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Abstract. Sufficient conditions are given for the solvability of an impulsive Dirichlet
boundary value problem to forced nonlinear differential equations involving the combination
of viscous and dry frictions. Apart from the solvability, also the explicit estimates of
solutions and their derivatives are obtained. As an application, an illustrative example is
given, and the corresponding numerical solution is obtained by applying Matlab software.
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1. Introduction

Let us consider the forced pendulum equation with dry friction and viscous damp-

ing term together with Dirichlet boundary conditions

ẍ(t) + aẋ(t) + b sinx(t) + c sgn ẋ(t) = h(t) for a.a. t ∈ [0, T ],(1.1)

x(0) = x(T ) = 0,(1.2)

where a, b and c are real constants and the function h : [0, T ] → R plays the role of

the forcing term.

Moreover, let a finite number of points 0 = t0 < t1 < . . . < tp < tp+1 = T , p ∈ N,

be given.

In the paper, the solvability of the dry friction problem with the Dirichlet boundary

conditions (1.1), (1.2) will be investigated in the presence of the following impulse
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conditions:

(1.3)

{

x(t+i )− x(ti) = Ji(x(ti)), i = 1, . . . , p,

ẋ(t+i )− ẋ(t−i ) = Mi(x(ti)), i = 1, . . . , p,

where the notation lim
t→a+

x(t) = x(a+), lim
t→a−

x(t) = x(a−) is used and Ji, Mi ∈

C(R,R) for all i = 1, . . . , p.

The study of the forced mathematical pendulum equation

(1.4) ẍ(t) + b sinx(t) = h(t) for a.a. t ∈ [0, T ]

(i.e. the case b 6= 0, a = c = 0 in (1.1)) was studied as far back as a century ago

(see [8] for the case b > 0 and [6] for b < 0). It was shown that it is worth to consider

Dirichlet boundary conditions, since the symmetry of the equation imply that such

solutions are related to periodic solutions. It is known that the Dirichlet problem

corresponding to the forced mathematical pendulum equation (1.4) is solvable under

very mild assumptions, e.g. if p is measurable and satisfies
∫ T

0
|p(t)| dt < ∞.

More recently, the pendulum equation was generalized introducing a nonzero vis-

cous damping coefficient a or a nonzero friction coefficient c (see [1], [10], [12] for

more details about this topic). As is shown in the mentioned papers, the problems

in the generalized versions are formed mainly by the nonzero friction coefficient c;

in such a case the criteria guaranteeing the existence of a solution are much more

complicated (because of the discontinuous r.h.s.) than in the simplest case of the

forced mathematical pendulum equation.

All of the mentioned papers and monographs studied the pendulum equation with

prescribed boundary conditions, but without impulses. A few years ago, the attention

started to be paid also to the impulse forced mathematical pendulum equation prob-

lem, since the impulses can model a rapid changes in evolution processes. Recently,

in papers [4], [9], [14], an impulse problem was considered in the case a = c = 0, and

in the presence of periodic boundary conditions.

As far as we know, the impulsive problem to the pendulum equation with a nonzero

viscous damping coefficient a as well as with a nonzero friction coefficient c has not

been studied yet. Therefore, the aim of the present paper is to study the forced

pendulum equation with dry friction and viscous damping term (1.1) together with

Dirichlet boundary conditions (1.2) in the case when the impulses described by (1.3)

are involved.

Let us point out that because of discontinuity at y = 0 in sgn y, we should consider

a Filippov solutions of (1.1) which can be identified as Carathéodory solutions of the

following inclusion with a Filippov regularized right-hand side (see [5])

(1.5) ẍ(t) + aẋ(t) + b sinx(t) ∈ h(t)− c Sgn ẋ(t),
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where

Sgn y :=











−1 for y < 0,

[−1, 1] for y = 0,

1 for y > 0.

By a Filippov solution of problem (1.1)–(1.3) we shall mean a function x ∈

PAC1([0, T ],Rn) (see Section 2 for the definition) satisfying (1.2)–(1.5) for a.a. t ∈

[0, T ].

In this paper, the solvability of the forced pendulum equation with dry fric-

tion and viscous damping term together with Dirichlet boundary conditions and

impulses (1.1)–(1.3) will be investigated using the Kakutani-Ky Fan fixed-point the-

orem. Apart from the solvability, also the explicit estimates of solutions and their

derivatives will be obtained.

