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Abstract. The reducing subspaces of Toeplitz operators Tz{vzgf on Dirichlet type spaces

of the DQ(IDQ) are described, which extends the results for the corresponding operators on
Bergman spaces of the bidisk.
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1. INTRODUCTION

Let 7 denote the set of integers and N denote the set of nonnegative integers.
Let D be the open unit disk of complex plane C and D? = {(z1,22); 21 € D, 22 € D}
is called the bidisk. We say that a function f: D? — C is holomorphic if it is
holomorphic in each variable separately. Each holomorphic function f on the bidisk
can be represented as

f(z,w) = Z a’i,jzi’z%
i,5EN
with (z,w) € D? and a;; € C. Let o = (a1, a2) € Z?, the Dirichlet type space of
the bidisk D, (D?) consisting of all holomorphic functions f on the bidisk satisfying

£ llDa@ey = D lais[2(1+4)™ (1 + 5)* < oo.
3,7EN
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Assume that D, (D?) is a Hilbert space with the inner product

(frg) =D aighig(L+0)™ (1 +5),
i,jEN
where f = ) amzi‘zg and g = Y b;;ziz). Given z = (21,20) € D?, each
i,5EN i,jEN
point evaluation \2(f) = f(z) is a bounded linear functional on D, (D?). Hence,
for each z € D?, there exists a unique reproducing kernel K,(w) € D,(D?) with
w = (wy,wy) € D? such that

f(z) = (f(w), K:(w)) V[ € Da(D?).

Actually, it can be calculated that

J J

wiwlztz
Kz(w): Z ( —

50 (L) '

One can see [6] for more details about Dirichlet type space D, (D?). Throughout
thiAs paper, we denote va,,; = /(1 +1)** and ya, ; =V (I4j)e2. It ‘fol.lows that
2123 |p..(2) = Yar,iVas,j- For simplicity, we denote ||2{23||p, (n2) by [|2]23]|-

It is easy to see that Do y(D?) is the Hardy space over the bidisk H?(D?) and
D(,L,l)(IDQ) is the Bergman space over the bidisk A?(D?). In this paper, we only
deal with D, (D?) satisfying ajas # 0.

Given a holomorphic function f on the bidisk D?, if hf € D,(D?) for any
h € D, (D?), we define Ty : D, (D?) — Dy (D?) by

Ti(h) = fh Yh € Dy(D?).

Let N, M be integers larger than 1 with N # M; it is easy to check that T~
(or Tza) is a bounded linear operator on D, (D?). Note that

I

z

yeyll = 1Ty Topr | < Ty I Tpe ]

)

where T~z are bounded linear operators on D, (D?).

Suppose that 9t is a closed subspace of Hilbert space H. Recall that 9t is a re-
ducing subspace of the operator T if T(9) C M and T*(M) C M. A reducing
subspace I is said to be minimal if there are none nontrivial reducing subspaces
of T' contained in 9.

Stessin and Zhu in [10] completely characterized the reducing subspaces of the
power of scalar weighted unilateral shifts. As an consequence, they gave the descrip-
tion of the reducing subspaces of T,~ on the Bergman space and Dirichlet space of
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the unit disk. For more general symbols, the reducing subspaces of the Toeplitz op-
erators with finite Blaschke product were well studied (see [4], [5], [12] for example).
Lu, Shi and Zhou extended the result in [10] to Bergman space with several vari-
ables. They characterized the reducing subspaces of T,v, T.n.y and T,y a on the
weighted Bergman space over the bidisk and polydisk (see [8], [9], [11]). However,
we knew little about the reducing subspaces of Toeplitz operators with non-analytic
symbols. On the weighted Bergman space over the bidisk, Lu and his students iden-
tified reducing subspaces of T, xzy in [1] and T,x 4 4z in [2], respectively. Recently,
Gu in [3] extended the results about Ty azpy to the weighted Hardy space case.

The author in [7] has described the reducing subspaces of Toeplitz operators TZ{V
(or T.y), T.n .y and T, on Dirichlet type spaces of the bidisk D, (D?). Motivated
by the above work, we will investigate the reducing subspaces of Toeplitz opera-
tors TZ{vEéw on Dirichlet type spaces of the bidisk, which generalizes the results in [1].
We characterize the reducing subspaces of TZ{V%\{ on Dirichlet type spaces D, (D?)
with |a1] = |ag| in Section 2 and |ay| # |az| in Section 3, respectively.

