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Abstract. The purpose of the paper is to represent the two shared set problems in an
elaborative and convenient manner. In the main result of the paper, we have exhaustively
treated the two shared set problem on the open complex plane. As a consequence of the
main result, we have investigated the same problem in a different perspective, which has
yet not been studied. Further, two examples have been exhibited in the paper to show the
sharpness of some of these results.
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1. Introduction, definitions and results

Throughout the paper, by C, N, Z and R+ we mean the set of all complex numbers,

natural numbers, integers and positive real numbers, respectively. We further denote

C = C ∪ {∞}, C∗ = C \ {0} and N = N ∪ {0}. For any meromorphic function f we

always mean it is defined on C. For non-negative integers n and m, we define

χ
n
=

{

0 when n = 2m+ 3,

1 when n 6= 2m+ 3.

It is well-known that Gross is the pioneer of the set sharing problem in the unique-

ness literature. Henceforth, we recall the following basic definition.

Definition 1.1. Let for a nonconstant meromorphic function f and S ⊂ C,

Ef (S) =
⋃

a∈S

{(z, p) ∈ C × N : f(z) = a with multiplicity p} (Ef (S) =
⋃

a∈S

{(z, 1) ∈

C × N : f(z) = a}). Then we say f , g share the set S counting multiplicities (CM)
(ignoring multiplicities (IM)) if Ef (S) = Eg(S) (Ef (S) = Eg(S)).

c© The author(s) 2019. This is an open access article under the CC BY-NC-ND licence cbnd

DOI: 10.21136/MB.2019.0063-18 19

https://creativecommons.org/licenses/by-nc-nd/4.0
http://dx.doi.org/10.21136/MB.2019.0063-18


In 2001 Lahiri (see [13], [14]) introduced the scalings between CM and IM which

further added essence to the uniqueness literature.

Definition 1.2 ([13], [14]). Let k be a non-negative integer or infinity. For a ∈ C

we denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m

is counted m times if m 6 k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we

say that f , g share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k.

Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 6 p < k. Also,

we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞),

respectively.

Definition 1.3 ([13]). For S ⊂ C we define Ef (S, k) =
⋃

a∈S

Ek(a; f), where k is

a non-negative integer a ∈ S or infinity. Clearly Ef (S) = Ef (S,∞) and Ef (S) =

Ef (S, 0).

In connection to the famous question of Gross (see [10]), it was Lin-Yi (see [15])

who initiated the two shared set problems by raising the following question.

Question A. Can one find two finite sets Sj , j = 1, 2, such that any two noncon-

stant meromorphic functions f and g satisfying Ef (Sj ,∞) = Eg(Sj ,∞) for j = 1, 2

must be identical?

Subsequently a lot of investigations have been carried out by many researchers to

find two sets among which one comprises of n elements and the other set contains∞
and then reduce the value of n as much as possible.

In this respect the introduction of bi-unique range sets can be thought of as the

inception of a new direction in set sharing problem. Below we recall the definition.

Definition 1.4 ([4]). A pair of finite sets S1 and S2 in C is called bi-unique range

sets for meromorphic (entire) functions with weights m, k if for any two noncon-

stant meromorphic (entire) functions f and g, Ef (S1,m) = Eg(S1,m), Ef (S2, k) =

Eg(S2, k) imply f ≡ g. We say Si’s, i = 1, 2, are BURSMm, k (BURSEm, k) in

short. As usual, if both m = k = ∞, we say Si’s, i = 1, 2, are BURSM (BURSE).

We see that the definition of BURSM is actually the study of uniqueness of mero-

morphic function corresponding to the two shared set problems in C. In this respect

it is worthy of mention that the first BURSM prior to its introduction was exhibited

by Yi (see [18]) by the following theorem.
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Theorem A ([18]). Let S1 = {a+ b, a+ bω, . . . , a+ bωn−1}, S2 = {c1, c2}, where
ω = e2πi/n and b 6= 0, c1 6= a, c2 6= a, (c1 − a)n 6= (c2 − a)n, (ck − a)n(cj − a)n 6= b2n

(k, j = 1, 2) are constants. If n > 9, then Si’s, i = 1, 2, are BURSM.

After that in 2012 Yi-Li (see [17]) improved the above theorem as follows.

Theorem B ([17]). Let S1 = {0, 1}, S2 = {z : 1
2 (n−1)(n−2)zn−n(n−2)zn−1+

1
2n(n−1)zn−2+1 = 0}, where n (> 5) is an integer. Then Si’s, i = 1, 2, are BURSM.

Observe that the set S1 in Theorem B is nothing but the set of zeros of the

derivatives of the polynomial whose zeros are used to form the set S2. With the help

of this inherited property Banerjee generalized the underlying polynomial used to

form S2 of Theorem B in the following manner.

Theorem C ([4], [5]). Let S1 = {0, 1} and S2 = {z : 1
2 (n − 1)(n − 2)zn −

n(n− 2)zn−1 + 1
2n(n− 1)zn−2 − d = 0}, where n (> 5) is an integer and d 6= 0, 1, 12

is a complex number such that d2 − d+ 1 6= 0. Then Si’s, i = 1, 2, are BURSM1, 3,

BURSM3, 2.

It is to be noticed that the polynomials used in Theorems B–C are of the same

type. In this respect, we recall the following definitions to proceed further.

Definition 1.5 ([8]). A polynomial

p(z) = anz
n + an−1z

n−1 + . . .+ a1z + a0

is called an initial term gap polynomial (ITGP) if ai = 0 but aj 6= 0 for at least

one j such that 1 6 j < i < n and an initial term non gap polynomial (ITNGP) if

there does not exist any such i.

Definition 1.6 ([9]). Let P (z) be a polynomial such that P ′(z) has mutually k

distinct zeros given by d1, d2, . . . , dk with multiplicities q1, q2, . . . , qk, respectively.

Then P (z) is said to be a critically injective polynomial if P (di) 6= P (dj) for i 6= j,

where i, j ∈ {1, 2, . . . , k}.
Since in Theorems B–C the construction of the first set depends upon the choice of

the polynomial whose zero set forms the second set and the polynomial is of ITNGP

type, it would be interesting to investigate whether all the variants of polynomials

can be brought under a single umbrella. This is one of the two motivations for

writing this paper. We will show that the generalized polynomial obtained in this

paper will improve all the results discussed so far. The second motivation is to find

the possible way to proceed from bi-unique range set to two shared set problems in

a different angle, which will be discussed in detail in the last section of the paper.

Now we invoke the following definitions which we need for the proof of the main

results of the paper.
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Definition 1.7 ([12]). For a ∈ C∪{∞} we denote by N(r, a; f |= 1) the counting

function of simple a-points of f . For a positive integerm we denote byN(r, a; f |6 m)

(N(r, a; f |> m)) the counting function of those a-points of f whose multiplicities are

not greater (less) than m, where each a-point is counted according to its multiplicity.

N(r, a; f |6 m) (N(r, a; f |> m)) are defined similarly, where in counting the

a-points of f we ignore the multiplicities.

Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) are

defined analogously.

Definition 1.8 ([1]). Let f and g be two nonconstant meromorphic functions

such that f and g share (a, 0). Let z0 be an a-point of f with multiplicity p, an

a-point of g with multiplicity q. We denote by NL(r, a; f) the reduced counting

function of those a-points of f and g where p > q, by N
1)
E (r, a; f) the counting

function of those a-points of f and g where p = q = 1, by N
(2

E (r, a; f) the reduced

counting function of those a-points of f and g where p = q > 2. In the same way we

can define NL(r, a; g), N
1)
E (r, a; g), N

(2

E (r, a; g). In a similar manner we can define

NL(r, a; f) and NL(r, a; g) for a ∈ C ∪ {∞}.

When f and g share (a,m), m > 1, then N
1)
E (r, a; f) = N(r, a; f |= 1).

Definition 1.9 ([13], [14]). Let f , g share a value a IM. We denote by

N∗(r, a; f, g) the reduced counting function of those a-points of f whose multi-

plicities differ from the multiplicities of the corresponding a-points of g. Clearly

N∗(r, a; f, g) = N∗(r, a; g, f) = NL(r, a; f) +NL(r, a; g).

