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Abstract. We characterize generalized Douglas-Weyl Randers metrics in terms of their
Zermelo navigation data. Then, we study the Randers metrics induced by some impor-
tant classes of almost contact metrics. Furthermore, we construct a family of generalized
Douglas-Weyl Randers metrics which are not R-quadratic. We show that the Randers
metric induced by a Kenmotsu manifold is a Douglas metric which is not of isotropic S-
curvature. We show that the Randers metric induced by a Kenmotsu or Sasakian manifold
is not Einsteinian. By using D-homothetic deformation of a Kenmotsu or Sasakian mani-
fold, we construct a family of generalized Douglas-Weyl Randers metrics and show that the
Lie group of projective transformations does not act transitively on the set of generalized
Douglas-Weyl Randers metrics.
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1. Introduction

Projective invariants are important in geometry. In Riemannian geometry, the

Weyl tensor is a natural projective invariant. The Weyl tensor can be defined

in Finsler geometry, too. There are some non-Riemannian projective invariants

in Finsler geometry. Douglas metrics and generalized Douglas-Weyl metrics (for

simplicity GDW-metrics) are non-Riemannian projective invariant classes of Finsler

metrics. Indeed, if F1 and F2 are two projectively related Finsler metrics on a mani-

fold M , then F1 is a Douglas metric (or GDW-metric) if and only if F2 is a Douglas

metric (or GDW-metric). It is worth mentioning that every Riemannian manifold

is a Douglas metric. For a manifold M , let GDW(M) denote the class of all Finsler

metrics on M satisfying

Di
jkl;mym = Tjkly

i,
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where Di
jkl;m denotes the horizontal covariant derivatives of the Douglas tensor D

i
jkl

with respect to the Berwald connection of the Finsler metric F . It is known that

Douglas and Weyl’s metrics are in GDW(M). It has been stated in [1] that GDW(M)

is closed under projective changes. More precisely, if F is projectively equivalent

to a Finsler metric in GDW(M), then F is in GDW(M). As mentioned in [11],

GDW(M) contains R-quadratic metrics as a special case, but the class of R-quadratic

metrics is not closed under projective transformations. For more recent progress on

generalized Douglas-Weyl metrics, see [5], [20], [21], [22].

Almost contact geometry is a very fruitful branch of differential geometry. Similar

to [7], we use some important classes of almost contact metrics, namely, cosymplectic,

Sasakian and Kenmotsu manifolds, to make Randers metrics with special curvature

properties. Although the trans-Sasakian structure contains these three classes, we

prefer to restrict our study to each structure separately.

A Finsler metric is of Randers type if and only if it is a solution of the naviga-

tion problem on a Riemannian manifold, see [4]. In this paper, we characterize the

GDW-Randers metric F = α+β with ‖β‖α = const. in terms of its Zermelo naviga-

tion data (h,W ). We construct a family of Randers metrics which are in GDW(M)

and are not R-quadratic. Then, we prove that the Randers metric induced by a Ken-

motsu manifold is a Douglas metric while it is not of isotropic S-curvature.

The study of Einstein Finsler metrics is an important problem in Finsler geometry.

As is well known, a Riemann-Einstein metric has constant Ricci curvature for n > 3.

In this paper, we prove that the Randers metric induced by Kenmotsu or Sasakian

manifold is not Einsteinian. Since the induced Randers metric of a cosymplectic

manifold is Berwaldian and obviously is Douglas, we omit them.

Two Finsler metrics on a manifoldM are said to be pointwise projectively related

if they have the same geodesics as point sets. Two Finsler metrics are said to be

projectively related if there exists a diffeomorphism between them such that the

pull-back metric is pointwise projectively related to the other one. It is a good idea

to study projectively related Finsler metrics. To this aim, we use D-homothetic

deformation. A D-homothetic deformation of a Sasakian (Kenmotsu) structure is

also a Sasakian (Kenmotsu) structure. Therefore, we can construct a new Randers

metric as Ft = αt+εηt associated to (M, η, ϕ, ξ, α) by its D-homothetic deformation.

If F = α+ εη is the induced Randers metric of a Sasakian (Kenmotsu) structure, we

show that F is not projectively related to Ft. Hence, we show that the Lie group of

projective transformations of a Finsler metrics does not act transitively on the set

of GDW-metrics.
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2. Preliminaries

Let M be a differentiable manifold of dimension 2n+ 1. Suppose η, ξ and ϕ are

a 1-form, a vector field, and a (1, 1)-tensor, respectively. The triple (η, ξ, ϕ) is called

an almost contact structure on M if it satisfies the following conditions:

ϕ(ξ) = 0, η(ξ) = 1, ϕ2 = −I + η ⊗ ξ.

A differentiable manifold of odd dimension 2n+ 1 with an almost contact structure

is called an almost contact manifold. On an almost contact manifold, we have the

following:

rankϕ = 2n.

Let us suppose that a manifoldM with the (η, ξ, ϕ) structure admits a Riemannian

metric g such that

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ).

Then M is called an almost contact metric structure and g is called a compatible

metric. An almost contact structure is normal (see [3]) if the torsion tensor [ϕ, ϕ] +

2dη ⊗ ξ, where [ϕ, ϕ] is the Nijenhuis tensor of ϕ, vanishes identically. An almost

contact metric structure becomes a contact metric structure if Φ = dη, where Φ is

the fundamental 2-form defined as

Φ(X,Y ) = g(X,ϕY ).