Throughout this paper, we denote T = T nzu and [f] be the reducing subspace
of T generated by f € D,(D?). By a direct computation for k,1,h € N we have

2
Tas,l -
— 2 TN > b,

hy okl 2
T"(2723) =  Yasi—hM
0, else
and 9
Yok _
«h( kI st 2y MMk > RN,
T*"(2723) = § Yo k—hN
0, else.

2. THE CASE OF DIRICHLET TYPE SPACES D, (D?) WITH |a1| = ||

In this section, we will characterize reducing subspace of 1" on Dirichlet type
spaces D, (D?) with |a1| = |az|. The following lemma is easy but useful.

Lemma 2.1. Suppose |o1| = |az| and
a—x\* /c+ T \M
f(x)_(b—x) (d—i—x)

with a,b,c,d € R. If f(0) = f(A1) = f(\2), where nonzero A1, A\ € R with A\; # Ao,
then a = b and c = d.



Proof. First suppose a; = as. Let f1 = (a —z)(c+z) and fo = (b—x)(d + z),
then we have

L0 oy R0 S0
f(O) 512(0>a f( 1) 512()\1); f( 2) 512()\2)'
By the assumption, it follows that
f1(0) f1(0) f1(0)

f1(0) = f2(0)

fi(A) = fa(Ar)

fi(A2) = fa(A2)

f2(0)’ f2(0)"

Since f; and f2 are both quadratic polynomials, it follows that fi(x) = fa(x).

f2(0)°

Therefore, a = b and ¢ = d.
Now suppose a; = —ae. Then

o= (=) ()

By the discussion above, we have ¢ = b and ¢ = d. Thus, the desired result is proved.
O

5
Observe that N2 =N x N = |J E;. It follows that
i=0

5 5
Da(DQ) = @Span{zfzé; (k’ l) € El} = @mia
=0 =0

where
Eo={(k,)) eN*: 0<k<N,0<1< M},
Ey = {(k,]) €N?: k> 2N},
By ={(k,1)eN*: 0 <k <2N,1>2M},
B3 ={(k,])eN?: N<k<2N, M <Il<2M},
Ey={(k,1)eN?*: 0< k<N, M <l<2M},
Es ={(k,1) eN*: N<k<2N,0<1<M}.

Letting

flo) = ((1 +1)/M — x)w((l +P)/N+x)<¥1
(1+¢q)/M —x (1+k)/N+z/)
we define two equivalences on F4 and Fs, respectively, by
(i) for (p,q), (k,1) € E4, (p,q) ~1 (k,1) if and only if f(0) = f(1), which is equiva-
lent to 5 o 5 o
Yoo, Var,k+N  Vas,qgVay p+N

2 2 A2 2
Yag,l—MVay k Yas,q—MVaq,p



(ii) for (p,q),(k,l) € Es, (p,q) ~2 (k,1) if and only if f(0) = f(—1), which is
equivalent to
732,1731,1%1\7 _ 7<2x2,q'721,p7N

2 2 ) 2
Voo, i+M Vs k Yas,q+M Vas,p

It is easy to check the following statements:
(1) (p,q) € Ey4 if and only if (p + N,q — M) € Es,
(2) for (p,q), (k,1) € E4, (p,q) ~1 (k,1) if and only if (p+N,g—M) ~g (k+N,I—M),
(3) for (p,q), (k,1) € Es, (p,q) ~2 (k,l) if and only if (p— N, ¢g+M) ~1 (k—N,l+M).
It is easy to see that 9y is a reducing subspace of T'. Next, we will study the or-
thogonal decomposition of 2§z} with respect to 9, where M C D, (D?) and 9 L 9Ny

Lemma 2.2. Suppose M is a reducing subspace of T and 9 | 9My. Let Py be
the orthogonal projection from D, (D?) to 9. Then the following statements hold.
(1) If (k,l) € E1 U By U E3, then Pymztzh = \2¥2L where A = 0 or 1.
(2) If (k,1) € B4, then Py zkzl € 9y.
(3) If (k,1) € Es, then Py zkzl € 5.

Proof. Note that

72 72
N k+hN
= g2l AR b2l VI hM.

T o)
sz,lth’Yal,k
It follows that

2 .2

wheph k1Y P4\ Yozl Va1 k+hN k1 _p_q
(PT™"T" (21 25), 21 23) = <P9ﬁ72 5 R172 %172
VYoo, l—hM Yoy k

2 2

Yoo, Vay k+hN
= o2l VMR (Panzkel 2P28) VI hM.

Yas,i—hM Vo k

On the other hand,

(T T" Pop (24 24), 20 28) = (Pan(2k L), T T (0 24)
2 2

— JooalawpthN (o okol 2a8) g > hM.