The paper is organized as follows. In the second section, suitable definitions and

statements which will be used in the sequel are recalled. In Section 3, Schauder

linearization device will be combined with the Kakutani-Ky Fan fixed-point theorem

and the existence and localization result will be obtained in this way for the impulsive

Dirichlet problem (1.1)–(1.3). Finally, the obtained result will be illustrated by an

example whose numerical solution will be obtained by applying Matlab software.

2. Preliminaries

Let us start with notations we use in the paper. For a given compact real interval J,

we denote by C(J,Rn) (by C1(J,Rn)) the set of all functions x : J → R
n which are

continuous (have continuous first derivatives) on J. By AC1(J,Rn), we shall mean

the set of all functions x : J → R
n with absolutely continuous first derivatives on J.

Let PAC1([0, T ],Rn) be the space of all functions x : [0, T ] → R
n such that

x(t) =



























x[0](t) for t ∈ [0, t1],

x[1](t) for t ∈ (t1, t2],

...

x[p](t) for t ∈ (tp, T ],

where x[0] ∈ AC1([0, t1],R
n), x[i] ∈ AC1((ti, ti+1],R

n), x(t+i ) = lim
t→t

+

i

x(t) ∈ R and

ẋ(t+i ) = lim
t→t

+

i

ẋ(t) ∈ R, for every i = 1, . . . , p. The space PAC1([0, T ],Rn) is a normed

space with the norm

(2.1) ‖x‖E := sup
t∈[0,T ]

|x(t)|+ sup
t∈[0,T ]

|ẋ(t)|.
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In the sequel, it will be denoted by (E, ‖·‖E). In a similar way, we can define the

spaces PC([0, T ],Rn) and PC1([0, T ],Rn) as the spaces of functions x : [0, T ] → R
n

satisfying the previous definition with x[0] ∈ C([0, t1],R
n), x[i] ∈ C((ti, ti+1],R

n) or

with x[0] ∈ C1([0, t1],R
n), x[i] ∈ C1((ti, ti+1],R

n), for every i = 1, . . . , p, respectively.

The space PC1([0, T ],Rn) with the norm defined by (2.1) is a Banach space (see [11],

p. 128). In the following, a compactness result for subsets of PC1([0, T ],Rn) will be

needed. On this purpose, let us recall that a family F ⊂ PC([0, T ],Rn) is left

equicontinuous (see [11]) if for every ε > 0 and x ∈ [0, T ] there exists δ > 0 such that

for every f ∈ F ,

|f(x)− f(y)| < ε ∀ y ∈ (x − δ, x]

and

|f(x+)− f(y)| < ε ∀ y ∈ (x, x + δ).

In the following, we use a generalized Ascoli-Arzelà theorem whose prove is given

in [11], Theorem 2 in a slightly different case, i.e., when the real valued functions are

discontinuous from the left and are just continuous in each interval [ti, ti+1).

Proposition 2.1. A family F ⊂ PC1([0, T ],Rn) is compact if and only if it is

bounded, left equicontinuous and the set {f ′ : f ∈ F} is left equicontinuous.

We also need the following definitions and notions from multivalued theory in the

sequel. We say that F is a multivalued mapping from X to Y (written F : X ⊸ Y )

if for every x ∈ X, a nonempty subset F (x) of Y is given. We associate with F its

graph ΓF , i.e. the subset of X × Y defined by

ΓF := {(x, y) ∈ X × Y ; y ∈ F (x)}.

The single valued function f : X → Y is called a selection of F if Γf ⊂ ΓF , i.e., if

f(x) ∈ F (x) for every x ∈ X .

A multivalued mapping F : X ⊸ Y is called upper semi-continuous (shortly,

u.s.c.) if for each open set U ⊂ Y, the set {x ∈ X ; F (x) ⊂ U} is open in X .

A multivalued mapping F : X ⊸ Y is called compact if the set F (X) =
⋃

x∈X

F (x)

is contained in a compact subset of Y. Let us note that every u.s.c. mapping with

closed values has a closed graph and that every compact multivalued mapping with

closed graph is u.s.c.