Throughout the paper we denote P (z) = zn + azn−m + bzn−2m + c and βi =

−(cni + acn−m
i + bcn−2m

i ), where n,m ∈ N and a, b, c ∈ C
∗ are such that a2 6= 4b,

gcd(m,n) = 1, n > 2m and ci’s are the roots of the equation

(1.1) nz2m + (n−m)azm + b(n− 2m) = 0

for i = 1, 2, . . . , 2m. Note that when a2/4b = n(n− 2m)/(n−m)2, then (1.1) re-

duces to the equation

n
(

zm +
a(n−m)

2n

)2

− a2(n−m)2

4n
+ b(n− 2m) = 0,

i.e.

(1.2) n
(

zm +
a(n−m)

2n

)2

= 0.

Hence, in this case (1.1) has m distinct roots ci, i = 1, 2, . . . ,m, each being re-

peated twice. Proceeding similarly it can be easily shown that whenever a2/4b 6=
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n(n− 2m)/(n−m)2, then (1.1) has exactly 2m simple roots ci for i = 1, 2, . . . , 2m.

In view of the above discussion, we have the following theorems which are the main

results of the paper.

Theorem 1.1. Let S1 = {0, c1, c2, . . . , cm}, S2 = {z : zn + azn−m + bzn−2m +

c = 0}, where n (> 2m + 3), gcd(m,n) = 1, a2/4b = n(n− 2m)/(n−m)2 and

a, b, c ∈ C
∗ be such that c 6= βi, βiβj/(βi + βj). Then

(i) Si’s, i = 1, 2, are BURSM1, 3;

(ii) Si’s, i = 1, 2, are BURSM2, 2.

N o t e 1.1. Observe that c 6= 0, βi for i ∈ {1, 2, . . . ,m} imply that S2 has n

distinct elements. So, this condition is essential for the definition of S2 (set) in the

above theorem.

The following example shows that when m = 1 and n = 5, then the condition

c 6= βiβj/(βi + βj) cannot be removed.

E x am p l e 1.1. Let m = 1 and n = 5. Then for Theorem 1.1 we have only

one ci and βi. So we get b =
4
15a

2, c1 = − 2
5a, β1 = 16

625×15a
5. Now suppose f and g

be any two nonconstant meromorphic functions such that f + g = c1. Note that in

this case βiβj/(βi + βj) = β2
1/2β1 = 1

2β1. Then for c = 1
2β1 with the above values

of b, c1 and β1 we have

f5 + af4 + bf3 = f3(f2 + af + b)

= (c1 − g)3((c1 − g)2 + a(c1 − g) + b)

= − (g − c1)
3(g2 − (2c1 + a)g + c21 + ac1 + b)

= − (g5 + (−5c1 − a)g4 + (10c21 + 4ac1 + b)g3 + (−10c31 − 6ac21 − 3bc1)g
2

+ (5c41 + 4ac31 + 3bc21)g − c31(c
2
1 + ac1 + b))

= − (g5 + ag4 + bg3 + β1),

i.e.

f5 + af4 + bf3 + 1
2β1 = −(g5 + ag4 + bg3 + β1 − 1

2β1),

i.e.

f5 + af4 + bf3 + c = −(g5 + ag4 + bg3 + c),

which implies f and g share S2. Obviously, we have chosen f and g in such a way

that they share the set S1. So f and g share S1 and S2 CM but f 6≡ g.

Observe that the polynomials used for the construction of S2 in Theorems B–C

are all critically injective polynomials. Also from Lemma 2.11, we would see that
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the polynomial used to form S2 of Theorem 1.1 is critically injective. Since from

Remark 1.1 of [8] we get that the same polynomial is uncertain to be critically

injective whenever a2(n − m)2 6= 4bn(n − 2m). Therefore it will be interesting to

deal the above theorem with S2 under this supposition. Hence, we have the following

theorems.

Theorem 1.2. Let S1 = {0, c1, c2, . . . , c2m}, S2 = {z : zn + azn−m + bzn−2m +

c = 0}, where n (> 4m + 3), gcd(m,n) = 1, a2/4b 6= n(n− 2m)/(n−m)2, 1 and

a, b, c ∈ C
∗ be such that c 6= βi, βiβj/(βi + βj). Then Si’s, i = 1, 2, are BURSM0, 4.

Theorem 1.3. Let S1 = {0, c1, c2, . . . , c2m} and S2 = {z : zn + bzn−2m + c = 0},
where gcd(n, 2m) = 1, b ∈ C

∗ and c 6= 0, βi, βiβj/(βi + βj). Then Si’s, i = 1, 2, are

BURSM0, 4 for n > 4m+ 3.

From Theorem 1.2 and Theorem 1.3 it follows that the least cardinality of the

second range set is 7 whereas in Theorem 1.1 the least cardinality of the same is 5.

So, natural question arises whether it is possible to further reduce the cardinality

of S2 in Theorem 1.2 and Theorem 1.3 so that the least cardinality of S2 in the

two theorems becomes 5. In the next two theorems we have shown that under the

additional supposition that the meromorphic functions sharing the sets do not have

any simple poles, the above is achievable.

Theorem 1.4. Let S1 and S2 be two sets as defined in Theorem 1.2 for n > 4m+1.

Also suppose that f and g be two nonconstant meromorphic functions without having

any simple pole such that Ef (S1, 0) = Eg(S1, 0) and Ef (S2, 2) = Eg(S2, 2). Then

f ≡ g.

Theorem 1.5. Let S1 and S2 be two sets as defined in Theorem 1.3 for n > 4m+1.

Also suppose that f and g be two nonconstant meromorphic functions without having

any simple pole such that Ef (S1, 0) = Eg(S1, 0) and Ef (S2, 2) = Eg(S2, 2). Then

f ≡ g.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let f

and g be two nonconstant meromorphic functions and for an integer n > 2m+ 1

(2.1) F =
P (f)− c

−c
=

fn−2m(f2m + afm + b)

−c
,

G =
P (g)− c

−c
=

gn−2m(g2m + agm + b)

−c
.
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Henceforth, we shall denote by H and Ψ the following two functions:

H =
(F ′′

F ′
− 2F ′

F − 1

)

−
(G′′

G′
− 2G′

G− 1

)

,(2.2)

Ψ =
F ′

F − 1
− G′

G− 1
.(2.3)

Lemma 2.1 ([14]). If F , G are two nonconstant meromorphic functions such that

they share (1, 1) and H 6≡ 0, then

N(r, 1;F |= 1) = N(r, 1;G |= 1) 6 N(r,H) + S(r, F ) + S(r,G).

Lemma 2.2. Let F , G be given by (2.1). Also let Ef (S1, p) = Eg(S1, p) and

Ef (S2, 0) = Eg(S2, 0), where Si’s, i = 1, 2, are given as in Theorem 1.2 and Theo-

rem 1.1. Suppose H 6≡ 0. Then

(i) for a2/4b 6= n(n− 2m)/(n−m)2 we have

N(r,H) 6 N(r, 0; f) +N(r, 0;nf2m + (n−m)afm + b(n− 2m)) +N(r,∞; f)

+N(r,∞; g) +N0(r, 0; f
′) +N0(r, 0; g

′) +N∗(r, 1;F,G)

and

(ii) for a2/4b = n(n− 2m)/(n−m)2 we have

N(r,H) 6 N(r, 0; f |> p+ 1) +N
(

r, 0; fm +
a(n−m)

2n
|> p+ 1

)

+ χn

(

N(r, 0; f |6 p) +N
(

r, 0; fm +
a(n−m)

2n
|6 p

))

+N(r,∞; f) +N(r,∞; g) +N0(r, 0; f
′) +N0(r, 0; g

′) +N∗(r, 1;F,G),

where N0(r, 0; f
′) is the reduced counting function of those zeros of f ′ which

are not the zeros of f(nf2m + (n−m)afm + b(n− 2m))(F − 1) and N0(r, 0; g
′)

is similarly defined.