Yaz,q—hM Va1 p

Since 9 is a reducing subspace of T, the operators T*" and T" commute with Pyy.
If (P (2 2L),202d) # 0 for I > hM, q > hM we have

2 2 2 2
(2.1) Voo, 1 Vay,k+hN _ Vas,qVai,p+hN

2 2 A2 2 ’
Waz,lthryal,k 'yaz,qth'YOtl,;D



which is equivalent to

(2.2) (1+D*2(1+p)*  (I+1—-hM)**(1+p+hN)*
‘ (14+q)2(1+ k) (1+q—hM)2(1+k+hN)or’

(1) If (k,1) € E1 U E2 U E3, we only need to show that the equation (2.2) holds if
and only if p =k and ¢ = [.
(i) If (k,1) € Eq, thenl > 2M. By the assumption, T*"T" commutes with Py.
Then the equations (2.1) and (2.2) show that

where
QDM =z e (14 p)/N +aren
fla) = ((1+Q)/M—x> ((1+/<:)/N+x)
with |a1| = |az|. By Lemma 2.1, we get

1+l 1+q 1+p 1+k
M M’ N N

which is equivalent to p = k and ¢ = [.
(ii) If (k,1) € Ej, then k > 2N. By the assumption, 7"T*" commutes with Pyy.
Then a detailed computation like equations (2.1) and (2.2) show that

which leads to p = k and ¢ = [ by Lemma 2.1.

(iii) If (k,I) € E3, then M <1< 2M and N < k < 2N. We consider that T*T
and TT* both commute with Pyy. Then a detailed computation shows
that

which also leads to p = k and ¢ = [ by Lemma 2.1. Therefore, the state-

ment (1) holds.
(2) If (k,I) € E4, the statement (2) holds by showing Pmzfzi L 9 where
3

1 =1,2,3,5, which is implied by the fact that for (n,m) € |J E;,
i=1

1=

(Pon(#123), 21'25")

(o1

» P (21'25"))
A{ z
0

%
282 2020 (by statement (1))



and for (n,m) € Ejs,

2 2
(Pun(oh2b), 2p o) = Jopig ok

R Py T*T 2k 2h, 2720
Pyag,lﬁyal,k-‘rN
2 2
Yag,l=MVa1,k s k1 _n_m
= 55— (T"PnT 2125, 21'23")
Yas,iVar k+N
o l M2 k
= W(PmTzfzé,Tzfz?> (since T'z1'25" = 0)
az,l lay,k+N
=0.

(3) Replacing T*T by TT* in the case (2), we can get the statement (3) with

a similar argument. |
3

By Lemma 2.2, the structure of the reducing subspaces on @9, is relatively clear.

i=0
However, we still know little about the structure of the reducing subspaces on iy

or Ms5. In order to describe it, we introduce some notations. Given (n,m) € Ey,
define

Pom: Do(D?) — My,

as the orthogonal projection, where M, ,,, =span{z7z3: (p,q) ~1(n,m), (p,q) € E4}.
Similarly given (n,m) € Ej5, we can define the orthogonal projection

Qn,m: Da(lD2) — mn,m;

where mn,m - Span{zf'zg: (pv Q) ~2 (n’ m)’ (pv Q) S EB}
For f € D,(D?), note that T*P,, ,, f = 0, T?P,, . f = 0 and

2 2
T*T P _ ’7a2,m7a1,n+NP
n,mf - 2 2 n,mfa
VQQ,m—Mﬁyou,n

and we have
(2.3) [Pomf] =span{ Py, m f, TPumf}

Similarly, we have

(2.4) [Qn,mf] = Span{Qn,mﬁ T*Qn,mf}-

Lemma 2.3. Let 9 L 9y be the reducing subspace of T and (n,m) € E4. Then
the following statements hold.



(1) Pn’mpgm = Pgmpnym and Qn+N’m7MP§)j’[ = PngnJrN’m,M. Thus lff € m, then
[Prm f] €M and [Qninm—n f] € M.

(2) If f1, f2 € Py and f1 L fo, then [fi] L [fo].

(3) If f e M, then P, T f =T*QniNm-mf and TPy o f = QuaNm—mTf.
(4) If f € M, then [Pymf] = [Qn+Nm—mT f] and [QniNm—mf] = [PomT* f].
(5) PomIM @ Qran,m—m C M is a reducing subspace of T.

