analysis

as above, we get

(5.2)
∂βv

∂tβ
= t−3α/2

[(
1− c− β − cη

d

dη

)
(F−c,c

β U
)
(η)

]
.

Further, the reduced system of fractional order ODEs can be written as

[(
1− 2α−

α

2
η
d

dη

)
(F

−α,α/2
β U)(η)

]
+ UVη + V Uη + Vηηη = 0,(5.3)

[(
1−

3α

2
−

α

2
η
d

dη

)
(F

−α/2,α/2
β U)(η)

]
+ Uη + V Vη = 0.

For the similarity solution let us first introduce functions as below

(5.4) U(η) = Aηa, V (η) = Bηb, η = xt−c,

where the parameters A, B, a, and b are arbitrary real constants which are to be

determined and c = α/2. If we substitute (5.4) in (5.3), we get

Γ(1− α−
1
2aα)

Γ(2 − 2α−
1
2aα)

Aηa +ABbηa+b−1 +ABaηa+b−1 +Bb(b− 1)(b− 2)ηb−3 = 0,(5.5)

Γ(1− 1
2 (1 + b)α)

Γ(2− α−
1
2 (1 + b)α)

Bηb +Aaηa−1 +B2bη2b−1 = 0.

The exact group invariant solutions will exist iff the equation (5.5) remains in-

variant with respect to η. The second equation of the above system of equations

will remain invariant with respect to η if a = 2b and the first equation will remain

invariant with respect to η if b = 1. Hence we can obtain the particular solution

of (5.5), for a = 2 and b = 1.

Using a = 2 and b = 1 in (5.5), we get

A = −
Γ(1− 2α)

6Γ(2− 3α)

[ Γ(1− 2α)

3Γ(2− 3α)
−

Γ(1− α)

Γ(2− 2α)

]
,

B = −

[ Γ(1− 2α)

3Γ(2− 3α)

]
.

Hence, the particular exact solution of (2.1) can be given as

u(x, t) = −
Γ(1− 2α)

6Γ(2− 3α)

[ Γ(1− 2α)

3Γ(2− 3α)
+

Γ(1− α)

Γ(2− 2α)

] x2

t2α
,(5.6)

v(x, t) = −

[ Γ(1− 2α)

3Γ(2− 3α)

] x

tα
.
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Figure 1. Behavior of u(x, t) for 0 < α < 1 and (a) fixed x, (b) fixed t.

0 5 10 15 20
t

0.5

1.0

1.5

2.0

v α=0.2

α=0.3

α=0.4

0 1 2 3 4 5
x

0.5

1.0

1.5

2.0

v α=0.2

α=0.3

α=0.4

(a) (b)

Figure 2. Behavior of v(x, t) for 0 < α < 1 and (a) fixed x, (b) fixed t.

From Figures 1 (a)–2 (a), it is noticed that both u(x, t) and v(x, t) are valid for

t > 0 and x ∈ [0,∞). This solution is called a very singular solution or dipole

solution. Figure 1 (a) illustrates that with increasing α, the shock formation time for

the solution u(x, t) further delays whereas Figure 2 (a) shows that with increasing α,

the water wave formation time for the solution v(x, t) speeds up for fixed x, indicating

the height of water surface and it horizontal velocity complementary in nature with

respect to the fractional order α. However, from the Figure 1 (b) it is noticed that

for fixed t the shock formation time for u(x, t) decreases with increasing α and

v(x, t) is complimentary to it with linearity. Moreover, from the Figures 1 (a)–2 (b),

it can be observed that a change in the noninteger order derivative value affects

solution behavior in a fundamental way [1], which suggests that the noninteger order

derivative can be used to modulate the shape of the water waves. Therefore, we

can say that the noninteger order derivative can be used to modify the shape of

the water wave without changing the nonlinearity and the dissipative effect in the

medium.
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Figure 3. 3D-plot of u(x, t) for α = 0.2, α = 0.3 and α = 0.4.
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Figure 4. 3D-plot of v(x, t) for α = 0.2, α = 0.3 and α = 0.4.

6. Conservation laws

In this section, conservation laws of time fractional Boussinesq-Burgers equations

are derived. For that, we find the Lagrangian of (2.1) as follows:

(6.1) L = γ(x, t)
(∂αu

∂tα
+ uvx + vux + vxxx

)
+ λ(x, t)

(∂αv

∂tα
+ ux + vvx

)
,

where γ and λ are new dependent variables of x and t. The action integral of (5.5)

can be given by

(6.2)

∫ t

0

∫

Ω

L

(
x, t, u, v, γ, λ,

∂αu

∂tα
, ux,

∂αv

∂tα
, vx, vxxx

)
dxdt.

The Euler-Lagrange operators are given by

δ

δu
=

∂

∂u
+ (Dα

t )
∗

∂

∂(Dα
t u)

−Dx
∂

∂ux
,(6.3)

δ

δv
=

∂

∂v
+ (Dα

t )
∗

∂

∂(Dα
t v)

−Dx
∂

∂vx
−D3

x

∂

∂vxxx
,

where (Dα
t )

∗ is the adjoint operator of (Dα
t ). Now the Lagrange equation of (2.1)

can be written as
∂L

∂u
= 0,

∂L

∂v
= 0.
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As there are two independent variables and two dependent variables we have:

(6.4) X̃ +Dt(τ)I +Dx(ξ)I = W1
∂

∂u
+W2

∂

∂v
+DtC

1 +DxC
t,

where X̃ is the extended prolongation and C1, C2 are conserved vectors are to be

found,

(6.5) W1 = −2αu− αxux − 2tut, W2 = −αv − αxvx − 2tvt.

Then C1 and C2 are calculated as

C1 = τL+0 D
α−1
t (W1)

∂L

∂0(Dα
t )

u+ J
(
W1,

∂L

∂0(0Dα
t )

u
)

+0 D
α−1
t (W2)

∂L

∂0(Dα
t )

v + J
(
W2,

∂L

∂0(0Dα
t )

v
)

and

C2 = ξL+W1

[ ∂L

∂ux

]
+W2

[ ∂L
∂vx

+DxDx
∂L

∂vxxx

]

+Dx(W2)
[
−Dx

∂L

∂vxxx

]
+DxDx(W2)

∂L

∂vxxx
,

where J(·) is defined by

J(f, g) =
1

Γ(m− α)

∫ t

0

∫ T

t

f(τ, x)g(µ, x)

(µ− τ)

α+1−m

dµ dτ.

7. Conclusion

In the present article, we consider the time fractional variant Boussinesq-Burgers

equations which arise as a model for water waves. Using Lie group analysis, a sym-

metric group of transformations as well as the associated optimal systems are derived.

The given system of FPDEs is reduced to a system of FODEs and a particular exact

solution for the given system of FPDEs are discovered. Further, the effect of the

fractional order α on the behavior of the solution is studied graphically. From the

Figures 1 (a) and 2 (a), for fixed x, it is noticed that the solution is very singular in

nature and valid only for t > 0. In Figure 1 (b), it is also clear that for fixed t, the

solution u(x, t) is very singular in nature. From Figures 3–4, it is also observed that

a change in noninteger order derivative value affects soliton behavior in a fundamen-

tal way and modulates the shape of wave without changing the nonlinearity and the
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dissipative effect in the medium. To the best of our knowledge, one of the short com-

ing of the proposed method is in handling the time fractional initial and boundary

value problems. In the future, we are planing to consider some problems like higher

dimensional FDEs and space-time FDEs arising in many physical phenomena and

using the proposed method we will solve them.
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