The following is true for every contact metric:

(2.1) ∇iϕ
i
j = −2nηj,

where ∇ stands for the Levi-Civita connection of g. An almost contact metric struc-
ture (η, ξ, ϕ, g) on M is called a trans-Sasakian structure (see [14]) if it satisfies

(2.2) (∇Xϕ)Y = k1{g(X,Y )ξ − η(Y )X}+ k2{g(ϕX, Y )ξ − η(Y )ϕX}

for some scalar functions k1 and k2. Moreover, (2.2) is equivalent to

(∇Xη)(Y ) = − k1g(ϕX, Y ) + k2{g(X,Y )− η(X)η(Y )}(2.3)

(∇XΦ)(Y, Z) = k1{g(X,Z)η(Y )− g(X,Y )η(Z)}(2.4)

− k2{g(X,ϕZ)η(Y )− g(X,ϕY )η(Z)}
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In local coordinates, (2.2) and (2.3) can be written as follows:

ϕj

k|i = k1(akiξ
j − δji ηk) + k2(ϕkiξ

j − ϕj
iηk),(2.5)

ηi|j = k1ϕji + k2(aij − ηiηj),(2.6)

where | is the covariant derivative with respect to ∇, aij are the local components
of g and ϕij = aisϕ

s
j are the local components of the fundamental 2-form Φ. Thus,

equation (2.5) can be written as

(2.7) ϕjk|i = k1(akiηj − aijηk) + k2(ϕkiηj − ϕjiηk).

It is easy to see that trans-Sasakian manifolds are normal, see [14]. A trans-Sasakian

structure is reduced to a Sasakian (Kenmotsu) structure if k1 = 1 and k2 = 0 (k1 = 0

and k2 = 1) and cosymplectic if k1 = k2 = 0.

A D-homothetic deformation of (M, η, ϕ, ξ, α) is a change of structure tensors in

the following form:

(2.8) ηt = tη, ξt = t−1ξ, ϕt = ϕ, αt = tα+ t(1− t)η ⊗ η, t > 0.

It is easy to see that (ηt, ϕt, ξt, αt) is also an almost contact metric structur, see [17].

Suppose (M, η, ϕ, ξ, g) is a Sasakian (Kenmotsu) manifold. We define α : TM → R

by α(x, y) :=
√
gx(y, y) for every tangent vector y ∈ TxM . Indeed, α is the norm

induced by the Riemannian metric g. In Finsler geometry, we refer to α as a Rie-

mannian metric on M (for example, see [4]). Let F = α + εη be a Randers metric

associated with (M, η, ϕ, ξ, g), where 0 < ε < 1. It can be seen that (M, ηt, ϕt, ξt, αt)

is also a Sasakian (Kenmotsu) manifold, where αt is the norm induced by gt, see [17]

and [23].

Let M be an n-dimensional C∞ manifold. Denote by TxM the tangent space

at x ∈ M , and by TM =
⋃

x∈M

TxM the tangent bundle ofM . A Finsler metric onM

is a function F : TM → [0,∞) which has the following properties:

(i) F is C∞ on TM0,

(ii) F is positively 1-homogeneous on the fibers of the tangent bundle TM ,

(iii) for each y ∈ TxM , the following quadratic form gy on TxM is positive definite:

(2.9) gy(u, v) :=
1
2
[F 2(y + su+ tv)]

∣∣
s,t=0

, u, v ∈ TxM.

Randers metrices are an important class of Finsler metrics since they are computable

and have diverse applications in many branches. They are defined by a Riemannian

metric α and a 1-form β on the manifold as F = α+β. It is easy to see that a Randers

metric is strongly convex if and only if b := ‖β‖α < 1, see [9], [13], [18], [19].
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Similarly to [7], let (M,α, η, ξ, ϕ) be an almost contact metric manifold and put

β := εη, where 0 < ε < 1 is a constant. Then F = α + β is a Randers metric, since

‖β‖α = ε < 1.

Define

bi|j :=
∂bi
∂xj

− bkΓ̃
k
ij ,

where Γ̃k
ij denote the Christoffel symbols of α. For a Randers metric F = α+ β, let

us put

rij :=
1
2
(bi|j + bj|i), sij =

1
2
(bi|j − bj|i),(2.10)

si := bmsmi, rj := bmrmj , tij := simsmj .

We will denote r00 = rijy
iyj , sij = aimsmj and si0 := sijy

j , etc.

A spray G on M is a smooth vector field on TM0 := TM −{0}, locally expressed
in the following form:

G = yi
∂

∂xi
− 2Gi ∂

∂yi
,

where Gi = Gi(x, y) are local functions on TM0 which are homogeneous of degree 2

with respect to y. Let F be a Finsler metric. The associated spray to F is given by

Gi(x, y) := 1
4
gil{[F 2]xkylyk − [F 2]xl}.

The notion of Riemann curvature for Riemann metrics can be extended to Finsler

metrics. For a vector y ∈ TxM0, the Riemann curvature operator Ry : TxM → TxM

is defined by

Ry(u) := Ri
k(y)u

k ∂

∂xi
,

where

Ri
k(y) = 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

The family R := {Ry}y∈TM0
is called the Riemann curvature. We define the Ricci

curvature as the trace of Ry, i.e., Ric(x, y) := trace(Ry). A Finsler metric is said to

be R-quadratic if its Riemann curvature coefficients Ri
k are quadratic in y ∈ TxM

at every point x ∈ M .

Let us recall some notions about the curvatures of a Finsler manifold (M,F ). Let

P ⊂ TxM be a tangent plane and y ∈ P−{0}. The pair {P, y} is called a flag in TxM .

Then P = span{y, u}, where u ∈ P is an arbitrary vector linearly independent of y.

