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TROPICAL PROBABILITY THEORY
AND AN APPLICATION TO THE ENTROPIC CONE

Rostislav Matveev and Jacobus W. Portegies

In a series of articles, we have been developing a theory of tropical diagrams of probability
spaces, expecting it to be useful for information optimization problems in information theory
and artificial intelligence. In this article, we give a summary of our work so far and apply the
theory to derive a dimension-reduction statement about the shape of the entropic cone.
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Classification: 94A17, 94A24

1. INTRODUCTION

With the aim of developing a systematic approach to an important class of problems
in information theory and artificial intelligence, we started in [16] the development of a
theory of tropical diagrams of probability spaces. One of our intended applications is to
characterize, or at least derive important properties of, the entropic cone: an important
open problem in information theory, to which Fero Matúš made invaluable contributions.

In this article, we give a summary of our work on tropical diagrams so far and apply
the technology to derive a statement about the entropic cone.

We briefly recall the definition of the entropic cone. Given a collection of k random
variables X1, . . . ,Xk and a subset I ⊂ {1, . . . , k}, we can record the entropy of the joint
random variable XI . This way, we get a function from Λk to R, where Λk denotes the
set of nonempty subsets of {1, . . . , k}. We interpret the function as an element of the
vector space RΛk and call it the entropy vector of the random variables X1, . . . ,Xk. In
general, we say that a vector in RΛk is entropically representable if it is the entropy
vector of some collection of random variables X1, . . . ,Xk.

The entropic cone is the closure of the set of entropically representable vectors. En-
tropies of random variables, conditional entropies, mutual information and conditional
mutual information are all nonnegative. These conditions are called the Shannon in-
equalities. For k ≤ 3, the Shannon inequalities completely describe the entropic cone,
but for k ≥ 4 the situation is much more complicated. Zhang and Yeung showed that the
entropic cone and the submodular cone (i. e. the cone cut out by Shannon inequalities)
are different [25], by identifying a non-Shannon inequality satisfied by all entropically
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representable vectors. Subsequently, more non-Shannon inequalities were discovered,
e. g. [5, 15].

In [12] Matúš discovered several infinite families of linear inequalities satisfied by the
entropic cone and used it in a clever way to show that the cone is not polyhedral. Other
infinite families of information inequalities were found in [6] as well as many (more than
200) sporadic inequalities.

In the case of four random variables, the entropic cone is a closed convex cone in
R15. Using techniques developed in [16, 17, 18, 19], we show how the dimension of the
problem of determining the entropic cone could be reduced from 15 to 11.

During our work on the development of tropical probability we were greatly influenced
by the article of Gromov [7] and by numerous discussions with Fero Matúš as well as by
his published work, such as [10, 12, 14].

The idea of tropicalization of probability theory is roughly the following. We define
the entropic distance k(X,Y) between two tuples of random variables X = (X1, . . . ,Xn)
and Y = (Y1, . . . ,Yn) as the infimum of the expression

∑
J⊂{1,...,n}

(Ent(XI ∣YI) + Ent(YI ∣XI))

over all choices of joint distributions (X1, . . . ,Xn,Y1, . . . ,Yn).
This is indeed a pseudo-distance, that vanishes only on pairs of isomorphic tuples.

Further, we define the asymptotic distance

κ(X,Y) ∶= lim
k→∞

1

k
k(Xk,Yk)

where Xk stand for the k-fold product of i.i.d. copies of X. The asymptotic distance may
vanish on non-isomorphic tuples, and we call such tuples of random variables asymptot-
ically equivalent. While two random variables are asymptotically equivalent if and only
if they have the same entropy, for n ≥ 2 the space of asymptotic equivalence classes is
infinite-dimensional.

Asymptotically equivalent tuples have the same entropy profiles. However, asymp-
totic equivalence is a much finer relation than equality of entropy profiles. Asymptoti-
cally equivalent tuples have the same solutions to entropy optimization problems, such as
Wyner Common Information, [22], or information decomposition quantities introduced
in [3].

Two key results from [16] and [17] will be used in the present article. The first one is
the tropical version of the Asymptotic Equipartition Property, generalizing the theorem
of Chan and Yeung from [4]. While the theorem in [4] asserts that for any tuple of random
variables its entropy profile up to scaling can be approximated by the entropy profiles of
homogeneous tuples (logarithms of indexes of subgroups and their intersection in some
group), we show that any tuple can be approximated by a sequence of homogeneous
tuples up to asymptotic equivalence, in particular, preserving the solutions of entropy
optimization problems.

In [17], we also generalize the Ahlswede–Körner Theorem, see [1, 2], to the tropical
setting. While the original Ahlswede–Körner theorem asserts the equality of entropy
profiles of the results of a certain construction, we provide an analogous construction
that preserves asymptotic equivalence.
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In both generalizations our results are ultimately equalities in infinite-dimensional
spaces versus finite collections of equalities of real numbers in the original statements.

The same types of generalizations are possible with the Slepian–Wolf Lemma [20] and
Matúš’ convolution construction [11]. These will be addressed in future articles.

2. TROPICAL DIAGRAMS

The language of random variables was introduced by Fréchet, Kolmogorov and others,
so that joint distributions are automatically defined. For our purposes, this is not a
convenient setup, as we often need to vary the joint distributions. That’s why we use a
different language of diagrams of probability spaces, which we introduce below. A more
detailed discussion and proofs of the statements below can be found in [16, 19] and [17].