P r o o f. From (2.1) we get that

F ′ =
fn−2m−1(nf2m + (n−m)afm + b(n− 2m))

−c
f ′,(2.4)

G′ =
gn−2m−1(ng2m + (n−m)agm + b(n− 2m))

−c
g′.(2.5)
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From the condition of the lemma we see that

nf2m + (n−m)afm + b(n− 2m) =



















n

2m
∏

i=1

(f − ci), when
a2

4b
6= n(n− 2m)

(n−m)2
,

n
m
∏

i=1

(f − ci)
2, when

a2

4b
=

n(n− 2m)

(n−m)2
.

(i) First suppose a2/4b 6= n(n− 2m)/(n−m)2. Then (2.2) reduces to

H =

2m
∑

i=1

f ′

f − ci
−

2m
∑

i=1

g′

g − ci
+(n−2m−1)

(f ′

f
− g′

g

)

+
f ′′

f ′
− g′′

g′
−
( 2F ′

F − 1
− 2G′

G− 1

)

.

Since F , G share (1, 0), from the construction of H we have

N(r,H) 6 N(r, 0; f) +N(r, 0;nf2m + (n−m)afm + b(n− 2m)) +N(r,∞; f)

+N(r,∞; g) +N0(r, 0; g
′) +N0(r, 0; f

′) +N∗(r, 1;F,G).

(ii) Next suppose a2/4b = n(n− 2m)/(n−m)2. Then (2.2) reduces to

H =

m
∑

i=1

2f ′

f − ci
−

m
∑

i=1

2g′

g − ci
+(n−2m−1)

(f ′

f
− g′

g

)

+
f ′′

f ′
− g′′

g′
−
( 2F ′

F − 1
− 2G′

G− 1

)

.

Let z0 be a zero of f and a ci-point of g. Then from the above we can easily conclude

that z0 is not a pole of H for n = 2m+ 3 and a pole of H otherwise. So we have

N(r,H) 6 N(r, 0; f |> p+ 1) +N
(

r, 0; fm +
a(n−m)

2n
|> p+ 1

)

+ χ
n

(

N(r, 0; f |6 p) +N
(

r, 0; fm +
a(n−m)

2n
|6 p

))

+N(r,∞; f) +N(r,∞; g) +N0(r, 0; f
′) +N0(r, 0; g

′) +N∗(r, 1;F,G).

�

Lemma 2.3 ([16]). Let f be a nonconstant meromorphic function and P (f) =

a0+a1f +a2f
2+ . . .+anf

n, where a0, a1, a2 . . . , an are constants and an 6= 0. Then

T (r, P (f)) = nT (r, f) +O(1).

Lemma 2.4 ([6]). Let f and g be two meromorphic functions sharing (1, t), where

1 6 t < ∞. Then

N(r, 1; f) +N(r, 1; g)−N(r, 1; f |= 1) +
(

t− 1
2

)

N∗(r, 1; f, g)

6 1
2 (N(r, 1; f) +N(r, 1; g)).
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Lemma 2.5. Let Si, i = 1, 2, be defined as in Theorem 1.1, Theorem 1.2 and F , G

be given by (2.1). Suppose for two nonconstant meromorphic functions f and g,

Ef (S1, p) = Eg(S1, p), Ef (S2, t) = Eg(S2, t) and Ψ 6≡ 0. Then

(i) for a2/4b = n(n− 2m)/(n−m)2 with n > 2m+ 3 we have

(3p+ 2)
(

N(r, 0; f |> p+ 1) +N
(

r, 0; fm +
a(n−m)

2n
|> p+ 1

))

6 N∗(r, 1;F,G) +N(r,∞; f) +N(r,∞; g) + S(r, f) + S(r, g)

and

(ii) for a2/4b 6= n(n− 2m)/(n−m)2 with n > 2m+ 1 we have

(2p+ 1)(N(r, 0; f |> p+ 1) +N(r, 0;nf2m + (n−m)afm + b(n− 2m) |> p+ 1))

6 N∗(r, 1;F,G) +N(r,∞; f) +N(r,∞; g) + S(r, f) + S(r, g).

P r o o f. By the given condition clearly F and G share (1, t).

(i) Since a2/4b = n(n− 2m)/(n−m)2, we have

Ψ =
nfn−2m−1(fm + 1

2a(n−m)n−1)2f ′

−c(F − 1)
− ngn−2m−1(gm + 1

2a(n−m)n−1)2g′

−c(G− 1)
.

Let z0 be a zero or a ci-point of f with multiplicity r. Since Ef (S1, p) = Eg(S1, p),

then that would be a zero of Ψ of multiplicity min{(n− 2m− 1)r+ r− 1, 2r+ r− 1},
i.e. of multiplicity min{(n− 2m)r − 1, 3r − 1} if r 6 p and a zero of multiplicity at

least min{(n − 2m− 1)(p + 1) + p, 2(p + 1) + p}; i.e. a zero of multiplicity at least
min{(n− 2m)p+ (n− 2m− 1), 3p+ 2} = 3p+ 2 if r > p. So by a simple calculation

we can write

(3p+ 2)
(

N(r, 0; f |> p+ 1) +N
(

r, 0; fm +
a(n−m)

2n
|> p+ 1

))

6 N(r, 0;Ψ) 6 T (r,Ψ)+O(1) 6 N(r,∞; Ψ) + S(r, F ) + S(r,G)

6 N∗(r, 1;F,G) +N(r,∞; f) +N(r,∞; g) + S(r, f) + S(r, g).

(ii) Since a2/4b 6= n(n− 2m)/(n−m)2, we have

Ψ =
fn−2m−1(nf2m + (n−m)afm + b(n− 2m))f ′

−c(F − 1)

− gn−2m−1(ng2m + (n−m)agm + b(n− 2m))g′

−c(G− 1)
.

Let z0 be a zero or a ci-point of f with multiplicity r. Since Ef (S1, p) = Eg(S1, p),

then that would be a zero of Ψ of multiplicity min{(n− 2m− 1)r+ r− 1, r+ r− 1},
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i.e. of multiplicity min{(n− 2m)r − 1, 2r − 1} if r 6 p and a zero of multiplicity at

least min{(n − 2m − 1)(p + 1) + p, (p + 1) + p}, i.e. a zero of multiplicity at least
min{(n− 2m)p+ (n − 2m− 1), 2p+ 1} = 2p+ 1 if r > p. So similarly as above we

can have

(2p+ 1)(N(r, 0; f |> p+ 1) +N(r, 0;nf2m + (n−m)afm + b(n− 2m) |> p+ 1))

6 N(r,∞; Ψ) + S(r, F ) + S(r,G)

6 N∗(r, 1;F,G) +N(r,∞; f) +N(r,∞; g) + S(r, f) + S(r, g).

�

Lemma 2.6. Let Si, i = 1, 2, be defined as in Theorem 1.1, Theorem 1.2 and F , G

be given by (2.1). Suppose for two nonconstant meromorphic functions f and g that

Ef (S1, p) = Eg(S1, p), Ef (S2, t) = Eg(S2, t), where 0 6 p < ∞, 2 6 t < ∞ and

H 6≡ 0. Then

(i) for a2/4b = n(n− 2m)/(n−m)2 we have

(n+m)(T (r, f) + T (r, g))

6 2

(

N(r, 0; f) +

m
∑

i=1

N(r, ci; f)

)

+N(r, 0; f |> p+ 1) +

m
∑

i=1

N(r, ci; f |> p+ 1)

+ χn

(

N(r, 0; f |6 p) +N
(

r, 0; fm +
a(n−m)

2n
|6 p

))

+ 2N(r,∞; f) + 2N(r,∞; g) + 1
2 (N(r, 1;F ) +N(r, 1;G))

−
(

t− 3
2

)

N∗(r, 1;F,G) + S(r, f) + S(r, g)

and

(ii) for a2/4b 6= n(n− 2m)/(n−m)2 we have

(n+ 2m)(T (r, f) + T (r, g))

6 3

(

N(r, 0; f) +

2m
∑

i=1

N(r, ci; f)

)

+ 2N(r,∞; f) + 2N(r,∞; g)

+ 1
2 (N(r, 1;F ) +N(r, 1;G))−

(

t− 3
2

)

N∗(r, 1;F,G) + S(r, f) + S(r, g).