Define

K(P, x, y) =
gy(Ry(u), u)

gy(y, y)gy(u, u)− gy(y, u)gy(u, u)
.
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The quantityK(P, x, y) is called the flag curvature of the flag {P, y}. A Finsler metric
is of scalar curvature K(x, y) if and only if the flag curvature is independent of the

tangent planes P containing y ∈ TxM . A Finsler manifold (M,F ) is of constant

flag curvature K if and only if Hh
ijk = K(gijδ

h
k − gikδ

h
j ), in the natural coordinate

system on TM0, where H
h
ijk are the local components of the hh-curvature of the

Berwald connection of F . Contrary to the Riemannian case, the classification of

Finsler metrics of constant (scalar) flag curvature is an open problem.

There is a notion of distortion τ = τ(x, y) on TM associated with the Busemann-

Hausdorff volume form onM , i.e., dVBH = σ(x)dx1∧dx2 . . .∧dxn, which is defined by

τ(x, y) = ln

√
det(gij(x, y))

σ(x)
, σ(x) =

Vol(Bn(1))

Vol{(yi) ∈ Rn : F (x, yi(∂/∂xi)|x) < 1} .

Then the S-curvature is defined by

S(x, y) =
d

dt
[τ(c(t), ċ(t))]

∣∣
t=0

,

where c = c(t) is the geodesic with c(0) = x and ċ(0) = y, see [15]. From the

definition, we see that the S-curvature S(x, y) measures the rate of change in the

distortion on (TxM,Fx) in the direction y ∈ TxM . In the local coordinates, the

S-curvature is given by

S =
∂Gm

∂ym
− ym

∂

∂xm
(lnσ).

Let (M,F ) be an n-dimensional Finsler manifold, S(x, y) its S-curvature. Suppose

c = c(x) is a scalar function onM . If S = (n+1)cF , then F is said to be of isotropic

S-curvature, and F is said to be of constant S-curvature if c = const.

Any Randers metric F = α + β on the manifold M is a solution of the following

Zermelo navigation problem:

h
(
x,

y

F
−Wx

)
= 1,

where h =
√
hijyiyj is a Riemannian metric and W = W i∂/∂xi is a vector field

such that ‖W‖2h = hijW
iW j < 1. Note that here we follow the notations of [4] and

consider the induced norm of the Reimannian metric h to be the same as h. In fact,

α and β are given by

α =

√
λh2 +W0

λ
, β = −W0

λ
,

respectively, and moreover, λ = 1 − ‖W‖2h and W0 = hijW
iyj , see [4]. Now, F can

be written as follows:

(2.11) F =

√
λh2 +W 2

0

λ
− W0

λ
.
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Given a Randers metric F = α + β, the pair (α, β) and its navigation data (h,W )

are related to each other as follows:

(2.12) h2 = λ(α2 − β2), W0 = −λβ.

We use the following traditional conventions:

Rij :=
1
2
{∇jWi +∇iWj}, Sij :=

1
2
{∇jWi −∇iWj}, Si

j := hihShj , Sj := SijW
i,

Rj := RijW
i, R := RjW

j , Ri0 := Rijy
j, R00 := Rjy

j, Si0 := Sijy
j ,

where ∇ denotes the covariant derivative with respect to h.
A Randers metric with isotropic S-curvature can be expressed in terms of h andW

as follows, see [24].

Theorem 2.1 ([24]). Let F = α+β be a Randers metric on a manifoldM , which

is expressed in terms of a Riemann metric h and a vector field W by (2.12). Then F

is of isotropic S-curvature, S = (n+ 1)cF , if and only if W satisfies

(2.13) R00 = −2 ch2.

A Finsler metric F on an n-dimensional manifold M is called an Einstein metric

if its Ricci curvature satisfies Ric = (n− 1)K(x)F 2. Therefore, if an n-dimensional

Finsler metric has constant flag curvature K, then its Ricci curvature is Ric =

(n−1)KF 2, which implies that it is Einsteinian. Moreover, it is said to have Einstein

constant σ if K(x) = σ = const. Finsler metrics with isotropic flag curvature are

Einstein metrics. Riemannian Einstein metrics with dimension n > 3 must be of

constant Ricci curvature. However, the analogous proposition in the Finsler setting

is still open.

Theorem 2.2 ([2]). Suppose that the Randers metric F = α+ β is the solution

of Zermelo’s navigation problem on a Riemann space (M,h) under the influence of

a vector field W with h(x,W ) < 1. Then (M,F ) is Einstein with Einstein scalar

K = σ(x) if and only if there exists a constant c such that h and W satisfy the

following conditions:

(1) h is Einstein with Einstein scalar µ = σ(x) + c2, that is,

(2.14) Ricik = (n− 1)µhik.

(2) W is an infinitesimal homothety of h, namely,

(2.15) Rij = −2 chij.

Furthermore, σ must vanish whenever h is not Ricci-flat.
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Since studying the projectively related Finsler metrics is important, we use

D-homothetic deformation to make new Finsler metrics Ft. It is natural to inves-

tigate whether F and Ft are projectively related or not. In [16], the authors prove

the following:

Theorem 2.3 ([16]). A Randers metric F = α+β is pointwise projectively related

to another Randers metric F = α+ β if and only if one of the following cases holds:

(1) α 6= λ(x)α, β and β are closed, and α is pointwise projectively related to α.

(2) α = λα for some positive constant λ, and β − λβ is closed.

3. GDW-Randers metrics via their navigation data

The characterization of GDW-Randers metrics on a manifold M is given in [12]

as follows.