Proof. By Lemma 2.2, we have Pymzfz, € Ey if (k1) € E4 and Py2tzl € Ef
if (k,1) ¢ E4, which implies that

PDJTPn,m = Pn,mpfm

Thus, Py, f € M. It follows that [P, ,,, f] C M. Similarly, we get Qpntn,m—nPom =
P QnanNm—m and [Qniy N m—nmf] € M. So, statement (1) holds.

By equation (2.3), we have [f;] = span{f;, T f;} since f; € P, ,90 for i = 1 or 2.
Note that since T'f; € M5 if f; € My

(2.5) TfiLf;
for i,j =1 or 2. Also we get
(2.6) Tf LTf;

by the fact that

72 ,)/2
(Tf1,Tfz) = (T*Tfy, fo) = —o2M LN (p o) = 0,

2
az,me’yal,n

Then statement (2) holds by equations (2.5) and (2.6).
Write f = 3 ai ;2123 € M. Recall that
i,jEN

72 l
Tekrl = 920 k4N =M
172 5 1 2
’)/O’Q,l—M

Then TPy, 1 f = QntnN,m—mT f holds since

2
_ 1,) a2,] i+N _j—M
TPymf=T E a2 %5 = E Qi j—5——2] 2

(,4)~1(nym) (i,4)~1(n,m) az,j—M



and

2
Vas,j  _i+N_j—M
— s J
Qn+N,m—MTf—Qn+N,m—M E Qi j—=— —R1 *2
i,jEN ag,j—M

72

_ asz,j i+N _j—M
E Qij 5 Rl A2
(i+N,j— M)~ (n+N,m—M) az,j—M

A2
_ . as,j  _i+N _j—M
E i,j 5 2 &

(i) ~1 (n,m) az.j =M
We may prove the second half of the statement (3) in a similar way.
By equations (2.3), (2.4), statement (3) and

72 ,y2
T*TPn,mf —_ ;277774 ai,n+N Pn,mf;

2
'Ya27m7M7a1 N

we have
QniNm—mT f] = span{QniNm— T f, T QuyN.m—nT f}
= span{TP, . f, T*TP, mf}
= spar{T Py f, Pom f} = [Pom f]
and

[Pr,mT™ f] = span{ Py i T* f, TPy T* f}
= Span{T*Qn+N,m—Mf7 TT*Qn+N,m—Mf}
= span{T* QniN,m— M, QniNm-mf} = [QuiNm-nrf]-
Thus, statement (4) holds.
By statement (1), we obtain P, I & Qninm—nI C M. Noticing that

TQntNm—mIM = {0}, T*P, ,9 = {0} and statement (3), it follows that state-
ment (5) holds since

T(Pn,mi)ﬁ S2) Qn-{—N,m—MDﬁ) = TPn,mm 52 TQTL-‘,—N,T)’L—MW = TPn,mi)ﬁ
= C?'nJrN,'meT‘SUt C QnJrN,meSUt
g ]Dn,'mi)jt ¥ QnJrN,mem

and

T (Pn,mm 52 Qn—i—N,m—Mm) = T*Pn,mm S2) T*Qn+N,m—M9ﬁ = T*CZn+N,'rn—M9:yt
= Pn’mT*m C ]Dn,'mi)jt - -Pn,mg)jt ® QnJrN,memL

O

9



Theorem 2.4. Let 9 1 My be the reducing subspace of T' on the bidisk. Then
M = M, ¢ My, where
(1) My = @ [F2d] withA={(p,q) € E1UEyUE3: 2021 em},
(p.9)eA
(2) My is a direct sum of minimal reducing subspace [f] with f € P, ,,9 for some

(n,m) € Ej.
Proof. Firstly, we claim that M = M1 & & H, m, where E is the partition

(n,m)eE
of E, by the equivalence ~1 and H,, py = P M @ Qnyn,m—mIN.

By Lemma 2.2, statement (1) for each (p,q) € A we have that 2z € 9 and
[2V23] C 9 is a minimal reducing subspace of T'. Note that € H,., C 9 by

(n,m)€EE
Lemma 2.3, statement (5), it follows that M1 U @ Hp,m C NN
For each g € M, write g = g1 + go with (n,m)eE
g1 = Z apq2yzd and g0 = Z ap g2t 73,
(p,q)€E1UE,UES (p,q)€EE4UES

Lemma 2.2, statement (1) shows that g1 € 9%, which implies that go = g—g1 € M.

It follows that go = >.  Pumg2 + QniNm—mg2 € D Hpm. Therefore, M C
(n,m)eE n,meE
Md D Hym-SowehaveM=M & D Hpm.
(n,m)eE (n,m)eE
To complete the proof, we only need to show that each H, ,, is the direct sum of

minimal reducing subspaces as [f] = span{f,Tf} with f € P, ,,90.