2.1. Probability spaces

For the purposes of this article, a probability space is a set with a probability measure
on it which is supported on a finite subset. A reduction from one probability space
to another is an equivalence class of measure-preserving maps, where two maps are
considered equivalent if they coincide on a set of full measure. Note that the target
space of a random variable taking values in a finite set is a probability space according
to this definition.

The tensor product X ⊗ Y of two probability spaces X and Y is the independent
product.

2.2. Diagrams of probability spaces

We will consider commutative diagrams of probability spaces and reductions, such as a
two-fan and a diamond, pictured below

Z

X Y

Z
X Y

W

. (2.1)

In these diagrams, X, Y , Z and W are probability spaces, and the arrows are reductions.
To speak about general diagrams, we will need to specify the arrangement of probability
spaces and reductions, i. e. we need to record the underlying combinatorial structure.
There are several, equivalent, ways to do so: using a poset category, a partially ordered
set (poset), or a directed acyclic graph (DAG) with some additional properties as de-
scribed below. From our perspective, the language of categories is most convenient for
this purpose, but it may not be as familiar as the other two concepts. That is why we
will provide a dictionary to convert from one setup to the other. For an easy introduc-
tion to categories, functors and natural transformations the reader is refered to the first
chapter in the book [9].

2.2.1. Categories, posets and DAGs

A poset category is a finite category G such that for any pair of objects i, j ∈ G there is
at most one morphism either way. We will require the poset categories used for indexing
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diagrams to have an additional property, that we describe below after introducing some
convenient terminology.

For a morphism i → j in G, the object i will be called an ancestor of j and object j
will be called a descendant of i.

An indexing category G is a finite poset category such that for any two objects i, j ∈ G
there exists a minimal common ancestor ı̂, that is an object ı̂ wich is an ancestor to both
i and j and such that any other common ancestor of i and j is also an ancestor of ı̂.
For an interested reader an example of a poset category that fails this property is shown
below.

m
k l

i j

Given a poset (P,≥) such that any subset in P has a supremum (a least common
upper bound), one can construct an indexing category G, having as objects the points
in the poset, and a unique morphism i→ j for any pair i ≥ j.

Starting with a DAG, one can construct a poset category by taking the transitive
closure of the DAG and considering vertices as objects and arrows as morphisms. The
translation of the defining property of indexing categories is straightforward in the DAG
language.

A fan in a category is a pair of morphisms with the same domain (i ← k → j). Such
a fan is called minimal if whenever it is included in a commutative diagram

k
i j

l

the verical arrow k → l must be an isomorphism.
Indexing categories have the following useful properties, which are elementary to

establish. First, for any pair of objects i, j in an indexing category G, there exists a
unique minimal fan in G with target objects i and j. Secondly, any indexing category
is initial, i. e. it has an initial object that is an ancestor to any other object in G.

2.2.2. Diagrams

A diagram of probability spaces is a functor X from an indexing category G = {i;γij}
to the category of probability spaces. Essentially, this means that given an indexing
category, poset or DAG, we get a G-diagram of probability spaces X = {Xi;χij} by
assigning to each object/vertex i a probability space Xi and to each morphism/arrow
γij a reduction χij , requiring that the resulting diagram commutes. We denote the set
of all G-diagrams of probability spaces by Prob⟨G⟩.

2.2.3. Full diagrams and random variables

Important examples of diagrams are Λn-diagrams, which we call full diagrams, where
Λn is the poset of non-empty subsets of the set {1, . . . , n} ordered by inclusion. Given
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an n-tuple of random variables (X1, . . . ,Xn) we can construct a Λn-diagram

⟨X1, . . . ,Xn⟩ ∶= {XI ;χIJ}

by setting XI equal to the target space of (Xi ∶ i ∈ I) with the induced distribution and
χIJ equal to the natural projections. On the other hand, starting with a Λn-diagram
we can construct an n-tuple of random variables as reductions from the initial space to
n terminal spaces. Diagrams of combinatorial type Λ2 are two-fans, pictured above in
(2.1), and Λ1-diagrams are single probability spaces.

2.2.4. Diagrams of diagrams

A reduction ρ ∶ X → Y from a G-diagram X to a G-diagram Y is a natural transformation
(in the sense of category theory) from (the functor) X to Y. It amounts to specifying
a reduction ρi ∶Xi → Yi for every i, such that the diagram obtained from X , Y and the
ρi’s is commutative. Thus, Prob⟨G⟩ is itself a category.

Hence, we can also construct diagrams of diagrams. Most important for us are two-
fans of G diagrams,

Z
X Y

where X , Y and Z are G-diagrams, and the arrows are reductions of diagrams. For the
space of H-diagrams of G-diagrams we will use the notation Prob⟨G⟩⟨H⟩=Prob⟨G,H⟩.
Note that an H-diagram of G-diagrams can equivalently be interpreted as a G-diagram
of H-diagrams.

2.2.5. Minimal diagrams

A G-diagram X is called minimal if it maps minimal fans in G to minimal fans in the
target category.