Let Y be a metric space and (Ω,U , µ) be a measurable space, i.e., a nonempty

set Ω equipped with a suitable σ-algebra U of its subsets and a countably additive

measure µ on U . A multivalued mapping F : Ω ⊸ Y is called measurable if {ω ∈ Ω;

F (ω) ⊂ V } ∈ U for each open set V ⊂ Y.
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We say that the mapping F : J × R
m ⊸ R

n, where J ⊂ R is a compact interval,

is an upper-Carathéodory mapping if the map F (·, x) : J ⊸ R
n is measurable for all

x ∈ R
m, the map F (t, ·) : R

m ⊸ R
n is u.s.c. for a.a. t ∈ J, and the set F (t, x) is

compact and convex for all (t, x) ∈ J × R
m.

We employ the following selection result in the sequel, which was proved in [2],

Proposition 6 in a quite general setting for continuous function q. Its proof can be

easily extended to the piecewise continuous functions, so we omit it here.

Proposition 2.2. Let J ⊂ R be a compact interval and F : J × R
m ⊸ R

n be

an upper-Carathéodory mapping such that for every r > 0 there exists an integrable

function µr : J → [0,∞) satisfying |y| 6 µr(t) for every (t, x) ∈ J × R
m, with

|x| 6 r, and every y ∈ F (t, x). Then the composition F (t, q(t)) admits, for every

q ∈ PC(J,Rm), a measurable selection.

Let X ∩ Y 6= ∅ and F : X ⊸ Y. We say that a point x ∈ X ∩ Y is a fixed point

of F if x ∈ F (x). The set of all fixed points of F is denoted by Fix(F ), i.e.

Fix(F ) := {x ∈ X ; x ∈ F (x)}.

For obtaining the existence of a solution, the following Kakutani-Ky Fan fixed-

point theorem will be needed (see e.g. Theorem II.8.4. in [7]).

Proposition 2.3. Let C be a convex subset of a normed linear space and let

ϕ : C ⊸ C be a compact u.s.c. mapping with compact and convex values. Then ϕ

has a fixed point.

3. Existence and localization result

In this section, let us formally rewrite the studied problem into the form

(3.1)























ẍ(t) ∈ F (t, x(t), ẋ(t)) for a.a. t ∈ [0, T ],

x(0) = x(T ) = 0,

x(t+i )− x(ti) = Ji(x(ti)), i = 1, . . . , p,

ẋ(t+i )− ẋ(t−i ) = Mi(x(ti)), i = 1, . . . , p,

where

F (t, x(t), ẋ(t)) := h(t)− aẋ(t)− b sinx(t) − c Sgn ẋ(t)

is an upper-Carathéodory mapping and Mi : R → R and Ji : R → R are continuous.
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Theorem 3.1. Let us consider the b.v.p. (3.1), where

(1) the impulse conditions Ji andMi satisfies that |Ji(x)| 6 k+ l1|x| and |Mi(x)| 6

k+ l2|x| for all i = 1, . . . , p and x ∈ R, where k, l1, l2 > 0 with p < (2l1 + l2)
−1,

(2) the function h : [0, T ] → R playing the role of the forcing term satisfies h ∈

L∞([0, T ],R),

(3)
√

(4|a|+ pl2)2 + 16|a|(1− 2pl1 − pl2)− 4|a| − pl2

2|a|
> T.

Then the impulsive Dirichlet b.v.p. (3.1) admits a solution x(·) such that

‖x‖E = sup
t∈[0,T ]

|x(t)| + sup
t∈[0,T ]

|ẋ(t)| 6 R,

where

(3.2) R >
(‖h‖∞ + |b|+ |c|)(T 2 + 4T ) + 12pk + Tpk

4− |a|(T 2 + 4T )− 8pl1 − pl2(T + 4)
.

Moreover, if h(t) is not identically 0 on [0, T ], then this solution is nontrivial.

P r o o f. For the solvability of nonlinear problem (3.1), let us use the Schauder

linearization device (see e.g. [3]). For this purpose, let us define the setQ of candidate

solutions by the formula

Q :=
{

q ∈ PC1([0, T ],Rn) : sup
t∈[0,T ]

|q(t)|+ sup
t∈[0,T ]

|q̇(t)| 6 R
}

,

where R satisfies the formula (3.2). Let us note that the conditions put on p, l1, l2,

and T guarantee that R > 0.