Theorem 3.1 ([12]). Let F = α + β be a Randers metric on an n-dimensional

manifold M . Then F is in GDW(M) if and only if

(3.1) sij|k =
1

n− 1
{aiksmj|m − ajks

m
i|m},

where | denotes the covariant derivative with respect to α.

Now, suppose F = α + β is a Randers metric with navigation data (h,W ). The

aim of this section is expressing (3.1) in terms of h and W . Let Gi and G̃i be the

spray coefficients of h and α, respectively. Then by [4]

G̃i = Gi + ζi,

where

(3.2) ζi =
1

λ
yi(R0 + S0) +

1

2
W iR00 +

( 1

2λ
h2 +

1

λ2
W 2

0

)
[W iR− (Ri + Si)]

+
1

λ
W0[W

iR+ Si
0].

Then the Christoffel coefficients of h and α are related as follows:

ζijk =
1

λ
[δij(Rk + Sk) + δik(Rj + Sj)] +W iRjk +

( 1

λ
hjk +

2

λ2
WjWk

)

× [W iR− (Ri + Si)] +
1

λ
Wj(W

iRk + Si
k) +

1

λ
Wk(W

iRj + Si
j).
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Moreover, we have

rjk = −Rjk −
( 1

λ
hjk +

2

λ2
WjWk

)
R+

1

λ2
(SjWk + SkWj)(3.3)

+
1− λ

λ2
(RjWk +RkWj),

sjk = − 1

λ
Sjk +

1

λ2
[(Rj + Sj)Wk − (Rk + Sk)Wj ],(3.4)

rk = Rk +
1

λ
RWk − 1− λ

λ
(Rk + Sk),

sk = Sk −
1

λ
RWk +

1− λ

λ
(Rk + Sk).(3.5)

One can see that λ;k = −2(Rk + Sk), see [4].

Although characterizing general GDW-Randers metrics in terms of their Zermelo

navigation data is interesting, the calculation is quite long and cumbersome. For

this reason, and since for a Randers metric induced by a trans-Sasakian manifold we

have ‖β‖α = const., in the sequel, we suppose that rj + sj = 0. In this case, we also

have Rj + Sj = 0 and thus (3.3) and (3.4) reduce to the following:

rjk = −Rjk −
( 1

λ
hjk +

2

λ2
WjWk

)
R+

1

λ2
(SjWk + SkWj)(3.6)

+
1− λ

λ2
(RjWk +RkWj),

sjk = − 1

λ
Sjk, rk = Rk +

1

λ
RWk,

sk = Sk −
1

λ
RWk, tk = −Tk +RSk.(3.7)

By taking covariant derivatives of sij and using λ;k = −2(Rk + Sk) = 0, we have

(3.8) sij|k =
1

λ
(−Sij;k + Simζmjk + Smjζ

m
ik ),

where ; and | are covariant derivatives with respect to h and α, respectively. A direct
computation shows

Simζmjk = − SiRjk − SiR
( 1

λ
hjk +

2

λ2
WjWk

)

+
1

λ
[Wj(−SiRk + Tik) +Wk(−SiRj + Tij)],

Smjζ
m
ik = SjRik + SjR

( 1

λ
hik +

2

λ2
WiWk

)

+
1

λ
[Wi(SjRk − Tjk) +Wk(SjRi − Tij)],
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where Tij = SimSm
j . On the other hand, s

t
j|k = aitsij|k, where a

ti = λ(hti −W iW t).

By raising the index i and contracting k and i in (3.8), we have

(3.9) stj|t = Rt
tSj−StRjt+Sj;tW

t−St
j;t−

1

λ
[(SmRm−SmSm−T t

t )Wj−nRSj ]−Qj ,

where Qi := RmSm
i . If we substitute equations (3.8) and (3.9) into (3.1), we get the

following:

Theorem 3.2. Suppose that the Randers metric F = α + β is the solution of

Zermelo’s navigation problem on a Riemann space (M,h) under the influence of

a vector field W with h(x,W ) = ε < 1, where ε is constant. Then (M,F ) is

in GDW(M) if and only if

(3.10) hikQjλ
2 + St

j;thikλ
2 + Si;tW

tWjWkλ+Rt
tSiWjWkλ+ StWiWkRjtλ

+ SmRmhikWjλ+ SmSmWihjkλ+ Si;tW
thjkλ

2

+WiQjWkλ+WiSt
j;tWkλ+Rt

tSihjkλ
2 + SthikRjtλ

2

+ (n− 1)[RiSjWkλ+WiSjRkλ+RWiSjWk +RikSjλ
2 + TikWjλ]

+ T t
tWihjkλ+RSiWjWk +RSihjkλ− (i | j) = (n− 1)Sij;kλ

2,

where (i | j) is the cyclic permutation of i and j.

Corollary 3.1. Suppose that the Randers metric F = α + β is the solution of

Zermelo’s navigation problem on a Riemann space (M,h) under the influence of

a Killing vector field W with h(x,W ) = ε < 1, where ε is constant. Then (M,F ) is

in GDW(M) if and only if

(3.11) T t
t (Wihjk −Wjhik) + (St

j;tWi − St
i;tWj)Wk + λ(St

j;thik − St
i;thjk)

= 2n(λSij;k + TikWj − TjkWi).

P r o o f. Let W be a Killing vector field, i.e., Rij = 0. Then Ri = 0. Moreover,

Rj + Sj = 0 yields Sj = 0. By substituting these results in (3.10), we obtain the

result. �

Here, we want to characterize R-quadratic Randers metrics in terms of their nav-

igation datum. Similarly to the GDW(M) case, we also suppose ‖W‖h = const.

First, we recall the following.