A minimization of a two-fan Ẑ ∶= (X ← Z → Y) of either of probability spaces or
diagrams is the minimal fan Ĉ = (A ← C → B) and a reduction

X Z Y

A C B
f h g (2.2)

such that f and g are isomorphisms.
It is shown in [16, Proposition 2.1] that a minimization always exists and is unique

up to isomorphism.
We will also refer to a minimal two-fan with X and Y as targets, as a coupling between

X and Y.

2.2.6. Tensor product and conditioning

The tensor product of two G-diagrams X = {Xi;χij} and Y = {Yi;υij} is X ⊗ Y ∶=
{Xi ⊗ Yi;χij × υij}.
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If X is a G-diagram, and U is a probability space in X , then the whole diagram X can
be conditioned on an outcome u ∈ U with positive weight. We denote the conditioned
diagram by X ∣u. A precise definition of this construction is given in [16, Section 2.8].

2.3. The intrinsic and asymptotic entropy distances

For a given a G-diagram X we may evaluate the entropies of the individual probability
spaces, which gives a map

Ent∗ ∶ Prob ⟨G⟩ → RG

where the target space RG is the vector space of all real-valued functions on the set of
objects in G, equipped with the `1-norm. The entropy is a homomorphism in the sense
that Ent∗(X ⊗ Y) = Ent∗(X) + Ent∗(Y).

Given a two-fan of G-diagrams K = (X ← Z → Y), the entropy distance between X
and Y is defined by

kd(K) ∶= ∥Ent∗(Z) − Ent∗(X)∥1 + ∥Ent∗(Z) − Ent∗(Y)∥1.

We use the entropy distance as a measure of deviation of a fan K from being an iso-
morphism between X and Y. Indeed, the entropy distance kd(K) vanishes if and only
if both arrows in K are isomorphims.

We obtain the intrinsic entropy distance k(X ,Y) between two G-diagrams X and Y
by taking an infimum over all couplings between X and Y

k(X ,Y) ∶= inf{kd(K) ∶ K coupling between X and Y}.

For probability spaces, the intrinsic entropy distance was introduced in [8, 21].
We also define the asymptotic entropy distance κ(X ,Y) by

κ(X ,Y) ∶= lim
n→∞

1

n
k(Xn,Yn)

where Xn denotes the n-fold independent product of X .
Both k and κ are pseudo-distance functions in that they satisfy all axioms of a

distance function, except that they may vanish on pairs of non-identical points, see [16]
and [19] for the proofs.

2.4. Tropical diagrams

Tropical objects, as for instance encountered in algebraic geometry, are, roughly speak-
ing, divergent sequences of classical objects (e. g. algebraic varieties), renormalized by
viewing them on a log scale with increasing base.

The space of tropical diagrams of probability spaces is defined along similar lines: it
consists of certain divergent sequences of diagrams and is endowed with an asymptotic
entropy distance, thus achieving a similar renormalization.

Our description below is extremely brief. For details and proofs, we refer the reader
to [19].
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2.4.1. Quasi-linear sequences

We define the linear sequence generated by a G-diagram X as the sequence
Ð→
X ∶= (Xn ∶

n ∈ N0) and we define the distance between two such sequences by

κ (
Ð→
X ,
Ð→
Y ) ∶= lim

n→∞

1

n
k (Xn,Yn).

Tropical diagrams of probability spaces will be sequences that are almost linear, so that
it allows us to define algebraic operations on them, and establish completeness of the
space of all tropical diagrams.

We call a sequence [X ] ∶= (X(n) ∶ n ∈ N0) quasi-linear if for every m,n ∈ N,

κ (X(m + n),X(m) ⊗ X(n)) ≤ C(m + n)3/4. (2.3)

The constant 3/4 above is an artificial choice. As explained in [19] any exponent in the
interval (1/2,1) leads to an equivalent definition of the tropical diagrams. We also define
the distance between two quasi-linear sequences by

κ ([X ], [Y]) ∶= lim
n→∞

1

n
κ (X(n),Y(n))

and denote by Prob[G] the (pseudo-)metric space of all quasi-linear sequences endowed
with κ. Two quasi-linear sequences will be called asymptotically equivalent if they are
zero distance apart. Equivalence classes of quasi-linear sequences will be called tropical
diagrams of probability spaces. In our discussions we will sometimes be sloppy, and
make no distinction between equivalence classes and their representatives (quasi-linear
sequences). This is harmless, as operations we consider are all κ-continuous and preserve
asymptotic equivalence.

The sum of two sequences is defined as element-wise tensor product, and multiplica-
tion by a scalar λ ≥ 0 is defined by

λ ⋅ [X ] ∶= (X(⌊λ ⋅ n⌋) ∶ n ∈ N0).

The addition and scalar multiplication satisfy the usual associative, commutative and
distributive laws up to asymptotic equivalence. Therefore, the space Prob[G] has the
structure of a convex cone.

The asymptotic distance κ is 1-homogeneous

κ (λ ⋅ [X ], λ ⋅ [Y]) = λκ ([X ], [Y])

and translation-invariant,

κ ([X ] + [Z], [Y] + [Z]) = κ ([X ], [Y]).

We show in [19] that the space Prob[G] is complete. Together with the algebraic
structure, it implies that Prob[G] is a closed convex cone in some (generally infinite-
dimensional) Banach space B. We call elements in the dual space B∗ entropic quantities.
The entropy functional defined by

Ent∗([X ]) ∶= lim
n→∞

1

n
Ent∗(X(n)) (2.4)
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yields an example of such dual elements.
Less trivial examples are the Wyner Common Information, [22],

C(X ← Z → Y ) ∶= inf
W

{I(Z ∶W ) ∶X ��Y ∣W}

or information decomposition quantities defined in [3].