Suppose P, 9N # 0. Take 0 # f1 € P, M, then [f1] = span{f1,Tf1} C Hp m.-
If P,mMoeCfr # 0, take 0 # fo € P M © Cfy. Then [f2] = span{fa, T fo} C
Hpm ©[fi1]- I [f1] @ [f2] # Hn,m, we continue this process. This process will stop in
finite steps, since the dimension of H,, ,, is finite. The proof is complete. O

Remark 2.5. If 9 is a reducing subspace generated by g = g1 + g2, then by

Theorem 2.4 [g] = [g1] ® [g2] = [91] @ [Pr,m9; @n+N,m—mg]. In fact, since [P, 9] =
span{ Py, m¢g, T Py mg}, by Lemma 2.3 we have

[Pn,mga Qn+N,m—J\19] = [Pn,m97 T*Qn+N,m—Mg] = [Pn,mgv Pn,mT*g]
= span{ P, mg, TPy m9, PomT" 9, TP, T g}
= Span{Pn,mga Qn,nga Pn,mT*ga TT*Qn,mg}
= span{ Pp,m3, Pn,m 1" g} © span{Qn,m1'g, Qn,mg}-

Albaseer, Shi and Lu in [1] completely describe all the reducing subspaces of T~z
on the common Bergman space of the bidisk. Comparing with the results in [1],
Theorem 2.4 implies that T nzu shares the same structure of reducing subspaces on

10



each Dirichlet type spaces D, (D?) with |a;| = |az|, which extend the result of [1]. In
other words, the structure of reducing subspaces of T,nzy on D, (D?) is independent
of the weight o whenever |aq| = |ag|.

3. THE CASE ON DIRICHLET TYPE SPACES D, (D?) WITH |ay| # |az]

In this section, we will study the reducing subspace of TZ{V%\{ on Dirichlet type
spaces D, (D?) with |a1| # |aa|. Generally, we follow the main idea in Section 2, but
it is slightly more complicated. As an analog to Lemma 2.1, we have the next lemma.

Lemma 3.1. Suppose 3 = |a1| + |as| and
a—xr\*2/c+x\
f(x)i(b—a:) (d—i—x)
with a,b,c,d > 0. If f(0) = f(M) = ... = f(\,), where \; # 0, \; # X\ for i # j
andn > 3, then a = b and ¢ = d.

Proof. First suppose aj,as > 0. Let fi = (a — 2)*2(c + 2)* and fo =
(b—2x)*2(d 4 ), then we have

_ A RO A0
f(i[,') - fQ(x) f(O) - fQ(O)’ f(>\z) fQ(Az) for 7 ]., 2, o, n.
By the assumption, it follows that
_ f1(0) N . f1(0) fi—
fl(O)—fQ(O)f2(0), fl(/\z)—fg()\z)fé(o) fori=1,2,...,n.

Since f1 and fo are both polynomials with degree S = |a1| + |z, it follows that
f1(z) = fa(x). Therefore, a = b and ¢ = d.
Now suppose ajas < 0. Without loss of generality, we may assume «; > 0 and

a9 < 0. Then
b—z\ 22 /c+z\n
f(x)_(a—x) (d+x) '
By similar discussion, we have a = b and ¢ = d. Thus, the desired result is obtained.
O
Let i, j be positive integers, observe that N2 = Eq U By U Ey U E) U E;;,
it follows that 3SiHISAtL
B+1
Do(D?) = Mo & My &My &My P span {2f24; (k1) € Bi;},
i+j=3

11



Ey={(k,1)eN?: 0<k<N,0<1< M},
Ey = {(k,1) eN?: k> BN},
Ey={(k,1)eN?: 0<k < BN,1>BM},
Eij={(k1)eN?* (i—1)N<k<iN, (j—-1)M<I<jM}with1<j<i<8,
Ey =N?— OE - U Eiy
i=1 3<i+j<B+1
and
Mo = span {2724 (k,1) € Ep},
My = span {2725 (k,1) € By},
My = span {2524 (k,1) € By},
M, = span {2524 (k,1) € B},
M; ; = span{z524: (k1) € E; ;}
Letting
1+10)/M —x\e2 /(1 N ai
o= (i) (i)

we defined equivalence on E; ;. For (p,q), (k,l) € E; ;,
(1) if j > 1, (p,q) ~i; (k1) if and only if f(0) = f(1), which is equivalent to

2 2 2 2
Yaz,iVar k+N _ 7042,(170(17104‘1\7.

b

722,1—M7(2yl,k a ng,qu’y(Qn,p
(2) itj =1, (p,q) ~i1 (k1) if and only if f(0) = f(—1), which is equivalent to

2 2 2 2
Yoz, Var,k—N _ Vas,qVay p—N

2 2 ) 2
Vo, i+M Vs k Yas,q+MVas,p

It is easy to see that 9 is a reducing subspace of T'. Next, we study the orthogonal
decomposition of 2§z} with respect to 90, where M C D, (D?) and M L M.