P r o o f. (i) By the second fundamental theorem we get

(n+m)(T (r, f) + T (r, g))(2.6)

6 N(r, 1;F ) +N(r, 0; f) +

m
∑

i=1

N(r, ci; f) +N(r,∞; f) +N(r, 1;G)
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+N(r, 0; g) +

m
∑

i=1

N(r, ci; g) +N(r,∞; g)−N0(r, 0; f
′)

−N0(r, 0; g
′) + S(r, f) + S(r, g).

Now the conclusion immediately follows from Lemmas 2.1, 2.2, 2.3 and 2.4 and the

fact that N(r, 0; f) +
m
∑

i=1

N(r, ci; f) = N(r, 0; g) +
m
∑

i=1

N(r, ci; g).

(ii) By the second fundamental theorem we get

(2.7) (n+ 2m)(T (r, f) + T (r, g))

6 N(r, 1;F ) +N(r, 0; f) +

2m
∑

i=1

N(r, ci; f) +N(r,∞; f) +N(r, 1;G)

+N(r, 0; g) +

2m
∑

i=1

N(r, ci; g) +N(r,∞; g)−N0(r, 0; f
′)

−N0(r, 0; g
′) + S(r, f) + S(r, g).

Now the conclusion immediately follows from Lemmas 2.1, 2.2, 2.3 and 2.4 and the

fact that N(r, 0; f) +
2m
∑

i=1

N(r, ci; f) = N(r, 0; g) +
2m
∑

i=1

N(r, ci; g). �

Lemma 2.7. Let Si, i = 1, 2, be defined as in Theorem 1.1, Theorem 1.2 and F , G

be given by (2.1), where n > 2m+ 1 and they share (1, t) for 1 6 t 6 ∞. Then
(i) for a2/4b = n(n− 2m)/(n−m)2

N∗(r, 1;F,G) 6
1

t

(

N(r, 0; f) +

m
∑

i=1

N(r, ci; f)

)

+ S(r, f)

and

(ii) for a2/4b 6= n(n− 2m)/(n−m)2

N∗(r, 1;F,G) 6
1

t

(

N(r, 0; f) +
2m
∑

i=1

N(r, ci; f)

)

+ S(r, f).

P r o o f. The proof is obvious. �

Lemma 2.8. Let Si, i = 1, 2, be defined as in Theorem 1.1, Theorem 1.2 and F , G

be given by (2.1), where n > 2m+ 1 and they share (1, t) for 2 6 t 6 ∞. Then
(i)

N∗(r, 1;F,G) 6
1

2t− 1
(N(r,∞; f) +N(r,∞; g)) + S(r, f) + S(r, g)

when a2/4b = n(n− 2m)/(n−m)2,
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(ii)

N∗(r, 1;F,G) 6
1

t− 1
(N(r,∞; f) +N(r,∞; g)) + S(r, f) + S(r, g)

when a2/4b 6= n(n− 2m)/(n−m)2.

P r o o f. (i) By Lemma 2.7 and Lemma 2.5 we have

N∗(r, 1;F,G) 6
1

t

(

N(r, 0; f) +

m
∑

i=1

N(r, ci; f)

)

+ S(r, f)

6
1

2t
(N(r,∞; f) +N(r,∞; g) +N∗(r, 1;F,G)) + S(r, f) + S(r, g)

6
1

2t− 1
(N(r,∞; f) +N(r,∞; g)) + S(r, f) + S(r, g).

(ii) Similarly, we can have

N∗(r, 1;F,G) 6
1

t

(

N(r, 0; f) +

2m
∑

i=1

N(r, ci; f)

)

+ S(r, f)

6
1

t
(N(r,∞; f) +N(r,∞; g) +N∗(r, 1;F,G)) + S(r, f) + S(r, g)

6
1

t− 1
(N(r,∞; f) +N(r,∞; g)) + S(r, f) + S(r, g).

�

Lemma 2.9 ([8]). Let ϕ(z) = a2(zn−m − A)2 − 4b(zn−2m − A)(zn − A), where

a,A (6= 0), b (6= 0) ∈ C, gcd(m,n) = 1, n > 3m and a2 6= 4b. Then the following

results hold.

(i) If et0 is any multiple zero of ϕ(z), then t0 satisfies

coshmt0 = 1 or coshmt0 =
a2(n−m)2

2bn(n− 2m)
− 1.

(ii) Each multiple zero of ϕ(z) is of multiplicity 2 whenever

a2

4b
6= n(n− 2m)

(n−m)2
.

Lemma 2.10 ([8]). Let ϕ(z) = a2(zn−m − A)2 − 4b(zn−2m − A)(zn −A), where

A, a, b ∈ C
∗, a2/4b = n(n− 2m)/(n−m)2, gcd(m,n) = 1, n > 2m. If ωl is the mth

root of unity for l = 0, 1, . . . ,m− 1, then

(i) ϕ(z) has no multiple zero when A 6= ωl,

(ii) ϕ(z) has exactly one multiple zero when A = ωl and that is of multiplicity 4.

In particular, when A = 1, then the multiple zero is 1.
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Lemma 2.11 ([8]). Let P (z) = zn + azn−m + bzn−2m + c, where a, b ∈ C
∗. Then

the following holds.

(i) βi’s are nonzero if a
2 6= 4b.

(ii) P (z) is critically injective polynomial if a2/4b = n(n− 2m)/(n−m)2.

3. Proofs of the theorems

P r o o f of Theorem 1.1. (i) Let f and g be nonconstant meromorphic functions

such that Ef (S1, 1) = Eg(S1, 1) and Ef (S2, 3) = Eg(S2, 3). Suppose F , G be given

by (2.1). Then F and G share (1, 3). We consider the following cases.

Case 1. Suppose that Ψ 6≡ 0.

Subcase 1.1. Let H 6≡ 0. Then for n=2m+ 3 using Lemma 2.6 for p = 1, t = 3,

Lemma 2.5 for p = 1, p = 0 and Lemma 2.3 we obtain

(n+m)(T (r, f) + T (r, g))

6 2

(

N(r, 0; f) +

m
∑

i=1

N(r, ci; f)

)

+
1

5
(N(r,∞; f) +N(r,∞; g) +N∗(r, 1;F,G))

+ 2N(r,∞; f) + 2N(r,∞; g) +
1

2
(N(r, 1;F ) +N(r, 1;G))

− 3

2
N∗(r, 1;F,G) + S(r, f) + S(r, g)

6
16

5
(N(r,∞; f) +N(r,∞; g)) +

n

2
(T (r, f) + T (r, g)) + S(r, f) + S(r, g)

6

(n

2
+

16

5

)

(T (r, f) + T (r, g)) + S(r, f) + S(r, g),

which is a contradiction.

Next, for n > 2m+3, proceeding in the same way as above and using Lemma 2.6

for t = 3, Lemma 2.5 for p = 0 and Lemma 2.3 we get

(n+m)(T (r, f) + T (r, g)) 6
(n

2
+

7

2

)

(T (r, f) + T (r, g)) + S(r, f) + S(r, g),

which is again a contradiction.

Subcase 1.2. H ≡ 0. Then from (2.2) we get

(3.1)
1

F − 1
≡ A

G− 1
+B,

where A (6= 0) and B are two constants. So in view of Lemma 2.3, from (3.1) we get

(3.2) T (r, f) = T (r, g) + O(1).
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Subcase 1.2.1. Suppose B 6= 0. Then from (3.1) we get

(3.3) F − 1 ≡ G− 1

BG+A−B
.

Subcase 1.2.1.1. If A−B 6= 0, then noting that (B −A)/B 6= 1, from (3.3) we get

N
(

r,
B −A

B
;G

)

= N(r,∞;F ).

Now let us consider the following subcases.