2.5. Homogeneous diagrams and asymptotic equipartition property

We call a diagram of probability spaces X homogeneous if its automorphism group
Aut(X) acts transitively on every space in X .

Examples of homogeneous diagrams can be constructed in the following way. A G-
diagram of groups is a pair consisting of an ambient finite group G and a G-diagram
of subgroups of G, (Hi ∶ i ∈ G), where the arrows are inclusions. Starting with a G-
diagram of groups, we construct a G-diagram of probability spaces X ∶= {Xi;χij} by
setting Xi ∶= G/Hi with the uniform measure and defining the reduction χij to be the
natural projection χij ∶ G/Hi → G/Hj whenever Hi ⊂ Hj . In fact, every homogeneous
diagram arises in this way [16, Section 2.7.1]. We call a homogeneous diagram Abelian
if it can be constructed in this way with Abelian G.

Starting with a diagram of groups {G;Hi ∶ i ∈ G} the resulting homogeneous diagram
will be minimal if and only if for any i, j ∈ G there exists k ∈ G, such that Hk =Hi ∩Hj .
If a diagram of groups satisfies this property, we will call it minimal as well. When G
is a full indexing category G = Λn, the description of minimal diagrams of groups is
especially simple: One needs to specify only the terminal groups, others being obtained
by appropriate intersections. We will write (G; H1, . . . ,Hn) for such minimal Λn-
diagram of groups.

The space of quasi-linear sequences of homogeneous G-diagrams will be denoted by
Prob[G]h, the subspace of sequences of Abelian G-diagrams by Prob[G]Ab, and the
space quasi-linear sequences of minimal G-diagrams by Prob[G]m.

The Asymptotic Equipartition Property for diagrams of probability spaces that we
have shown in [16, Theorem 6.1] essentially says that any linear sequences of diagrams of
probability spaces is asymptotically equivalent to a quasi-linear sequence of homogeneous
diagrams. Together with the density of linear sequences in Prob[G], [19, Theorem 5.2],
it implies the following theorem.

Theorem 2.1. For any indexing category G the spaces Prob[G]h and Prob[G]h,m
are dense in Prob[G] and Prob[G]m, respectively.

This theorem generalizes results of Chan and Yeung in [4], where they show that
given a diagram of probability spaces there is a sequence of homogeneous diagrams such
that rescaled entropies of spaces in the homogeneous diagrams converge to entropies of
the given one. Theorem 2.1, however, is stronger. It implies, in particular, that any
entropic quantity such as, for example, the optimum value in some entropy optimization
problem, will be approximately the same in the given diagram of probability spaces and
in the approximating homogeneous diagram, to any level of precision. Theorem 2.1 gives
an equality in an infinite dimensional space as opposed to finite dimensional equalities
in the main theorem in [4].
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Intuitively, according to the theorem above, one may think of a tropical diagram as
a homogeneous diagram of very large probability spaces. Thus, whenever one wants
to evaluate a continuous linear functional on a diagram X , one may assume that it is
homogeneous and consists of arbitrarily large spaces. We take advantage of this point
of view in the next section.

As a trivial, but enlightening, example, consider a two-fan (X ← Z → Y ). By The-
orem 2.1, a high power (Xn ← Zn → Y n) can be approximated by a homogeneous fan
HX ←HZ →HY . The entropies of X, Z and Y (and therefore also the mutual informa-
tion Ent(X)+Ent(Y )−Ent(Z) between X and Y ) can be established by just counting in
the homogeneous fan: Ent(X) ≈ 1

n
log ∣HX ∣ where ∣HX ∣ denotes the cardinality of HX .

However, the three entropies do not determine the asymptotic equivalence class of the
fan, there are many more (in fact, infinitely many) independent entropic quantities. But
all can be determined from the homogeneous approximation.

2.6. Tropical conditioning

2.6.1. Conditioning

One of the advantages of homogeneous diagrams is that if a homogeneous diagram X
contains a space U , then the isomorphism class of the conditioned diagram X ∣u does not
depend on the choice of an atom u ∈ U .

Since any tropical diagram is asymptotically equivalent to a homogeneous tropical di-
agram, we can use this independence of u to define an operation of conditioning of a trop-
ical G-diagram [X ] on a space [U] in it, obtaining another tropical G-diagram denoted
by [X ∣U]. In the tropical setting the diagram [X ∣U] depends (Lipschitz-)continuously
on [X ] and [U]. This subject is discussed in more details in [17].

2.6.2. Entropy and mutual information

Now that we defined [X ∣U] as a tropical diagram, its entropy Ent∗([X ∣U]) is defined by
the limit in (2.4). At the same time, it equals the limit

lim
n→∞

1

n
Ent∗(X(n)∣U(n)) ∶= lim

n→∞

1

n
∫
u∈U(n)

Ent∗(X(n)∣u)dp(u).

In [19] it is shown that the space of single tropical probability spaces, Prob[Λ1],
is isomorphic to R≥0, with the isomorphism given by the entropy. Thus, a tropical
probability space is completely determined by its entropy, and we will simply write

• [X] for Ent([X]).