Then, for each q ∈ Q, let us consider the associated multivalued fully linearized

problem with impulses

(Pq)























ẍ(t) ∈ Fq(t) for a.a. t ∈ [0, T ],

x(0) = x(T ) = 0,

x(t+i )− x(ti) = Ji(q(ti)), i = 1, . . . , p,

ẋ(t+i )− ẋ(t−i ) = Mi(q(ti)), i = 1, . . . , p,

where Fq(t) = F (t, q(t), q̇(t)) = h(t) − aq̇(t) − b sin q(t) − c Sgn q̇(t). According to

Proposition 2.2, there exists at least one measurable selection fq(·) of the multivalued
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mapping Fq(·). The corresponding single-valued linear Dirichlet b.v.p. with impulses























ẍ(t) = fq(t) for a.a. t ∈ [0, T ],

x(0) = x(T ) = 0,

x(t+i )− x(ti) = Ji(q(ti)), i = 1, . . . , p,

ẋ(t+i )− ẋ(t−i ) = Mi(q(ti)), i = 1, . . . , p,

admits a solution which can be, for a.a. t ∈ [0, T ], expressed (see e.g. [13]) by

x(t) =

∫ T

0

G(t, s)fq(s) ds+

p
∑

i=1

∂G

∂s
(t, ti)Ji(q(ti)) +

p
∑

i=1

G(t, ti)Mi(q(ti)),

where

G(t, s) =















(s− T )t

T
for 0 6 t 6 s 6 T,

(t− T )s

T
for 0 6 s 6 t 6 T

is the Green function of the corresponding homogeneous problem ẍ(t) = 0, x(0) =

x(T ) = 0, x(t+i ) − x(ti) = 0, ẋ(t+i ) − ẋ(t−i ) = 0, i = 1, . . . , p. Therefore, for each

q ∈ Q, the set of solutions of (Pq) is nonempty.

Let us show that for each q ∈ Q, the set of solutions of (Pq) is convex. For

this purpose, let q ∈ Q be arbitrary and let x1(·), x2(·) be two solutions of the

problem (Pq). Then there exist measurable selections f1(·), f2(·) of Fq(·) such that

for a.a. t ∈ [0, T ],

xj(t) =

∫ T

0

G(t, s)fj(s) ds+

p
∑

i=1

∂G

∂s
(t, ti)Ji(q(ti)) +

p
∑

i=1

G(t, ti)Mi(q(ti)), j = 1, 2.

Therefore, for all λ ∈ (0, 1),

λx1(t) + (1 − λ)x2(t) =

∫ T

0

G(t, s)(λf1(s) + (1− λ)f2(s)) ds

+

p
∑

i=1

∂G

∂s
(t, ti)Ji(q(ti)) +

p
∑

i=1

G(t, ti)Mi(q(ti)).

Since Fq(·) has convex values, λf1(·) + (1−λ)f2(·) is a measurable selection of Fq(·)

as well, and so λx1(·) + (1 − λ)x2(·) is a solution of (Pq). Thus, the set of solutions

of (Pq) is, for all q ∈ Q, convex as required.
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Let us show now that all solutions of the associated problems (Pq), q ∈ Q, lie

in Q. For this purpose, let q ∈ Q be arbitrary and let x(·) be a solution of the

problem (Pq). Then

‖x‖E = sup
t∈[0,T ]

|x(t)| + sup
t∈[0,T ]

|ẋ(t)|

= sup
t∈[0,T ]

∣

∣

∣

∣

∫ T

0

G(t, s)fq(s) ds+

p
∑

i=1

∂G

∂s
(t, ti)Ji(q(ti)) +

p
∑

i=1

G(t, ti)Mi(q(ti))

∣

∣

∣

∣

+ sup
t∈[0,T ]

∣

∣

∣

∣

∫ T

0

∂G

∂t
(t, s)fq(s) ds

+

p
∑

i=1

∂

∂t

(∂G

∂s
(t, ti)

)

Ji(q(ti)) +

p
∑

i=1

∂G

∂t
(t, ti)Mi(q(ti))

∣

∣

∣

∣

6
T 2

4
(‖h‖∞ + |a|R+ |b|+ |c|) + p(k + l1R) +

T

4
p(k + l2R)

+ T (‖h‖∞ + |a|R + |b|+ |c|) + p(k + l1R) + p(k + l2R)

=
1

4
[R(T 2|a|+ 4|a|T + 8pl1 + Tpl2 + 4pl2)

+ (T 2 + 4T )(‖h‖∞ + |b|+ |c|) + 12pk + Tpk] 6 R,

according to (3.2). Therefore, all solutions of the associated problems (Pq) lie in Q.