Subcase 1.2.1.1.1. Suppose that (B −A)/B 6= βi/c for all i = 1, 2, . . . ,m. There-

fore in view of equation (3.2) using the second fundamental theorem we have

(n+m)T (r, g) 6 N(r, 0; g) +

m
∑

i=1

N(r, ci; g) +N(r,∞; g) +N
(

r,
B −A

B
;G

)

+ S(r, g)

6 (m+ 2)T (r, g) +N(r,∞; f) + S(r, g),

which is a contradiction for n > 4.

Subcase 1.2.1.1.2. Suppose that (B −A)/B = βi/c for one i ∈ {1, 2, . . .m}. Since
a2/4b = n(n− 2m)/(n−m)2, then from Lemma 2.2 we know that

(3.4) G′ = n
gn−2m−1(gm + 1

2a(n−m)n−1)2

−c
g′.

Again a2/4b = n(n− 2m)/(n−m)2 6= 1 implies a2 6= 4b. Therefore by Lemma 2.11

we get βi 6= 0 and P (z) is critically injective. Since any critically injective polynomial

can have at most one multiple zero, gn+agn−m+bgn−2m+βi = (g−ci)
3
n−3
∏

j=1

(g−ηj),

where ηj ’s are (n−3) distinct zeros of zn+azn−m+bzn−2m+βi such that ηj 6= ci, 0.

Then from (3.3) we have

(3.5) B(F − 1) ≡ −c(G− 1)

(g − ci)3
n−3
∏

j=1

(g − ηj)

.

Since Ef (S1, 0) = Eg(S1, 0), ci-points of g are not poles of F and hence ci is an e.v.P

of g. Furthermore, each ηj -point of g of multiplicity p is a pole of f of multiplicity q

(say). Therefore p = nq > n. So in view of (3.2) and the second fundamental

theorem we get

(n− 2)T (r, g) 6 N(r, 0; g) +N(r, ci; g) +N(r,∞; g) +

n−3
∑

i=1

N(r, ηj ; g) + S(r, g)

6

(

2 +
n− 3

n

)

T (r, g) + S(r, g),

which is a contradiction for n > 2m+ 3.
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Subcase 1.2.1.2. If A−B = 0, then from (3.3) we have

(3.6)
G− 1

F − 1
≡ BG = B

gn−2m(g2m + agm + b)

−c
,

i.e. 0’s of g and (g2m + agm + b) are poles of F . Since a2/4b = n(n− 2m)/(n−m)2,

i.e. a2 6= 4b, so all the zeros of w2m + awm + b are simple. Now let ξi be a zero

of w2m + awm + b for i ∈ {1, 2, . . . , 2m} and each ξi-point of g is of multiplicity p.

Then it is a pole of f of multiplicity q for some q > 1. So from (3.6) we get p = nq,

i.e. p > n. Similarly as in Subcase 1.2.1.1.2 we can prove here that ‘0’ is an e.v.P.

of g. Now using the second fundamental theorem we get

(2m− 1)T (r, g) 6

2m
∑

i=1

N(r, ξi; g) +N(r, 0; g) + S(r, g) 6
2m

n
T (r, g) + S(r, g),

which is a contradiction for n > 3.

Subcase 1.2.2. Suppose B = 0. Then from (3.1) we get that

G− 1 = A(F − 1),

i.e.

G′ = AF ′,

which implies Ψ ≡ 0, a contradiction.

Case 2. Let Ψ ≡ 0. Then by integration we get

G− 1 = A(F − 1),

i.e.

(3.7) gn + agn−m + bgn−2m ≡ A
(

fn + afn−m + bfn−2m + c
A− 1

A

)

and

(3.8) gn + agn−m + bgn−2m + c(1−A) ≡ A(fn + afn−m + bfn−2m).

Subcase 2.1. Let A 6= 1. Then as c 6= 0, c(A− 1)/A 6= 0 and at the same time by

Lemma 2.11 we have βi 6= 0. Therefore we have the following subcases.

Subcase 2.1.1. Suppose c(A− 1)/A = βi for some i ∈ {1, 2, . . . ,m}. Then we claim
that c(1−A) 6= βj for any j ∈ {1, 2, . . . ,m}. For if c(1−A) = βj , i.e. A = (c− βj)/c,

and since c(A− 1)/A = βi, i.e. A = c/(c− βi), it follows that (c− βj)/c = c/(c− βi),

i.e. c = βiβj/(βi + βj), a contradiction. Thus w
n + awn−m+ bwn−2m+ c(1−A) = 0
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has only simple roots, say αi for i = 1, 2, . . . , n. So from (3.8) we get

(3.9)

n
∏

i=1

(g − αi) ≡ Afn−2m(f2m + afm + b).

Since Ef (S1, 0) = Eg(S1, 0), from (3.9) obviously ‘0’ is an e.v.P. of f . Now using (3.2)

and the second fundamental theorem, in view of (3.9) we get

(n− 2)T (r, g) 6

n
∑

i=1

N(r, αi; g) + S(r, g) 6 2mT (r, f) + S(r, g),

which is a contradiction for n > 2m+ 3.

Subcase 2.1.2. Suppose c(A− 1)/A 6= βi for all i ∈ {1, 2, . . . , 2m}. So, wn +

awn−m + bwn−2m + c(A− 1)/A = 0 has only simple roots, say α′

i for i = 1, 2, . . . , n.

Therefore from (3.7) we have

(3.10) gn−2m(g2m + agm + b) ≡ A

n
∏

i=1

(f − α′

i).

Now by the same argument as used in Subcase 2.1.1 we get a contradiction for

n > 2m+ 3.

Subcase 2.2. Let A = 1. Then we get P (g) ≡ P (f), i.e.

(3.11) gn−2m(g2m + agm + b) ≡ fn−2m(f2m + afm + b),

which implies f , g share ∞ CM. Since Ef (S1, 0) = Eg(S1, 0), then equation (3.11)

also implies f , g share 0 CM. Now suppose h = g/f . Then clearly h does not have

any zero and pole. Substituting g = fh into P (g) ≡ P (f) we have

(3.12) f2m(hn − 1) + afm(hn−m − 1) + b(hn−2m − 1) = 0.

Subcase 2.2.1. If h is constant, then as g is nonconstant, hn = hn−m = hn−2m = 1,

which implies h = 1 as gcd(m,n) = 1. Therefore f ≡ g.

Subcase 2.2.2. If h is nonconstant, then in view of Lemma 2.10 we get

(3.13)
(

fm +
a

2

hn−m − 1

hn − 1

)2

=
a2(h− 1)4(h− δ1)(h− δ2) . . . (h− δ2n−2m−4)

4(hn − 1)2
,

where δi’s are the distinct simple zeros of ϕ(z). From (3.13) we conclude that each δi-

point of h is of multiplicity at least 2. Therefore by the second fundamental theorem
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we get

(2n− 2m− 4)T (r, h) 6

2n−2m−4
∑

i=1

N(r, δi;h) +N(r, 0;h) +N(r,∞;h) + S(r, h)

6 (n−m− 2)T (r, h) + S(r, h),

which is a contradiction for n > m+ 3.

(ii) Let f and g be two nonconstant meromorphic functions such that Ef (S1, 2) =

Eg(S1, 2) and Ef (S2, 2) = Eg(S2, 2). Suppose F , G be given by (2.1). Then F and G

share (1, 2). We consider the following cases.

Case 1. Suppose that Ψ 6≡ 0.

Subcase 1.1. Let H 6≡ 0. Then for n = 2m+ 3 using Lemma 2.6 for p = 2, t = 2,

Lemma 2.5 for p = 2, p = 0, Lemma 2.3 and Lemma 2.8 we obtain

(n+m)(T (r, f) + T (r, g))

6 2

(

N(r, 0; f) +
m
∑

i=1

N(r, ci; f)

)

+
1

8
(N(r,∞; f) +N(r,∞; g) +N∗(r, 1;F,G))

+ 2N(r,∞; f) + 2N(r,∞; g) +
1

2
(N(r, 1;F ) +N(r, 1;G))

− 1

2
N∗(r, 1;F,G) + S(r, f) + S(r, g)

6
25

8
(N(r,∞; f) +N(r,∞; g)) +

n

2
(T (r, f) + T (r, g))

+
5

8
N∗(r, 1;F,G) + S(r, f) + S(r, g)

6

(n

2
+

25

8

)

(T (r, f) + T (r, g)) +
5

24
(N(r,∞; f) +N(r,∞; g))

+ S(r, f) + S(r, g)

6

(n

2
+

10

3

)

(T (r, f) + T (r, g)) + S(r, f) + S(r, g),

which is a contradiction.