Theorem 3.3 ([8]). A Randers metric F = α+ β on a manifold is R-quadratic if

and only if

r00 + 2 s0β = 2 c(α2 − β2),(3.12)

sij|k = aik(2 csj + c2bj + tj)− ajk(2 csi + c2bi + ti),(3.13)

where c is a constant.
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By Theorem 2.1, equation (3.12) is equivalent to R00 = −2ch2. If we substitute

equations (3.7) and (3.8) in (3.13), we have the following:

Theorem 3.4. Suppose that the Randers metric F = α + β is the solution of

Zermelo’s navigation problem on a Riemann space (M,h) under the influence of W

with h(x,W ) = ε < 1, where ε is constant. Then (M,F ) is R-quadratic if and only

if R00 = −2ch2 and

(3.14) Sij;k =
1

λ2
[R(SiWjWkλ+ Sihjkλ

2 − 2Wichjkλ− 2SiWjWk − Sihjkλ)

+ [2 SiWjWkc+ 2Sichjkλ−Wic
2hjk +RiSjWk +RikSjλ

−RkSiWj − Ti(WjWk + hjkλ) + TikWj ]λ− (i | j)],

where (i | j) is the cyclic permutation of i and j.

Corollary 3.2. Suppose that the Randers metric F = α + β is the solution of

Zermelo’s navigation problem on a Riemann space (M,h) under the influence of

a Killing vector field W with h(x,W ) = ε < 1, where ε is constant. Then (M,F ) is

R-quadratic if and only if

(3.15) Sij;k =
1

λ
[WjTik −WiTjk].

4. Randers metrics associated to a Sasakian structure

Let (M, η, ϕ, ξ, α) be a Sasakian manifold. In this section, we restrict our study to

the Randers metric induced by the Sasakian manifold (M,α, η, ϕ, ξ). Putting k1 = 1

and k2 = 0 in (2.5), (2.6) and (2.7), we obtain directly

(4.1) rij = 0, sij = εϕji, tij = ε2(ηiηj − aij), rj = 0.

In this section, we express our findings in terms of (h,W ). If we compare β = εη

with β = −W0/λ, we obtain W0 = −ελη. By using (3.3), (3.4) and (4.1), we obtain

the following:

(4.2) Rij = 0, Sij = −λsij = λεϕij .

Corollary 4.1. Suppose F = α+β is the Randers metric induced by the Sasakian

structure α and β = εη, where 0 < ε < 1. Then F is of vanishing S-curvature.
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Theorem 4.1. Let (M, η, ϕ, ξ, α) be a Sasakian metric. Suppose F = α+β is the

Randers metric induced by the Sasakian structure α and β = εη, where 0 < ε < 1.

Then F is a generalized Douglas-Weyl metric.

P r o o f. Suppose F = α + β is the Randers metric induced by the Sasakian

manifold (M, η, ϕ, ξ, α). Then by direct calculation of (4.2)

(4.3) Sij;k = Sij|k +
1

λ
(TikWj − TjkWi), St

j;t = St
j|t +

1

λ
T t
tWj ,

where ; and | are covariant derivatives with respect to h and α, respectively. By

using (2.7) and (2.12), we have

(4.4) Sij|k =
1

λ
(hikWj − hjkWi), St

i|t =
2n

λ
Wj .

By using (4.3) and (4.4), one can see that (3.11) holds. This means F is in GDW(M).

�

In [11] the authors prove that GDW(M) contains R-quadratic metrics as a special

case, but the class of R-quadratic metrics is not closed under projective transforma-

tions. Here, we prove that the Randers metric induced by Sasakian metric is not

actually R-quadratic.

Theorem 4.2. Let (M, η, ϕ, ξ, α) be a Sasakian metric. Suppose F = α + β is

a Randers metric induced by a Sasakian structure α and β = εη, where 0 < ε < 1.

Then F is not R-quadratic.

P r o o f. Suppose F is an induced Randers metric of a Sasakian metric, then by

Corollary 3.2, we have

Sij;k =
1

λ
[WjTik −WiTjk].

Comparing the above equation and equation (4.3) gives that Sij|k should be zero,

which by (4.4) implies that hikWj − hjkWi = 0. Contracting the previous relation

with W i yields that (hjk) is of rank 1, which is impossible. Thus, F cannot be

R-quadratic. �

For a Sasakian manifold, we have

(4.5) Ric(X, ξ) = 2nη(X) (or Qξ = 2nξ).

Theorem 4.3. Let F = α + β be the Randers metric induced by a Sasakian

manifold (M, η, ϕ, ξ, α). Then F is not Einsteinian.
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P r o o f. In general, for the Randers metric induced by a Sasakian structure, we

have Rij = 0 and Sij = λεϕij . Suppose F is Einsteinian, then by Theorem 2.2,

c = 0. In this case, µ reduces to µ = σ(x). We also have

(4.6) Ricik = 2nσhik.

By contracting (4.6) in ξj = −(λ/ε)W j and using 1− ε2 = λ, we have

(4.7) Ricijξ
jξi = 2nσλ2.

On the other hand, by (4.5) we have

(4.8) Ricijξ
jξi = 2n,

and consequently, h is not Ricci-flat. Thus it follows from Theorem 2.2 that σ = 0,

which is a contradiction. �

Let (M, η, ϕ, ξ, α) be a Sasakian manifold and (M, ηt, ϕt, ξt, αt) be its D-homo-

thetic deformation. Then, we prove that two Riemannian metrics α and αt are not

projectively related.

Proposition 4.1. Let (M, η, ϕ, ξ, α) be a Sasakian structure and αt be the

D-homothetic deformation of α. In this case, αt and α are not projectively related.