Moreover, there exist constants M0 > 0, M1 > 0 such that |x(0)| 6 M0 and

|ẋ(0)| 6 M1 for all solutions of the associated problems.

If we denote by T : Q ⊸ E the solution mapping which assigns to each q ∈ Q the

set of solutions of (Pq), then it follows from the previous reasoning that T has convex

values, T(Q) is bounded and that T(Q) ⊂ Q. Moreover, it is obvious that each fixed

point of the solution mapping T is the solution of the original problem (3.1) belonging

to Q. Therefore, the problem of the existence of a solution of problem (3.1) can be

transformed into the fixed point problem q ∈ T(q).

The existence of the desired fixed point will be obtained using Kakutani-Ky Fan

fixed-point theorem which is stated in the paper in the form of Proposition 2.3. In

order to apply Proposition 2.3, let us at first show that T has a closed graph. Let

{(qk, xk)} ⊂ ΓT be arbitrary and such that (qk, xk) → (q, x), q ∈ Q. Then, since

xk ∈ Q, xk → x and Q is closed, it holds that x ∈ Q. Moreover, xk is a solution

of (Pqk), and so, according to Proposition 2.2, we get the existence of the selection

fk(·) ∈ Fqk(·) such that ẋk(ti+1) − ẋk(t) =
∫ ti+1

t
fk(s) ds for every t ∈ (ti, ti+1] and

i = 0, . . . , p. Furthermore,

|fk(t)| 6 ‖h‖∞ + |a|R+ |b|+ |c| for a.a. [0, T ].
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This implies that {fk} is bounded in L1([0, T ],R), and so it has a weakly converging

subsequence, for the sake of simplicity still denoted as the sequence, which converges

to a function f . In particular,
∫ ti+1

t
fk(s) ds →

∫ ti+1

t
f(s) ds for every t ∈ (ti, ti+1]

and i = 0, . . . , p. Hence,

ẋ(ti+1)− ẋ(t) = lim
k→∞

[ẋk(ti+1)− ẋk(t)] = lim
k→∞

∫ ti+1

t

fk(s) ds =

∫ ti+1

t

f(s) ds

for t ∈ (ti, ti+1] and i = 0, . . . , p. Therefore, there exists ẍ(t) = f(t) for a.a.

t ∈ [0, T ]. It remains to prove that f(·) ∈ Fq(·). Since Fq is upper-Carathéodory,

there exists, for every ε > 0 and a.a. t ∈ [0, T ], a positive number δ such that if

|(α, β) − (q(t), q̇(t))| 6 δ, then

F (t, α, β) ⊂ F (t, q(t), q̇(t)) +Bε
0.

Recalling that the convergence in PC1([0, T ],Rn) of qk to q implies the pointwise

convergence of both sequences and of the sequences of their derivatives to the same

limits, we get that for every t ∈ [0, T ] and δ > 0 there exists k such that for k > k,

|(qk(t), q̇k(t)) − (q(t), q̇(t))| 6 δ. Therefore, for every ε > 0 and a.a. t ∈ [0, T ] there

exists k such that if k > k, then

fk(t) ∈ F (t, qk(t), q̇k(t)) ⊂ F (t, q(t), q̇(t)) +Bε
0 .

Since ε > 0 is arbitrary, we get that f(t) ∈ F (t, q(t), q̇(t)) for a.a. t ∈ [0, T ], i.e.,

that T has a closed graph. Recalling that a compact mapping with closed graph is

u.s.c. and has compact values, it only remains to prove that T is compact. According

to Proposition 2.1, we need to prove that T(Q) is left equicontinuous, and has left

equicontinuous set of derivatives.

Let x ∈ T(q). Then there exists f(·) ∈ F (·, q(·), q̇(·)) such that for every t̄, t̃ ∈

(ti, ti+1] with t̄ > t̃ and i = 0, . . . , p,

(3.3) ẋ(t̄) = ẋ(t̃) +

∫ t̄

t̃

f(s) ds

and consequently,

(3.4) x(t̄) = x(t̃) + ẋ(t̃)(t̄− t̃) +

∫ t̄

t̃

(t̄− s)f(s) ds.