For n > 2m+ 3, in a similar way as above we get

(n+m)(T (r, f) + T (r, g)) 6
(n

2
+

7

2
+

1

3

)

(T (r, f) + T (r, g)) + S(r, f) + S(r, g),

which is again a contradiction.

The rest of the proof can be dealt the same as the proof of part (i) of this theorem.

�
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P r o o f of Theorem 1.2. Let f and g be nonconstant meromorphic functions

such that Ef (S1, 0) = Eg(S1, 0) and Ef (S2, 4) = Eg(S2, 4). Suppose F , G be given

by (2.1). Then F and G share (1, 4). We consider the following cases.

Case 1. Suppose that Ψ 6≡ 0.

Subcase 1.1. Let H 6≡ 0. Then using Lemmas 2.6, 2.8 for t = 4, Lemma 2.5

for p = 0, Lemma 2.3 and proceeding similarly as in Subcase 1.1 of part (i) of

Theorem 1.1 we obtain

(n+ 2m)(T (r, f) + T (r, g)) 6
(n

2
+ 5 +

1

6

)

(T (r, f) + T (r, g)) + S(r, f) + S(r, g),

which is a contradiction for n > 4m+ 3.

Subcase 1.2. Let H ≡ 0. Then from (2.2) we get

(3.14)
1

F − 1
≡ A

G− 1
+B,

where A (6= 0) and B are two constants. So in view of Lemma 2.3, from (3.14) we get

(3.15) T (r, f) = T (r, g) + O(1).

Subcase 1.2.1. Suppose B 6= 0. Then from (3.14) we get

(3.16) F − 1 ≡ G− 1

BG+A−B
.

Subcase 1.2.1.1. If A − B 6= 0, then noting that (B −A)/B 6= 1, from (3.16) we

get

N
(

r,
B −A

B
;G

)

= N(r,∞;F ).

Now let us consider the following subcases.

Subcase 1.2.1.1.1. Suppose that (B −A)/B 6= βi/c for all i = 1, 2, . . .m. There-

fore in view of equation (3.15) using the second fundamental theorem we have

(n+ 2m)T (r, g) 6 N(r, 0; g) +
2m
∑

i=1

N(r, ci; g) +N(r,∞; g) +N
(

r,
B −A

B
;G

)

+ S(r, g)

6 (2m+ 2)T (r, g) +N(r,∞; f) + S(r, g),

which is a contradiction for n > 4.

Subcase 1.2.1.1.2. Suppose that (B −A)/B = βi/c for one i ∈ {1, 2, . . .m}. Since
a2/4b 6= n(n− 2m)/(n−m)2, then from Lemma 2.2 we get that

(3.17) G′ = n
gn−2m−1(ng2m + (n−m)agm + b(n− 2m))

−c
g′.
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Also from Remark 1.1 of [8], for a2/4b 6= 1, n(n− 2m)/(n−m)2, it is uncertain

whether P (z) is critically injective or not and at the same time we have βi 6= 0 by

Lemma 2.11. Therefore

(3.18) zn + azn−m + bzn−2m + βi

may have more than one multiple zero which are nothing but ci’s for i = 1, 2, . . . , 2m.

But it is certain that if (3.18) has r multiple zeros, say c1, c2, . . . , cr; then each of them

is of multiplicity 2 because they are simple zeros of nz2m+(n−m)azm+ b(n− 2m).

Hence

gn + agn−m + bgn−2m + βi = (g − c1)
2(g − c2)

2 . . . (g − cr)
2
n−2r
∏

i=1

(g − ζi),

where ζi’s are (n−2r) distinct zeros of (3.18) such that ζi 6= ci, 0 for i = 1, 2, . . . , 2m.

Then from (3.16) we have

(3.19) B(F − 1) ≡ −c(G− 1)

(g − c1)2(g − c2)2 . . . (g − cr)2
n−2r
∏

i=1

(g − ζi)

.

Since Ef (S1, 0) = Eg(S1, 0), ci-points of g are not poles of F and hence ci-points are

e.v.P. of g. Now if r > 3, then g is constant which is a contradiction. If r 6 2, then

observe that each ζi-point of g of multiplicity p is a pole of F of multiplicity q (say).

Therefore p = nq > n. So by the second fundamental theorem we get

(n− r)T (r, g) 6 N(r, 0; g) +

r
∑

i=1

N(r, ci; g) +N(r,∞; g) +

n−2r
∑

i=1

N(r, ζj ; g) + S(r, g)

6

(

2 +
n− 2r

n

)

T (r, g) + S(r, g).

Since r 6 2 6 2m, therefore we arrive at a contradiction for n > 2m + 3, i.e. for

n > 4m+ 3.

Subcase 1.2.1.2. If A − B = 0, then as here a2 6= 4b, this case can be dealt the

same as in the proof of Subcase 1.2.1.2. of Theorem 1.1.

Subcase 1.2.2. Suppose B = 0. Then from (3.14) we get that

G− 1 = A(F − 1),

i.e.

G′ = AF ′,

which implies Ψ ≡ 0, a contradiction.
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Case 2. Let Ψ ≡ 0. Then on integration we get

G− 1 = A(F − 1),

i.e.

(3.20) gn + agn−m + bgn−2m ≡ A
(

fn + afn−m + bfn−2m + c
A− 1

A

)

and

(3.21) gn + agn−m + bgn−2m + c(1−A) ≡ A(fn + afn−m + bfn−2m).

Subcase 2.1. Let A 6= 1. Then this case also can be resorted the same as Sub-

case 2.1. of Theorem 1.1.

Subcase 2.2. Let A = 1. Then we get P (g) ≡ P (f), i.e.

(3.22) gn−2m(g2m + agm + b) ≡ fn−2m(f2m + afm + b),

which implies f , g share ∞ CM. Since Ef (S1, 0) = Eg(S1, 0), then equation (3.22)

also implies f , g share 0 CM. Now suppose h = g/f . Then clearly h does not have

any zero or pole. Substituting g = fh into P (g) ≡ P (f) we have

(3.23) f2m(hn − 1) + afm(hn−m − 1) + b(hn−2m − 1) = 0.

Subcase 2.2.1. If h is constant, then as g is nonconstant, hn = hn−m = hn−2m = 1,

which implies h = 1 as gcd(m,n) = 1. Therefore f ≡ g.

Subcase 2.2.2. If h is nonconstant, then from (3.23) we get

(3.24)
(

fm +
a

2

hn−m − 1

hn − 1

)2

=
ϕ(h)

4(hn − 1)2
,

where ϕ(h) = a2(hn−m − 1)2 − 4b(hn−2m − 1)(hn − 1). Now in view of part (ii)

and (i) of Lemma 2.9 we get that each multiple zero of ϕ(z) is of multiplicity 2 and

those zeros are of the form et0 such that t0 satisfies coshmt0 = 1 or coshmt0 =

a2(n−m)2/2bn(n− 2m)− 1, i.e. at most m+2m = 3m multiple zeros are there. So

ϕ(z) can have at least 2n − 2m − 6m distinct simple zeros, say νi for i = 1, 2, . . . ,

2n− 8m. From (3.24) it is clear that each νi-point of h is of multiplicity at least 2.