• [X ∶ Y ] ∶= [X] + [Y ] − [Z] for the mutual information between X and Y in the
minimal two-fan [X] ← [Z] → [Y ]

• [X ∶ Y ∣U] ∶= [X̂] + [Ŷ ] − [Ẑ] − [U] for the conditional mutual information between
X and Y , where [X̂], [Ŷ ], [Ẑ] and [U] are the spaces in the minimal diagram

[Ẑ]
[X̂] [Ŷ ]

[X] [U] [Y ]
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3. TROPICAL AHLSWEDE–KÖRNER THEOREM

In this section we describe two operations on tropical diagrams, arrow contraction and
expansion. Given a tropical diagram [Z], arrow contraction is a modification of the
diagram in such a way that a certain arrow becomes an isomorphism, while keeping
control of what happens to some other parts of [Z]. Arrow expansion is an inverse
operation. We will apply these techniques in the next section to derive a dimension
reduction result for the entropic cone.

The full construction is quite involved. Here we will only describe a corollary neces-
sary for our purposes, and refer the reader to [17] for the full results and details.

3.1. Admissible and reduced sub-fans

Suppose Z is a G-diagram and X is an element in it. By the ideal generated by X
we mean the sub-diagram ⌈X⌉ of Z, that consists of the target spaces of all morphisms
starting in X and all (available in Z) arrows between them. We will sometimes refer to
spaces in ⌈X⌉ as the descendants of X. The ideal generated by a space X included in
some diagram will be denoted ⌈X⌉.

If [Z] is a diagram of tropical probability spaces with the tropical space [X] in it, in
order to unclutter notations we will write

⌈X⌉ ∶= ⌈[X]⌉ .

An admissible sub-fan (X ← Z → U) in a diagram Z is a minimal sub-fan such that
the space U is terminal, i. e. it is not the domain of definition of any (non-identity)
morphism in Z. An admissible fan will be called reduced if Z →X is an isomorphism.

A diagram with an admissible fan is illustrated schematically in Figure 1. Two more
concrete examples are shown in Figures 2 and 3.

If an arrow Y →X in a diagram Z is an isomorphism, then we can identify the spaces
X and Y , thus changing the combinatorial structure of Z. We call such change arrow
collapse. Examples of the process of collapsing an arrow can be seen in Figures 1, 2

and 3.

3.2. Tropical Ahlswede–Körner Theorem

Suppose [Z] and [Z ′] are two tropical G-diagrams, containing admissible fans ([X] ←
[Z] → [U]) and ([X ′] ← [Z ′] → [U ′]), respectively, which correspond to each other
under the combinatorial isomorphism between [Z] and [Z ′]. Suppose the fan ([X ′] ←
[Z ′] → [U ′]) is reduced. Denote [X ] ∶= ⌈X⌉ and [X ′] ∶= ⌈X ′⌉.

We say that [Z ′] is obtained from [Z] by arrow contraction or, alternatively, [Z] is
obtained from [Z ′] by arrow expansion, if

[X ] = [X ′] (3.1)

[X ∣U] = [X ′∣U ′]. (3.2)

The other spaces in [Z] outside of [X ] and [U] may change in an uncontrolled
manner. In view of equality (3.1) we will identify diagrams [X ] and [X ′].
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[X ]

[X] = [Z ′]

[U ′]

Fig. 1. Arrow contraction/expansion and arrow collapse. Here

[X ] ∶= ⌈X⌉. In the left diagram the fan [X] ← [Z] → [U] is admissible.

In the middle diagram [X] ← [Z′
] → [U ′

] is admissible and reduced.

The diagrams may contain some other spaces beyond those shown.

During contraction/expansion we don’t have control over the other

parts of the diagram.

Arrow contraction, expansion and collapse are illustrated in Figures 1, 2 and 3.
Note that equation (3.2) is in general an equality in an infinite-dimensional space.

But as a simple consequence we have that for any two spaces [X1] and [X2] in [X ] and
the corresponding spaces [X ′

1] and [X ′

2] in [X ′] the following equalities hold:

[X1∣U] = [X ′

1∣U ′]
[X1 ∶X2∣U] = [X ′

1 ∶X ′

2∣U ′]
[X1 ∶ U] = [X ′

1 ∶ U ′] (3.3)

[X1 ∶ U ∣X2] = [X ′

1 ∶ U ′∣X ′

2]
[U ′] = [X ∶ U].

Indeed, the first equality follows directly from equality (3.2). The next three can be
proven by expanding the right- and left-hand sides into summands of the form [A∣U]
and [B] for some [A] and [B] in [X ]. The last one follows from the fact that [U ′] is a
descendant of [X] in [Z ′] and therefore [X ∣U ′] = [X] − [U ′].

Next we state the following contraction result from [17] which is a generalization of
Ahlswede–Körner Theorem from [1, 2].