P r o o f. Let

gij := tgij + t(1− t)ηiηj

be the D-homothetic deformation of gij . The inverse of gij is obtained as follows:

(4.9) gij =
1

t
gij + λξiξj ,

where λ = (t− 1)/t(2− t). By direct calculation we have

(4.10) Γ̄k
ij =

1

2
gks

{∂gis
∂xj

+
∂gjs
∂xi

− ∂gij
∂xs

}

= Γk
ij +

1− t

2
gks

{
ηs

∂ηi
∂xj

+ ηs
∂ηj
∂xi

+ ηi
∂ηs
∂xj

+ ηj
∂ηs
∂xi

− ∂(ηiηj)

∂xs

}

+
1

2
λtξkξs

{∂gis
∂xj

+
∂gjs
∂xi

− ∂gij
∂xs

}

+
1

2
λt(1 − t)ξkξs

{
ηs

∂ηi
∂xj

+ ηs
∂ηj
∂xi

+ ηi
∂ηs
∂xj

+ ηj
∂ηs
∂xi

− ∂(ηiηj)

∂xs

}
.
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By (4.1), we see that for a Sasakian metric

rij =
∂ηi
∂ηj

+
∂ηj
∂ηi

− 2ηlΓ
l
ij = 0 and

∂ηi
∂ηj

=
∂ηj
∂ηi

+ ϕij .

Thus (4.10) reduces to

(4.11) Γ̄k
ij = Γk

ij +
t− 1

2
(ηjϕ

k
i + ηiϕ

k
j ).

Suppose α and αt are projectively related metrics. Then we have

(4.12) Γ̄k
ij = Γk

ij + δki πj + δkj πi,

where πi is homogeneous of degree zero. By (4.11) and (4.12) we have

(4.13) Γ̄k
ij = Γk

ij +
t− 1

2
(ηjϕ

k
i + ηiϕ

k
j ) = Γk

ij + δki πj + δkj πi.

By contracting (4.13) with i and k we have (n + 1)πj = 0, which is contradiction.

Thus, α and αt are not projectively related metrics. �

Now, suppose F = α+ εη is the induced Randers metric of a Sasakian structure.

Suppose that α = λαt for some scalar function λ on M . Fix a point x at M .

Considering y ∈ ker ηx ⊂ TxM and taking into account (2.8), one can see that

λ(x) = t. Similarly, considering y = ξ(x) ∈ TxM implies that λ(x) = t(1− t), which

is a contradiction since t is a positive number and t 6= 1. Therefore, α cannot be

a multiple of αt. Proposition 4.1 infers that αt and α are not projectively related. In

this case, by Theorem 2.3, F cannot be projectively related to Ft. In fact, we prove

the following.

Corollary 4.2. Suppose F = α+ εη is the induced Randers metric of a Sasakian

structure. Let Ft = αt + εηt be the Randers metric associated to (M, η, ϕ, ξ, α) by

its D-homothetic deformation. In this case, F is not projectively related to Ft.

5. Randers metric associated to a Kenmotsu structure

Let F = α + β be a Randers metric induced by a Kenmotsu structure. Then we

have

(5.1) rij = ε(aij − ηiηj), sij = 0, tij = 0.

We can express the above equation in terms of (h,W ). For the induced Randers

metric, we have

λ;k = −2(Rk + Sk) = 0.
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Then, by using (5.1) and (3.4) we have

(5.2) Rij = − ε

λ

(WiWj

1− λ
− hij

)
, Sij = 0, Sj = 0.

Since in this case Rj = 0, we have R = 0.

Proposition 5.1 ([4]). Let F = α+β be a Randers metric expressed by navigation

data (h,W ). Then β is closed if and only if

Sjk =
1

1− λ
(WjSk −WkSj), Sk = RWk − (1− λ)Rk.

Corollary 5.1. Let F = α + β be a Randers metric induced by a Kenmotsu

metric. Then F is a Douglas metric.

P r o o f. For the induced Randers metric we have Sij = 0. By Proposition 5.1,

β is closed, i.e., F is Douglas metric. �

Corollary 5.2. Let F = α + β be a Randers metric induced by a Kenmotsu

metric. Then F is not of isotropic S-curvature.

P r o o f. For the induced Randers metric, we have

Rij =
ε

λ

(WiWj

1− λ
− hij

)
.

By Theorem 2.1, F is of isotropic S-curvature if and only if R00 = â2ch2. Thus F

is not of isotropic S-curvature. �

Note that in the previous corollary, we have ‖β‖α = ε, which is a positive constant.

Thus, F cannot be a Riemannain metric.

Theorem 5.1. Let F = α + β be an associated Randers metric of a Kenmotsu

structure. Then F is not Einsteinian.

P r o o f. For a Randers metric associated with a Kenmotsu structure, Rij does

not satisfy (2.15) for any constant c, which means that F is not Einsteinian. �

Let (M, η, ϕ, ξ, α) be a Kenmotsu metric, (ηt, ϕt, ξt, αt) be its D-homothetic de-

formation and Ft = αt + εηt. Since αt is also Kenmotsu, by a direct calculation we

obtain

(5.3) s̄ij = 0, r̄ij = t−1rij .
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Thus, a deformed Randers metric Ft is also of constant S-curvature c = 1
2
t−1. For

a deformed Kenmotsu structure (see [10]), we have the following:

(5.4) ∇XY = ∇XY +
t− 1

t
g(ϕX,ϕY )ξ,

R(X,Y )Z = R(X,Y )Z +
t− 1

t
{g(ϕY, ϕZ)X − g(ϕX,ϕZ)Y },

S(Y, Z) = S(Y, Z) +
2n(t− 1)

t
g(ϕY, ϕZ),

where S is the Ricci tensor of α. On the other hand, the Weyl tensor of a Riemannian

metric is as follows:

(5.5) W (X,Y )Z = K(X,Y )Z − 1

n− 1
{S(Y, Z)X − S(X,Z)Y }.