It follows from (3.3) and (3.4) that for every t̄, t̃ ∈ (ti, ti+1] with t̄ > t̃ and i =

0, . . . , p,

|ẋ(t̄)− ẋ(t̃)| =

∣

∣

∣

∣

∫ t̄

t̃

f(s) ds

∣

∣

∣

∣

6

∫ t̄

t̃

(‖h‖∞ + |a|R+ |b|+ |c|) ds
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and

|x(t̄)− x(t̃)| 6 R|t̄− t̃|+

∫ t̄

t̃

(t̄− s)(‖h‖∞ + |a|R+ |b|+ |c|) ds.

Thus, if t 6= t1, . . . , tp, one can take δ sufficiently small such that (t − δ, t + δ) ∩

{t1, . . . , tp} = ∅ and conclude (from the absolute continuity of the Lebesgue integral)

that the functions x and ẋ are equicontinuous at t. The left equicontinuity can be

deduced similarly for t ∈ {t1, . . . , tp}.

So, we have proved that T(Q) is compact, and hence, it follows from Proposi-

tion 2.3 that there exists a fixed point of T(·) in Q. This fixed point is then the

solution of the original problem (3.1). �

R em a r k 3.1. It follows from the proof of Theorem 3.1 that it is possible to

replace in (3.1) the impulses in the form ẋ(t+i )− ẋ(t−i ) = Mi(x(ti)), i = 1, . . . , p, by

ẋ(t+i ) − ẋ(t−i ) = Mi(ẋ(ti)), i = 1, . . . , p, where Mi : R → R are continuous for all

i = 1, . . . , p.

R em a r k 3.2. Let us note that by the same way, the existence result can be

deduced also for different types of boundary conditions. In the case that the cor-

responding homogenous problem is trivially solvable, we would apply in the proof

of Theorem 3.1 the corresponding Green function and obtain the analogous result

(with different estimates of the solutions and their derivatives) also in this case.

E x am p l e 3.1. Let us consider the forced (mathematical) pendulum equation

with viscous damping and dry friction terms together with three impulses and Dirich-

let boundary conditions

(3.5)











































ẍ(t) +
1

10
ẋ(t) + 5 sinx(t) + 2 sgn ẋ(t) = sin

(

π

2
t
)

for a.a. t ∈ [0, 1],

x(0) = x(1) = 0,

x
( i

4

+
)

− x
( i

4

)

= 6 +
5

100
x
( i

4

)

, i = 1, 2, 3,

ẋ
( i

4

+
)

− ẋ
( i

4

−
)

= 6 +
1

10
ẋ
( i

4

−
)

, i = 1, 2, 3.

If we consider, because of discontinuity at y = 0 in sgn y, the corresponding mul-

tivalued problem, where the function sgn y is replaced by the multivalued mapping

Sgn y, then we can apply Theorem 3.1 for T = 1, a = 1
10 , b = 5, c = 2, h(t) = sin( π

2 t),

p = 3, k = 6, l1 = 5
100 , l2 = 1

10 , and obtain the existence of Filippov solutions x(·)

of (3.5). The numerical solution of (3.5) obtained by Matlab software is presented

in Figure 1.
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A numerical solution

Derivative of a numerical solution
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−1
0
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−26
−24
−22
−20
−18
−16
−14
−12
−10
−8

x
′(t)

Figure 1. A numerical solution of (3.5) and its derivative.

4. Conclusion

Impulsive differential equations are suitable for the mathematical simulation of

rapid changes in evolution processes. In this paper, the impulsive problem to the pen-

dulum equation with a nonzero viscous damping coefficient as well as with a nonzero

friction coefficient was studied together with Dirichlet boundary conditions. Be-

cause of discontinuity in dry friction part it was appropriate to implement the tools

from multivalued analysis, and subsequently obtain the existence result by applying

the Kakutani-Ky Fan fixed point theorem. The theory was illustrated by an exam-

ple whose numerical solution was obtained by Matlab software. The present result

generalized previous works, where only the impulsive problems with zero friction

coefficient were under consideration or where the problems without impulses were

studied. Some interesting questions dealing with this topic deserve further investi-

gation. It will be for example suitable to study the problem with different types

of boundary conditions or to investigate the case of state-dependent impulses which

generalize the impulses at fixed moments considered in this paper.
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