Therefore by the second fundamental theorem we get

(2n− 8m)T (r, h) 6
2n−8m
∑

i=1

N(r, νi;h) +N(r, 0;h) +N(r,∞;h) + S(r, h)

6 (n− 4m)T (r, h) + S(r, h),

which is a contradiction for n > 4m+ 3. �
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P r o o f of Theorem 1.3. Proceeding similarly as in the proof of Theorem 1.2. for

a = 0 and gcd(n, 2m) = 1, we can obtain the result. �

P r o o f of Theorem 1.4. Here, proceeding in a similar fashion like in the proof of

Theorem 1.2 and using the fact that

N(r,∞; f) +N(r,∞; g) 6
1

2
(N(r,∞; f) +N(r,∞; g)),

we can obtain the result. �

P r o o f of Theorem 1.5. Similarly as in the proof of Theorem 1.4 we use the

inequality

N(r,∞; f) +N(r,∞; g) 6
1

2
(N(r,∞; f) +N(r,∞; g))

and obtain the result. �

It is to be noted that using the same method as adopted in this paper, one can

easily show that for any meromorphic functions having no simple poles, the sets

S1 = {0, c1, c2, . . . , cm}, S2 = {z : zn+azn−m+ c = 0}, where gcd(m,n) = 1, a ∈ C
∗

and c 6= 0, βi, are BURSM0, 3 for n > 2m + 3, BURSM1, 2 for n > 2m + 4 and

BURSM1, 3 for n > 2m+1 under the additional supposition that c 6= βiβj/(βi + βj).

4. Application

Application of Theorem 1.1. Let us consider the sets defined in Theorem C.

Then we have

S2 =
{

z : 1
2 (n− 1)(n− 2)zn − n(n− 2)zn−1 + 1

2n(n− 1)zn−2 − d = 0
}

=
{

z : zn +
−2n

n− 1
zn−1 +

n

n− 2
zn−2 − 2d

(n− 1)(n− 2)
= 0

}

= {z : zn + azn−m + bzn−2m + c = 0},

where a = −2n/(n− 1), b = n/(n− 2), c = −2d/(n− 1)(n− 2) and m = 1. Observe

that here a2/4b = n(n− 2m)/(n−m)2, gcd(m,n) = 1. Hence, the roots of

nz2m + a(n−m)zm + b(n− 2m) = 0

are ci = c1 = a(1− n)/2n = 1 and

βi = −(cni + ac
(n−m)
i + bc

(n−2m)
i ) = −

(

1− 2n

n− 1
+

n

n− 2

)

=
−2

(n− 1)(n− 2)
= βj .
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Therefore βiβj/(βi + βj) = −1/(n− 1)(n− 2). Also we have S1 = {0, 1} = {0, c1}
and n > 5 = 2 · 1 + 3 = 2m + 3. Therefore all the conditions of Theorem 1.1 are

satisfied and hence Si’s as used in Theorem C are BURSM1, 3, BURSM2, 2 for c 6=
0, βi, βiβj/(βi + βj), i.e. −2d/(n− 1)(n− 2) 6= 0,−2/(n− 1)(n− 2),−(n − 1)−1 ×
(n− 2)−1, i.e. d 6= 0, 1, 12 .

R em a r k 4.1. The above result significantly improves Theorem C by removing

the condition d2 − d + 1 6= 0 as well as relaxing the nature of sharing from (3, 2)

to (2, 2).

R em a r k 4.2. Example 1.1 shows that whenever m = 1 and n = 5, then c 6=
βiβj/(βi + βj) is a must for Theorem 1.1. Consequently, d 6= 1

2 in Theorem C is a

must whenever n = 5. In this case we would have any two nonconstant meromorphic

functions f and g such that f + g = 1 and they share S1 and S2 CM but f 6≡ g.

5. Some relevant issues

To get the best possible answer of Question A, Yi (see [19]) also introduced the

following polynomial in the literature:

(5.1) P1(w) = a1w
n − n(n− 1)w2 + 2n(n− 2)b1w − (n− 1)(n− 2)b21,

where n > 3 is an integer and a1 and b1 are two nonzero complex numbers satisfying

a1b
n−2
1 6= 2. It has also been proved that P1(w) has only simple zeros.

A huge number of researchers (see [19], [11], [2], [3], [7]) devoted themselves to the

best possible solution of Question A under the ambit of this polynomial. In all these

theorems, authors resorted to the same technique so as to reduce the cardinality of

one set containing n elements, as small as possible, as the other set, namely the set

of poles, is always fixed. One can easily point out that the least possible value of n

devoid of any deficiency conditions have so far been obtained is 8. In the sequel we

will show that to further reduce the value of n without any deficiency conditions the

notion of bi-unique range sets plays a vital role if we slightly manipulate the initial

definition in [4]. By adopting this new notion we will also be able to execute our

second motivation as stated earlier. Hence, we initiate the following definition.

Definition 5.1. Suppose S1 = S∗ ∪ {∞}, where S∗ ⊂ C. Further suppose

S2 ⊂ C. Then S1 and S2 are called extended bi-unique range sets for meromorphic

(entire) functions with weights m, k if for any two nonconstant meromorphic (entire)

functions f and g, Ef (S1,m) = Eg(S1,m), Ef (S2, k) = Eg(S2, k) imply f ≡ g. We

say Si’s, i = 1, 2, are EBURSMm, k (EBURSEm, k) in short. As usual if both

m = k = ∞, we say Si’s, i = 1, 2, are EBURSM (EBURSE).
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In connection to this new definition, we are now going to provide the following

results which will improve, supplement and generalize all the results obtained so far

for P1(w) as far as the possible answer of Question A is concerned.

Let Q(w) = cwn + bw2m + awm + 1, where n,m ∈ N, and a, b, c ∈ C
∗

be such that n > 2m, gcd(n,m) = 1, a2/4b = n(n− 2m)/(n−m)2 and c 6=
−(2mbe2mi + amemi )/neni (= γi) with ei being the roots of the equation

(5.2) wm = − 2n

(n−m)a
.

Now, Q′(w) = ncwn−1 +2mbw2m−1 + amwm−1. Therefore the zeros of Q′(w) are

the roots of ncwn−1 + 2mbw2m−1 + amwm−1 = 0. Clearly, for any zero ‘s’ of Q′(w)

we have ncsn−1 + 2mbs2m−1 + amsm−1 = 0, i.e. ncsn + 2mbs2m + amsm = 0,

i.e. csn = −(2mbs2m + amsm)/n.

Now for s = 0

Q(0) = 1 6= 0

and for s 6= 0

Q(s) = − 2mbs2m + amsm

n
+ bs2m + asm + 1

=
(n− 2m)bs2m + (n−m)asm + n

n

=
a2(n−m)2s2m + 4a(n−m)sm + 4n2

4n2

=
(a(n−m)sm + 2n)2

4n2
.

So, ‘s’ is a zero of Q(w) if sm = −2n/((n−m)a), i.e. if s ∈ {e1, e2, . . . , em}. But
then we would have ceni = −(2mbe2mi + amemi )/n for i ∈ {1, 2, . . . ,m}, which is a
contradiction as c 6= γi = −(2mbe2mi + amemi )/neni . Hence, Q(w) has only simple

zeros.

Theorem 5.1. Let S∗

1 = {∞, e1, e2, . . . em} and S∗

2 = {w : cwn + bw2m + awm +

1 = 0}, where n > 2m + 3, gcd(n,m) = 1, a2/4b = n(n− 2m)/(n−m)2, and

a, b, c ∈ C
∗ be such that c /∈ {0, γi, γiγj/(γi + γj)}. Then

(i) S∗

i ’s, i = 1, 2, are EBURSM1, 3.

(ii) S∗

i ’s, i = 1, 2, are EBURSM2, 2.

P r o o f. Let f and g be two nonconstant meromorphic functions such that

Ef (S
∗

1 , p) = Eg(S
∗

1 , p) and Ef (S
∗

2 , t) = Eg(S
∗

2 , t), where (p, t) = (1, 3), (2, 2).
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We have S∗

2 = {w : cwn + bw2m + awm + 1 = 0} and suppose that S2 = {z :
zn + azn−m + bzn−2m + c = 0} with the same condition on a, b, c, n,m as given in

the theorem.

Observe that
S∗

2 = {w : cwn + bw2m + awm + 1 = 0}

=
{1

z
:
zn + azn−m + bzn−2m + c

zn
= 0

}

=
{1

z
: zn + azn−m + bzn−2m + c = 0

}

.