Theorem 3.1. (Tropical Ahlswede–Körner Theorem) Let ([X] ← [Z] → [U]) be
an admissible fan in some tropical G-diagram [Z]. Then there exists a G-diagram
[Z ′] containing an admissible fan ([X ′] ← [Z ′] → [U ′]), corresponding to the original
admissible fan through the combinatorial isomorphism, such that, with the notations
X = ⌈X⌉ and X ′ = ⌈X ′⌉, the diagram [Z ′] satisfies

i. [X ′∣U ′] = [X ∣U]
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ii. [X ′] = [X ]

iii. [Z ′∣X ′] = 0

The evaluation of entropy of an individual space in a tropical diagram is a 1-Lipschitz
linear functional, while the operation of conditioning is also a Lipschitz map, [18]. Thus,
in the settings of Theorem 3.1 the following inequalities hold: for any two spaces [X1]
and [X2] in [X ] and corresponding spaces [X ′

1] and [X ′

2] in [X ′]

[X1∣U] = [X ′

1∣U ′]
[X1 ∶X2∣U] = [X ′

1 ∶X ′

2∣U ′]
[X1 ∶ U] = [X ′

1 ∶ U ′] (3.4)

[X1 ∶ U ∣X2] = [X ′

1 ∶ U ′∣X ′

2]
[U ′] = [X ∶ U].

The following much simpler theorem from [17] is the reverse of Theorem 3.1.

Theorem 3.2. Given a reduced admissible sub-fan ([X] ← [Z ′] → [U ′]) in a tropical
G-diagram Z ′ and a non-negative number λ ≥ 0, there is another G-diagram [Z], such
that [Z ∣X] = λ.

3.3. Examples

To illustrate the discussion above, we consider two examples of admissible sub-fans and
arrow contraction and expansion.

3.3.1.

As a first example, suppose we are given a tropical two-fan [Z] = ([X] ← [Z] → [U]) as
in Figure 2. We may ask the following question:

Can the mutual information between [X] and [U] be captured by a tropical
space [V ]? More precisely, is there a diamond extension

[Z]
[X] [U]

[V ]

such that [V ] = [X ∶ U] (or equivalently [X ∶ U ∣V ] = 0)?

The answer is, in general, no. More precisely, the mutual information is representable
by a random variable if and only if Wyner Common Information C(X,Y ) is equal to
the mutual information I(X ∶ Y ). However, by contracting and collapsing the arrow
[Z] → [X] we can still obtain a reduction ([X] → [V ]), where [V ] has the required
“size”, i. e. its entropy equals the mutual information between [X] and [U]. If we want
to, we can still keep the spaces [Z] and [U] in the diagram after contraction/collapse.
Note, however, that in general there will be no reduction [U] → [V ] commuting with
the other reductions.
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[Z]

[X] [U]

arrow
contraction

arrow
expansion

[Z ′] [Z]

[X] [V ] [U]

=

arrow
collapse

[Z]

[X] [U]

[V ]

Fig. 2. Contraction/expansion and arrow collapse in a two-fan.

[Z]

[X] [Z1] [Z2]

[X1] [X2] [U]

arrow
contraction

arrow
expansion

[Z ′]

[X] [Z ′

1] [Z ′

2]

[X1] [X2] [V ]

=
arrow

collapse

[X] = [Z ′]

[Z ′

1] [Z ′

2]

[X1] [V ] [X2]

Fig. 3. Arrow contraction and expansion in a Λ3-diagram.

3.3.2.

As a second example, consider the tropical Λ3-diagram

[Z] = ⟨[X1], [X2], [U]⟩

shown in Figure 3. Such examples can be particularly useful when the space [U] is
chosen to satisfy additional properties. For instance, it could be chosen such that the
diagrams [X1] and [X2] are independent conditioned on [U]. We will discuss such
extensions elsewhere. The fan ([X] ← [Z] → [U]) is admissible and the ideal ⌈X⌉ is the
fan ([X1] ← [X] → [X2]).

If we contract [Z] → [U], we obtain a diagram with a new space [V ], that has the
same properties relative to ⌈X⌉ = ⟨[X1], [X2]⟩. The arrow expansion can be seen by
reading the picture backwards.

4. ENTROPIC CONE

In this section we define the submodular, entropic and Abelian cones associated to an
indexing category G and prove a dimension reduction result for the entropic cone of
four random variables in Theorem 4.1. This result is known, see [13]. In fact, the result
in the aforementioned article is stronger then Theorem 4.1. Our methods are somewhat
different and we believe, that using them will lead to a deeper understanding of the
structure of the entropic cone and other related problems.

4.1. Vector-spaces RG and R⊗G

Given an indexing category G we consider two linear spaces associated to it. Recall that
the vector space RG is the space of functions from G to R. The second space, dual to
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the first one, is R⊗G – the vector-space of formal finite linear combinations of objects
in G with real coefficients. These two vector spaces are in natural duality defined by

For f ∈ RG and ∑
i∈G

λi ⊗ i ∈ R⊗G, ⟨f,∑
i∈G

λi ⊗ i⟩ ∶= ∑
i∈G

λif(i).

The collection of vectors {1⊗ i}i∈G =∶ {[i]}i∈G forms a basis of the space R⊗G, and we
denote the dual basis in RG by {fi}i∈G. We also consider the following special vectors
in R⊗G:

• The basis vectors [i] ∶= 1⊗ i.

• [i∣j] ∶= [̂ı] − [j], where ı̂ is the top object in a minimal fan i← ı̂→ j in G.

• [i ∶ j] ∶= [i] + [j] − [̂ı], where ı̂ is top object in a minimal fan i← ı̂→ j in G.