Lemma 3.2. Suppose M is a reducing subspace of T and M 1 My. Let Py be
the orthogonal projection from D, (D?) to 9. Then the following statements hold.
(1) If (k1) € By U By U EYy, then Pzt zh = \2¥ 24 where A = 0 or 1.
(2) If (k1) € E; j, then Pogztz} € span{z725", (n,m) € E; ;}.

12



Proof. Note that T**T" commutes with Py for positive integer h. If
(Pon(2123), 21 25) # 0,

the same argument in Lemma 2.2 and equation (2.2) shows that for [ > hM, ¢ > hM
we get

(3.1) (1+0D*2(1+p>  (1+1-=hM)**(1+p+hN)™
' 1+q@=1+k)> (1+qg—hM)*>(1+k+hN)or'

(1) If (k,1) € E1 U E2 U E), we only need to show that the equation (3.1) holds if
and only if p =k and ¢ = [.
(i) If (k,l) € Eg, then Il > M with 8 = |aq| + |az|. By the assumption,
T*"Th commutes with Poy;. Then the equation (3.1) implies

where

o= (i) ()

with |ay| # |az|. By Lemma 3.1, we get

1+l 1+q 1+4+p 1+k
M M’ N N

which is equivalent to p = k and g = [.
(ii) If (k,1) € Eq, then k > BN with f = |aq| + |az|. By the assumption,
TPT*" also commutes with Py;. Then a detailed computation shows that

which also leads to p = k and ¢ = [ by Lemma 3.1.

(iii) If (k,1) € Ej, then (k,l) will belong to some E; ; = {(p,q): (i —1)N <
p <iN, (j—1)M < q < jM} with j > i. We consider T**T* and T'T*! for
1< k<, 1< < all commute with Pyy. Then a detailed computation
shows that

fEG-))=. =) =f0)=f1) =...= f(i - 1).

This also leads to p = k and ¢ = [ by Lemma 3.1 since i + j > § + 2.
Therefore, the statement (1) holds.
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(2) We only show the case of (k,l) € FE3; holds and the other case can be
proved by the same way. For statement (2), it is sufficient to show that
Pomzizh | span{20'z5": (n,m) ¢ Eo1}. For (n,m) € E; U Ey U E}, state-
ment (1) shows that P25z} | span {2722": (n,m) € By UE>UE}}. Note that
for (n,m) € Ey j with (¢, j) # (4, j), there exists some integer h satisfying one
of the following:

(a) T*MThzpzm £ 0 and T*'Th2EZL = 0;
(b) ThT*hzpzm £ 0 and TMT*' 2k 2L = 0.
Without loss of generality, we assume (a) holds. Then

(Pon(#729), T*"T" 2] 25") = (T""T" Pon (#1'23), 21'25") = (P T*"T" (21 23), 27'25") = 0.

However, a direct computation shows

2 2
kLN mshphonmy _ Joz,m oy nthN k.l .n.m
(P (21 23), T""T" 27 25") = S 5 (Pmz12g,21'25").
7&2,m—hM7a1,n

Thus

(Pyzizh, 22y = 0.
That is, Pym2f25 L 2725, This completes the proof. (]

Besides the above lemma, we need further study of the structure of the reducing
subspaces on M; ;. Given (n,m) € E; ;, we can define the orthogonal projection

Pyt Da(D?) — span{e{2f: (p.q) ~ij (n,m), (p.q) € Eij}.

For f € D,(D?) and Pfﬂm f # 0, the minimal reducing subspace of T contain-
ing Pé;% f can be represented as

[Pézgnf] = Span{T*lehPr%:anvjlva = 07 1. } = Span{TjQ_hPr%:anvjlan = 07 1. }
= span{Py), f. TPyi, f,. . TV Py f),

since T*Pé;fn =0 and TjP,i’in = 0. Moreover, we have
[Pa.f] = span{T*Pod f, PEs, f. TP f. ... TV PR f}
and inductively

(3.2) [Py, f] = span{T**Py3 f, T'P f, 1<k <i—1,0<1<j -1}

14



Lemma 3.3. Let M L My be the reducing subspace of T and (n,m) € E; ;.