Suppose w1, w2, . . . , wn are distinct roots of cw
n + bw2m + awm + 1 = 0 and

z1, z2, . . . , zn are distinct roots of z
n+azn−m+bzn−2m+c = 0. Clearly the elements

of S2 and S∗

2 are reciprocals, so after suitable arrangement of the elements of these

sets we can write wi = 1/zi. Further suppose f1 = 1/f , g1 = 1/g.

Let aij be any wi-point of f . Then aij is 1/wi point of 1/f , i.e. aij is zi-point

of f1 and vice-versa.

Now Ef (S
∗

2 , t) =
⋃

wi∈S∗

2

Et(wi, f) =
⋃

zi∈S2

Et(zi, f1) = Ef1 (S2, t). So, Ef (S
∗

2 , t) =

Eg(S
∗

2 , t) implies Ef1(S2, t) = Eg1(S2, t).

We recall that S∗

1 = {∞, e1, e2, . . . em}, where ei’s, i ∈ {1, 2, . . . ,m}, are the
distinct mth roots of the equation

(5.3) zm = − 2n

(n−m)a
.

Suppose that S1 = {0, c1, c2, . . . , cm}, where ci’s, i ∈ {1, 2, . . . ,m}, are the distinct
mth roots of the equation

(5.4) wm = − (n−m)a

2n
.

Now putting w = 1/z in (5.4), we get (5.3). Then by similar argument as deployed

to find the relation between wi and zi we can write ci = 1/ei.

So for f = 1/f1 and g = 1/g1, using the similar argument as done above we have

that Ef (S
∗

1 , p) = Eg(S
∗

1 , p) implies Ef1(S1, p) = Eg1(S1, p).

Also from the proof of Lemma 2.11 observe that

γi = −2mbe2mi + amemi
neni

= −cn−2m
i

m

n
(acmi + 2b) = βi.

Hence, all the conditions of this theorem coincide with all the conditions of Theo-

rem 1.1. Therefore Ef1(S1, p) = Eg1(S1, p) and Ef1(S2, t) = Eg1(S2, t) imply f1 = g1
for (p, t) = (1, 3), (2, 2). Hence 1/f = 1/g, i.e. f ≡ g. �
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Corollary 5.1. Let S∗

1 = {b1,∞} and S∗

2 = {w : a1w
n−n(n−1)w2+2n(n−2)×

b1w − (n − 1)(n − 2)b21 = 0}, where n > 5, and a1, b1 ∈ C be such that a1b
n−2
1 /∈

{0, 1, 2}. Suppose that f and g are two nonconstant meromorphic functions satis-

fying Ef (S
∗

1 , p) = Eg(S
∗

1 , p) and Ef (S
∗

2 , t) = Eg(S
∗

2 , t). Then f ≡ g for (p, t) =

(1, 3), (2, 2).

P r o o f. Given that

S∗

2 = {w : a1w
n − n(n− 1)w2 + 2n(n− 2)b1w − (n− 1)(n− 2)b21 = 0}

=
{

w :
−a1

(n− 1)(n− 2)b21
wn +

n

(n− 2)b21
w2 − 2n

(n− 1)b1
w + 1 = 0

}

= {w : cwn + bw2m + awm + 1 = 0},

where c = −a1/(n− 1)(n− 2)b21, b = n/(n− 2)b21, a = −2n/(n− 1)b1 and m = 1,

observe that here a2/4b = n(n− 2m)/(n−m)2 and gcd(n,m) = 1. Now the

roots of wm = −2n/(n−m)a are ei = e1 = −2n/(n− 1)a = b1 and hence

γi = −(2mbe2mi + amemi )/neni = −(2bb21 + ab1)/nb
n
1 = −(2n/(n− 2))/nbn1 +

(2n/(n− 1))/nbn1 = −2/((n− 1)(n− 2)bn1 ) = γj . Therefore γiγj/(γi + γj) =
1
2γi =

−1/(n− 1)(n− 2)bn1 . So, we have S∗

1 = {b1,∞} = {e1,∞} and n > 5 =

2 · 1 + 3 = 2m + 3. Now a1b
n−2
1 /∈ {0, 1, 2} implies −a1b

n
1/(n− 1)(n− 2)b21 /∈

{0,−1/(n− 1)(n− 2),−2/(n− 1)(n− 2)}, i.e. c /∈ {0, γiγj/(γi + γj), γi}. Therefore
all the conditions of Theorem 5.1 are satisfied. Hence, the corollary immediately

follows from Theorem 5.1. �

R em a r k 5.1. Clearly Theorem 5.1 and Corollary 5.1 significantly reduces the

value of n from 8 to 5 at the cost of forming EBURSM without any deficiency

conditions over the functions.

From the last section of the proof of Corollary 5.1 and the discussion just above

Theorem 5.1, it is clear that a1b
n−2
1 /∈ {0, 2} is mandatory for all the roots of

a1w
n − n(n− 1)w2 + 2n(n− 2)b1w − (n− 1)(n− 2)b21 = 0

to be simple. Now we exhibit the following example which shows that the condition

a1b
n−2
1 6= 1 is also sharp for n = 5 in Corollary 5.1.

E x am p l e 5.1. Let R(w) = a1w
n/n(n− 1)(w − α1)(w − α2), where α1 and α2

are two distinct roots of n(n − 1)w2 − 2n(n − 2)b1w + (n − 1)(n − 2)b21 = 0 with

a1, b1 ∈ C
∗ being such that a1b

n−2
1 6= 2. Suppose f be any nonconstant meromorphic

function and g = b1f/(f − b1). Also let F1 = R(f) and G1 = R(g) for n = 5 with
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a1b
n−2
1 = 1, i.e. a1b

3
1 = 1. Now

(5.5) 2G1 =
a1g

5

10(g − α1)(g − α2)

=
a1b

5
1f

5

10(f − b1)5(b1f(f − b1)−1 − α1)(b1f(f − b1)−1 − α2)

=
b21f

5

10(f − b1)3(f(b1 − α1) + b1α1)(f(b1 − α2) + b1α2)

=
b21f

5

10(f − b1)3(f + b1α1(b1 − α1)−1)

× 1

(f + b1α2(b1 − α2)−1)(b1 − α1)(b1 − α2)
.

Note that here αi’s are the roots of 10w
2 − 15b1w + 6b21 = 0. Therefore αi =

1
20 (15±

√
15i)b1 and so (b1−α1)(b1−α2) =

1
10b

2
1. Putting these values in (5.5) we get

(5.6) 2G1 =
f5

(f − b1)3(f + b1α1(b1 − α1)−1)(f + b1α2(b1 − α2)−1)

=
a1f

5

(f − b1)3a1(f + b1α1(b1 − α1)−1)(f + b1α2(b1 − α2)−1)
.

Here b1αi/(b1 − αi) =
1
2b1(3±

√
15i). So, (5.6) reduces to

2G1 =
a1f

5

(f − b1)3(a1f2 + 3a1b1f + 6a1b21)
=

a1f
5

a1f5 − 10f2 + 15b1f − 6b21
=

F1

F1 − 1
2

,

which implies G1 = F1/(2F1 − 1), i.e. G1 − 1 = (1− F1)/(2F1 − 1), hence F1, G1

share 1 CM and so Ef (S
∗

2 ,∞) = Eg(S
∗

2 ,∞) for n = 5. Obviously Ef (S
∗

1 ,∞) =

Eg(S
∗

1 ,∞) but f 6≡ g.

In [8] it has been shown that S2 of Theorems 1.1, 1.2, 1.3 forms unique range

sets (URSM) with weight 2. Using the techniques of Theorem 5.1 one can easily

show that S∗

2 of the same theorem is also a URSM with weight 2. Therefore natural

questions arise:

Q u e s t i o n 5.2. Does there exist BURSM for every URSM? If so, then what is

the relation between the cardinalities of URSM and BURSM?

Q u e s t i o n 5.3. What happens to Theorems 1.1, 1.2, 1.3 if we use the notion

of EBURSM instead of BURSM?
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