By substituting (5.4) in (5.5), one can conclude that α and αt have the same Weyl

curvature tensor.

Proposition 5.2. Let (M, η, ϕ, ξ, α) be a Kenmotsu structure and αt be the

D-homothetic deformation of α. In this case, αt and α are not projectively related.

P r o o f. Let ĝij = tgij+ t(t−1)ηiηj be the D-homothetic deformation of gij . The

inverse of ĝij is obtained as follows:

(5.6) ĝij =
1

t
gij +

t− 1

t2
ξiξj .

By direct calculation we have

(5.7) Γ̂k
ij =

1

2
ĝks

{∂ĝis
∂xj

+
∂ĝjs
∂xi

− ∂ĝij
∂xs

}

= Γk
ij+

t− 1

2
gks

{
ηs

∂ηi
∂xj

+ηs
∂ηj
∂xi

+ηi
∂ηs
∂xj

+ηj
∂ηs
∂xi

− ∂(ηiηj)

∂xs

}

− t− 1

2t
ξkξs

{∂gis
∂xj

+
∂gjs
∂xi

− ∂gij
∂xs

}

− (t− 1)2

2t
ξkξs

{
ηs

∂ηi
∂xj

+ ηs
∂ηj
∂xi

+ ηi
∂ηs
∂xj

+ ηj
∂ηs
∂xi

− ∂(ηiηj)

∂xs

}
.

By (4.1), we see that for a Kenmotsu metric dη = 0, which means that ∂ηs/∂x
j =

∂ηj/∂x
s. Thus (5.7) reduces to

Γ̂k
ij = Γk

ij +
t− 1

2t
ξk
{ ∂ηi
∂xj

+
∂ηj
∂xi

− 2ηlΓ
l
ij

}
.

On the other hand, by (4.1) we have

rij = gij − ηiηj ,
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which means that

(5.8) Γ̂k
ij = Γk

ij +
t− 1

2t
ξk(gij − ηiηj).

Suppose α and αt are projectively related metrics, then we have

Γ̂k
ij = Γk

ij + δki πj + δkj πi,

where πi is homogeneous of degree zero. Thus we have

(5.9) Γ̂k
ij = Γk

ij +
t− 1

2t
ξk(gij − ηiηj) = Γk

ij + δki πj + δkj πi.

By contracting (5.9) with i and k we obtain (n+ 1)πj = 0, which is a contradiction.

Thus, α and αt are not projectively related metrics. �

Remark 5.1. Although α and αt have the same Weyl curvature tensor, Propo-

sition 5.2 proves that they are not projectively related. In fact, if two metrics are

projectively related, they will have the same Weyl curvature tensor, but the converse

is not true in general, see [6].

Let F = α + εη be the induced Randers metric of a Kenmotsu structure. By

Theorem 2.3 we prove the following:

Theorem 5.2. Suppose F = α+εη is the induced Randers metric of a Kenmotsu

structure. Let Ft = αt + εηt be the Randers metric associated to (M, η, ϕ, ξ, α) by

its D-homothetic deformation. In this case, F is not projectively related to Ft.

P r o o f. By the same argument, since α cannot be a multiple of αt and for an

induced Randers metric of a Kenmotsu structure, we have sij = 0. Since α and αt

are not projectively related, by Theorem 2.3 F is not projectively related to Ft. �

Acknowledgments. The authors are grateful to Zhongmin Shen for his valuable

comments during completing this paper. The authors would like to thank the referee

for his/her valuable suggestions.

References

[1] S.Bácsó, I. Papp: A note on a generalized Douglas space. Period. Math. Hung. 48 (2004),
181–184. zbl MR doi

[2] D.Bao, C.Robles: Ricci and flag curvatures in Finsler geometry. A Sampler of Rie-
mann-Finsler Geometry. Mathematical Sciences Research Institute Publications 50.
Cambridge University Press, Cambridge, 2004, pp. 197–259. zbl MR

[3] D.E. Blair: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in
Mathematics 203. Birkhäuser, Basel, 2010. zbl MR doi

171

https://zbmath.org/?q=an:1104.53015
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2077695
http://dx.doi.org/10.1023/B:MAHU.0000038974.24588.83
https://zbmath.org/?q=an:1076.53093
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2132660
https://zbmath.org/?q=an:1246.53001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2682326
http://dx.doi.org/10.1007/978-0-8176-4959-3


[4] X.Cheng, Z. Shen: Finsler Geometry: An Approach Via Randers Spaces. Springer,
Berlin, 2012. zbl MR doi

[5] M.H.Emamian, A.Tayebi: Generalized Douglas-Weyl Finsler metrics. Iran. J. Math.
Sci. Inform. 10 (2015), 67–75. zbl MR

[6] G.Hall: On the converse of Weyl’s conformal and projective theorems. Publ. Inst. Math.,
Nouv. Sér. 94 (2013), 55–65. zbl MR doi

[7] I.Hasegawa, V. S. Sabau, H. Shimada: Randers spaces of constant flag curvature induced
by almost contact metric structures. Hokkaido Math. J. 33 (2004), 215–232. zbl MR doi

[8] B.Li, Z. Shen: On Randers metrics of quadratic Riemann curvature. Int. J. Math. 20
(2009), 369–376. zbl MR doi