Then the following statements hold.
(1) If f € M, then [PYI, f] C M.

(2 If f1, f2 € P;L’,jmm and fi1 L fs, then [fl] 1 [fg]
(3

(
itj—2

(

k@o ijj;]@tf;’;ﬁm C M is a reducing subspace of T.

5
Proof. (1) By Lemma 3.2, we have
P22y € span{z}23, (p,q) € Ei;} for (k,1) € E; ;

and
Pgmzfzé 1 span{zyz4, (p,q) € E; ;} for (k,l) ¢ E; ;.

It means that Png,"Lﬂn = Pﬁ?%Pm, which implies statement (1).

)

) If f € M, then Py, T*f =T*P %/ Ly f and TRy f =P U0y

4) I f € M, then [Pd, [ = [P 1K,y Tf) and [P0 f] = (BT f).
)

Tf.

(2) Note that T*Tf = cf for some nonzero constant c. By the assumption for

k1, ke € N we have

<Tk1flaT*k2f2>:O7 <Tk1f17Tk2f2>:O7 <T*k1flaTk2f2>:0'

By equation (3.2), statement (2) holds.
(3) Write f = >~ ap 42723 € M. Recall that since
(p.g)EN?

2 2
ToP o9 — Voo, Yo, p+N p+N _q—M
R1Rg = 53— 5 A1 R2
az,qu’y(lh;D

then TPL) f = Qi#jvj;nl_ L f holds since

’72 ’YQ N
L% B P4 _ a2,q9 T ,p+ p+N _q—M
TPn,mf =T E Qp,qR1 79 = E anq,yQ 2 Z 22
(p,q)~i,;j (n,m) (p,@)~i,j(n,m) ag,q—M loa,p
and
2 2
QitLi-l pp_ gitli-! Yas,q Vo1, p+N _p+N _g—M
ntNm—M1 ] = &N m—m ap,qu 2 1 %2
(p,q)EN? az,q—M lai,p
2 2
— Yas,¢Va1,p+N _p+N _q—M
- P2 2 21 2
(p+N,g—M)~iy1,j—1(n+N,m—M) az,q—M Toa,p
2 2
_ Yasz,qVa1,p+N szrNquM
- P42 1 2 -

2
(p,q)~i,j (n,m) Yas,q—MVar,p
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We may prove the second half of the statement (3) in a similar way.

(4) By (3.2), statement (3) and T*T'P2J, f = ¢Pp m f for some nonzero constant c,
we have

i+1,j—1
[P:;JrN],meTf]

= span{T"* P Ly T TP T 1<k <i, 0<1<j—2)

= span{T**T P} f T PM f, 1<k <i, 0<I1<j—2}
= span{T* k=D pLd F TP f1 <k <, 0<1<j—2}
= span{T*kPi’j T!phi 1<k<i—1,0<I<j—-1}= [Pf;{n ]

n,md - n,mdJ >

A similar argument shows that

[Py T f]
= span{T**PLJ T*f, T'PyI T*f, 0< k<i—1,1<1<j—1}
= span{T*FTI P p T P 0<k<i—1, 1<I<j—1}
= span{ TV R L ST T R S 0k <=1 1< - 1)
= span{T* PN L f TP ) 1<k <, 0<1< g =2} = (B ]

Thus, statement (4) holds. rio2
(5) By statement (1), we obtain €D Pfi;lf,tf;iﬁm C M. Notice that

TP =11 = {0} and T*PLiH~1om - {0}, by statements (3) and (4), it fol-
lows that statement (5) holds since

i+j—2 i+j—3
k+1itj—k—1 @ k+2,i4+j—k—2
T< GB Pn+kN,m—kM E)ﬁ) - PnJr(chrl)N,W(chrl)MSm
k=0 k=0
i+j—3 i+j—2
k+2,i4j—k—2 _ @ k+1,i4+j—k—1
< @ Pn+(k+1)N,mf(k+1)Mm - Pn+kN,m—kM m
k=—1 k=0

and

N

i+j—2 i+j—2
* k+1,i+j—k—1 k,it+j—k
T < @ PnJrkN,mko m) @ Pn-l—(k—l)N,m—(k—l)Mm
k=0 k=1
itj—1 i+j—2

kyit+j—k _ @ k+1,i+j—k—1
@ Pn-l—(k—l)N,m—(k—l)Mm - Pn-l—kN,m—kM m.
k=1 k=0

N

O
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Remark. In the proof of statement (5) in Lemma 3.3, we also get
E+1,it5—k—1 I4+1,i4j—1—1 _
(3.3) [P kN m—knr P = [Py DU, 0< kI <itj—2.
Next we describe the structure of the reducing subspace of T.
Theorem 3.4. Let 9 1 My be the reducing subspace of T' on the bidisk. Then