• [i ∶ j∣k] ∶= [̂ı] + [̂] − [k] − [l] where objects ı̂, ̂ and [l] are included in the following
minimal diagram in G

l
ı̂ ̂

i k j

This notations are consistent with the notations for entropy and mutual information,
which we introduced in Section 2.6.2, in the sense that for a G-diagram X = {Xi;χij}
holds

⟨Ent∗X , [i]⟩ = [Xi]
⟨Ent∗X , [i∣j]⟩ = [Xi∣Xj]

⟨Ent∗X , [i ∶ j]⟩ = [Xi ∶Xj]
⟨Ent∗X , [i ∶ j∣k]⟩ = [Xi ∶Xj ∣Xk].

4.2. Submodular, entropic and Abelian cones

Let G = {i;γij} be an indexing category. We define three closed, convex cones in RG:
the submodular cone Γsm(G), the entropic cone Γ(G) and the Abelian cone ΓAb(G).

4.2.1. The submodular cone

The submodular cone Γsm(G) ⊂ RG consists of nonnegative, non-decreasing, submodular
functions on the set of objects in the category (points in the poset or vertices in the
DAG) G. In essence, these are the functions on G that satisfy Shannon-like inequalities.
More formally it is defined as follows.

The properties nonnegativity, monotonicity and submodularity are defined through
linear inequalities. Every linear inequality for f ∈ RG can be written in the form ⟨f, v⟩ ≥ 0
for some v ∈ R⊗G. A function f ∈ RG is called

• positive, if ⟨f, [i]⟩ ≥ 0 for every object i ∈ G

• monotone, if ⟨f, [i∣j]⟩ ≥ 0, for every i, j ∈ G.
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• submodular, if ⟨f, [i ∶ j]⟩ ≥ 0 and ⟨f , [i ∶ j∣k]⟩ ≥ 0 for every i, j, k ∈ G

The submodular cone is dual to the cone spanned by Shannon-like inequalities

Γsm(G) ∶= {f ∈ RG
∶ ⟨f, v⟩ ≥ 0 for all v ∈ SH}

where SH ∶= {[i], [i∣j], [i ∶ j], [i ∶ j∣k] ∶ i, j, k ∈ G}.

4.2.2. The entropic cone

The entropic cone consists of functions on G that are realizable as entropies of tropical
G-diagrams of probability spaces, i. e. it is the image under the entropy map Ent∗ of
the tropical cone of minimal diagrams indexed by G:

Γ(G) ∶= Ent∗(Prob[G]m).

In view of the tropical AEP Theorem 2.1 one can equivalently define

Γ(G) ∶= Closure (Ent∗(Prob[G]mh))

where by Prob[G]mh we mean the space of minimal, homogeneous, tropical G-diagrams.
As we explained in Section 2.2.3, when G = Λn, diagrams correspond to n-tuples of
random variables. In this case, the entropic cone is equal to the closure of the set of
entropically representable vectors, i. e. vectors whose coordinates are entropies of the n
random variables and their joints, see [23].

4.2.3. The Abelian cone

The Abelian cone consists of entropy vectors of Abelian tropical diagrams

ΓAb(G) ∶= Ent∗(Prob[G]Ab,m).

The following two inclusions follow from the definitions and the fact that entropy satisfies
Shannon inequalities.

Γsm(G) ⊃ Γ(G) ⊃ ΓAb(G). (4.1)

4.2.4. The cases of G = Λ1, Λ2, and Λ3

In this cases all three cones coincide. Essentially it means that any tuple of numbers, that
satisfy Shannon inequalities can be realized as entropies of Abelian diagrams, see [24,
Theorem 2].

4.3. The case G = Λ4

The Zhang–Yeung non-Shannon information inequality ([25]) shows that the submodular
cone Γsm(Λ4) is strictly larger than the entropic cone Γ(Λ4). It is also known that Γ(Λ4)
is strictly larger than ΓAb(Λ4), see for example [12]. Hence, both inclusions in (4.1) are
proper.
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The cone Γsm(Λ4) is polyhedral by definition, and it is known that the cone ΓAb(Λ4)
is polyhedral as well, see, for example, [6]. In contrast, the entropic cone Γ(Λ4) is not
polyhedral, as has been shown by Matúš in [12].

There are many upper and lower bounds for Γ(Λ4). The upper bounds are in the
form of linear inequalities, some of them organized in infinite families. A large list can be
found in [6]. Lower bounds are in the form of points in the complement Γ(Λ4)∖ΓAb(Λ4).

Note that there is an action of symmetric group S4 on Λ4, Prob[Λ4], Γsm(Λ4),
Γ(Λ4) and ΓAb(Λ4).

We will adopt Matúš’ notations, where an integer (in small bold face) represents the
set of its decimal digits (eg 24↔ {2,4} ∈ Λ4).

4.3.1. Ingleton inequalities and the Abelian cone ΓAb(Λ4)

In addition to the Shannon inequalities, Abelian diagrams also satisfy six Ingleton in-
equalities, corresponding to the Ingleton vector

ing(12; 34) ∶= −[1 ∶ 2] + [1 ∶ 2∣3] + [1 ∶ 2∣4] + [3 ∶ 4] ∈ R⊗Λ4

and five other vectors obtained by permuting the coordinates.

The cone ΓAb(Λ4) is a polyhedral cone dual to the cone spanned by SH and six
Ingleton vectors. Its structure is well-known: it coincides with the cone called H◻ in
[14]. It has 35 extremal rays, grouped into ten S4-orbits.