[9] T.Milkovszki, Z.Muzsnay: On the projective Finsler metrizability and the integrability
of Rapcsák equation. Czech. Math. J. 67 (2017), 469–495. zbl MR doi

[10] H.G.Nagaraja, D. L.KiranKumar, V. S. Prasad: Ricci solitons on Kenmotsu manifolds
under D-homothetic deformation. Khayyam J. Math. 4 (2018), 102–109. zbl MR doi

[11] B.Najafi, B. Bidabad, A.Tayebi: On R-quadratic Finsler metrics. Iran. J. Sci. Technol.,
Trans. A, Sci. 4 (2007), 439–443. zbl MR

[12] B.Najafi, Z. Shen, A. Tayebi: On a projective class of Finsler metrics. Publ. Math. 70
(2007), 211–219. zbl MR

[13] B.Najafi, A.Tayebi: Some curvature properties of (α, β)-metrics. Bull. Math. Soc. Sci.
Math. Roum., Nouv. Sér. 60 (2017), 277–291. zbl MR

[14] A. J.Oubiña: New classes of almost contact metric structure. Publ. Math. 32 (1985),
187–193. zbl MR

[15] Z. Shen: Volume comparison and its applications in Riemann-Finsler geometry. Adv.
Math. 128 (1997), 306–328. zbl MR doi

[16] Y.Shen, Y.Yu: On projectively related Randers metrics. Int. J. Math. 19 (2008),
503–520. zbl MR doi

[17] S.Tanno: The topology of contact Riemannian manifolds. Ill. J. Math. 12 (1968),
700–717. zbl MR doi

[18] A.Tayebi, M.Barzegari: Generalized Berwald spaces with (α, β)-metrics. Indag. Math.,
New Ser. 27 (2016), 670–683. zbl MR doi

[19] A.Tayebi, B. Najafi: A class of homogeneous Finsler metrics. J. Geom. Phys. 140 (2019),
265–270. zbl MR doi

[20] A.Tayebi, E.Peyghan: On a subclass of the generalized Douglas-Weyl metrics. J. Con-
temp. Math. Anal., Armen. Acad. Sci. 47 (2012), 70–77. zbl MR doi

[21] A.Tayebi, H. Sadeghi: On generalized Douglas-Weyl (α, β)-metrics. Acta Math. Sin.,
Engl. Ser. 31 (2015), 1611–1620. zbl MR doi

[22] A.Tayebi, H. Sadeghi, E. Peyghan: On generalized Douglas-Weyl spaces. Bull. Malays.
Math. Sci. Soc. (2) 36 (2013), 587–594. zbl MR

[23] Y.Wang: Minimal Reeb vector fields on almost Kenmotsu manifolds. Czech. Math. J.
67 (2017), 73–86. zbl MR doi

[24] H.Xing: The geometric meaning of Randers metrics with isotropic S-curvature. Adv.
Math., Beijing 34 (2005), 717–730. MR

Authors’ addresses: Tay e b e h Ta b a t a b a e i f a r, B e h z a d N a j a f i (corresponding
author), Amirkabir University of Technology, Tehran Polytechnic, Rasht St, Tehran, Iran,
e-mail: t.tabatabaeifar@aut.ac.ir, behzad.najafi@aut.ac.ir; M e h d i R a f i e - R a d,
University of Mazandaran, Pasdaran St, Babolsar, Mazandaran, Iran e-mail: rafie-rad@
umz.ac.ir.

172

https://zbmath.org/?q=an:1268.53081
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3015145
http://dx.doi.org/10.1007/978-3-642-24888-7
https://zbmath.org/?q=an:1336.53086
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3497134
https://zbmath.org/?q=an:1340.53013
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3137490
http://dx.doi.org/10.2298/PIM1308055H
https://zbmath.org/?q=an:1062.53014
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2034815
http://dx.doi.org/10.14492/hokmj/1285766001
https://zbmath.org/?q=an:1171.53020
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2500075
http://dx.doi.org/10.1142/S0129167X09005315
https://zbmath.org/?q=an:06738532
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3661054
http://dx.doi.org/10.21136/CMJ.2017.0010-16
https://zbmath.org/?q=an:1412.53048
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3769595
http://dx.doi.org/10.22034/kjm.2018.57725
https://zbmath.org/?q=an:1169.53319
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2525916
https://zbmath.org/?q=an:1127.53017
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2288477
https://zbmath.org/?q=an:1399.53034
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3701890
https://zbmath.org/?q=an:0611.53032
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0834769
https://zbmath.org/?q=an:0919.53021
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1454401
http://dx.doi.org/10.1006/aima.1997.1630
https://zbmath.org/?q=an:1152.53015
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2418194
http://dx.doi.org/10.1142/S0129167X08004789
https://zbmath.org/?q=an:0165.24703
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0234486
http://dx.doi.org/10.1215/ijm/1256053971
https://zbmath.org/?q=an:1343.53077
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3505987
http://dx.doi.org/10.1016/j.indag.2016.01.002
https://zbmath.org/?q=an:1417.53024
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3925072
http://dx.doi.org/10.1016/j.geomphys.2019.01.006
https://zbmath.org/?q=an:1302.53081
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3287918
http://dx.doi.org/10.3103/S1068362312020033
https://zbmath.org/?q=an:1327.53026
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3397088
http://dx.doi.org/10.1007/s10114-015-3418-2
https://zbmath.org/?q=an:1272.53067
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3071751
https://zbmath.org/?q=an:1424.53112
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3632999
http://dx.doi.org/10.21136/CMJ.2017.0377-15
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2213060

		webmaster@dml.cz
	2021-04-19T14:44:47+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