M = My ® My, where
(1) My = € [V2]] with A ={(p,q) € E1 UEyUEFE}: 2V23 € M},

(p.g)er
(2) M is a direct sum of minimal reducing subspace [f] with f € P%J 9 for some
(n,m) € E; ;.
Proof. Firstly, we claim that M =My & @  PLI, 9.
n,m)el; ;
3(<i+;<6+1

By Lemma 3.2, statement (1), for each (p,q) € A we have that 22 € 9 and that
[2V23] C 9 is a minimal reducing subspace of T'. Noting that @ Pmcm

(nam)eEiJ‘
3<i+j<p+1
by Lemma 3.3, statement (5), it follows that M & @ P79 C M.
(n,m)eE; ;
3<i+i<p+1
For each g € MM, write g = g1 + g2 with

g1 = Z apq2i7y and go = Z ap,g?1 %3

(p,@)€E1UE2UE) (P.9)€E:,;

Lemma 3.2, statement (1) shows that g1 € 9%, which implies that go = g—g1 € M.

It follows that
w»= @ Pilee P PIM

(n,m)EE; ; (n,m)EE; ;
3<i+j<pH1 3<i+j<p+1
Therefore, MC My @ Pi,M Sowehave M=M & @ P m
(n,m)EEi,j (n,m)EEi,j
3B+ 3Si+j<B+1
To complete the proof, we only need to show that each © P is the
(nam)eEiJ‘
itj=t

direct sum of minimal reducing subspaces as [f] with f € P57 9.
Suppose PiJ 9N # ) with 3 <i+j < S+ 1 and (n,m) € E; ;. Take 0 # f; €
Pl 9. Then by equation (3.2)

(1] =span{T*C"Vf, . f,Tfr,..., T ) C @ Pfﬂmim
(?’L,m)EEi,j
i+j=t
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If PLI Mo Cfi #0, take 0 # fo € PJ, 9 & Cfyr. Then

[fo] = span{T*C"Vfr, o f,Th,., T RS @ Pil.Mme [fi)
(n,m)eE; ;
i+j=t
If PfLJmEm © Cf16Cfs # 0, we continue this process. This process will stop in finite
steps, since the dimension of every PfLJmSm is finite. The proof is complete. (]

At the end of the paper, we will give an example of the reducing subspaces of
T =T~z on Dirichlet type spaces D, (D?) with |aq| # |az].

Example 3.5. Suppose o = (a1, a2) = (2,1). Let

f=1+ zfzg + zfzgw + 25132211 + 2%12212 + zfozgo + zfozgo,
and [f] be the reducing subspace of T’10510 generated by f on D, (D?). Then

[f1=[hl@[f] @ [fs] @ [fa],

where
[fi] = [1+ 2123] = C(1 + 2123);
[f2] = [2125° + 202" ] = span{z12;° + 272", 521125 + 62120 };
[f3] = [21'23°] = span{z,25%, 21" 257, 27" 23 };
[fa] = [21°23"]

 span{af0, 519580, 20510, 0550, 10550, 59010, 0550, JOL20, 28010, ).

Proof. Since f; = 1+2125 € My, [f1] = C(1+2123) C [f] is a minimal reducing
subspace of T.i0z10. Thus [f] © [fi] L Mo and [f] © [f1] is a reducing subspace
of T.10z10. Noting that (40,50), (50,40) € Ey U Ep U Ej, Theorem 3.4 shows that
[f4], [f5] C [f], where f5 = 27°23°. Since T'fy = f, it follows that

[fa] = [f5] = [1°%3°)

— span{a{0, 1930, 220510, 0550, 10550, 5900, 20580, TOS30, 280310, ).
Noting that (4,15),(9,11) € E1 2 and (11,12) € Es5 . A direct computation shows
that (4,15) ~12 (9,11) and Tf, = $2{*25 + 62{°2;. Lemma 3.3, statement (1)
implies that fo = P41”125f and 211212 = P12i,212f are in [f]. By equation (3.2), [f2] =

span{ f2, T f2} and

11,12

] = span (T2} 242, 1242, Tal1 242} = span{zy 282, o132, 28123

121 R, %1 R
Therefore, we get the desired result by Theorem 3.4. O
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