4.3.2. The submodular cone Γsm(Λ4)

We will represent vectors in RΛ4 by writing their coordinates in the following order

⎛
⎜⎜⎜
⎝

[1234]
[123], [124], [134], [234]

[12], [13], [14], [23], [24], [34]
[1], [2], [3], [4]

⎞
⎟⎟⎟
⎠
.

The cone Γsm(Λ4) has 41 extremal rays, grouped into eleven S4-orbits: the 35 rays
that are extremal for ΓAb(Λ4) and six special rays in the S4-orbit of a ray generated by
the vector

spc(12; 34) ∶=
⎛
⎜⎜⎜
⎝

4
4,4,4,4

3,3,3,3,3,4
2,2,2,2

⎞
⎟⎟⎟
⎠
.

Note that ⟨spc(12; 34) , ing(12; 34)⟩ = −1. It is known that spc(12; 34) and the other
special vectors are not in Γ(Λ4); they are neither representable as entropy vectors of some
diagram of probability spaces nor can they be approximated by representable vectors.
This has been first shown by Z. Zhang and R.W. Yeung in [25]. Later, many other
information inequalities obstructing the representability of spc(12; 34) were discovered
by several authors. The article [6] contains a comprehensive list and references.
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4.3.3. The non-Ingleton cone

The closure of the complement

Γsm(Λ4) ∖ ΓAb(Λ4)

is the union of six cones with disjoint interiors, permuted by the action of S4. The
stabilizer D2 of this action is the dihedral subgroup of S4 preserving the partition 1234 =
12 ∪ 34. It has order four and is isomorphic to Z2 ×Z2.

Consider one of these cones, containing spc(12; 34) and denote it by N. We will call it
the non-Ingleton cone. The cone N has a 14-dimensional simplex as a base. The vertices
a1, . . . , a15 and the dual faces α1, . . . , αn of the simplex are listed in Table 1.

The covectors α1, . . . , α15 give convex coordinates in the simplex.

4.3.4. The cone Γ(Λ4)

The cone Γ(Λ4) is squeezed between ΓAb and Γsm and the whole picture is S4-symmetric.
Thus the “unknown” part of the Γ(Λ4) is the intersection Γ′ ∶= Γ(Λ4) ∩N. It contains
the rays spanned by vectors a1, . . . , a14 and therefore the whole face {α15 = 0}. The
remaining part of the boundary ∂+ Γ′ is what we are after. From convexity of Γ′ it
follows that this part of the boundary is the graph of a certain function defined on the
cone spanned by a1, . . . , a14

∂+ Γ′ = {α15 = Φ(α1, . . . , α14)}

where Φ is defined by

Φ(x1, . . . , x14) ∶= sup{α15(x) ∶ (α1(x), . . . , α14(x)) = (x1, . . . , x14), x ∈ Γ(Λ4)} .

Obviously, the function Φ is 1-homogeneous.

Theorem 4.1. The function Φ does not depend on the first four arguments.

After the initial submission of this article we learned that a stronger result was obtained
using Matúš’ convolution method in [13] and even earlier in an unpublished work by
Lászlo Czirmaz.

P r o o f . For convenience, for a tropical Λ4-diagram we write

Ai[X ] ∶= ⟨Ent∗[X ], αi⟩

e. g. A1[X ] = [X1∣X234], A5[X ] = [X1 ∶ X3∣X2], etc. Note that all Ai’s are Lipschitz-
continuous with respect to the input diagram with Lipschitz constant at most 14. In
terms of functionals Ai the definition of the function Φ can be rewritten as

Φ(x1, . . . , x14) ∶= sup{A15[X ] ∶ Ai[X ] = xi for 1 ≤ i ≤ 14; [X ] ∈ Prob[Λ4]m} .

Consider a minimal tropical Λ4-diagram [X ] = ⟨[X1], [X2], [X3], [X4]⟩. It contains
an admissible sub-fan ([X234] ← [X1234] → [X1]). Applying Theorem 3.1 to [X ] we
obtain another diagram [X ′] such that

A1[X ′] = 0

Ai[X ′] = Ai[X ] for i = 2, . . . ,15.
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Vertex Dual face Representative D2-orbit

a1 =
⎛
⎜⎜⎜
⎝

1
1,1,1,0

1,1,1,0,0,0
1,0,0,0

⎞
⎟⎟⎟
⎠

α1 = [1∣234] l2 ⋅ (Z2; {0} ,
Z2,Z2,Z2)

a1, a2

a3 =
⎛
⎜⎜⎜
⎝

1
1,0,1,1

0,1,0,1,0,1
0,0,1,0

⎞
⎟⎟⎟
⎠

α3 = [3∣124] l2 ⋅ (Z2; Z2,

Z2,{0} ,Z2)
a3, a4

a5 =
⎛
⎜⎜⎜
⎝

1
1,1,1,1

1,1,1,1,0,1
1,0,1,0

⎞
⎟⎟⎟
⎠

α5 = [1 ∶ 3∣2] l2 ⋅ (Z2;{0} ,
Z2,{0} ,Z2)

a5, a6,
a7, a8

a9 =
⎛
⎜⎜⎜
⎝

1
1,1,1,1

1,1,1,1,1,1
1,1,1,0

⎞
⎟⎟⎟
⎠

α9 = [1 ∶ 2∣4] l2 ⋅ (Z2;{0} ,
{0} ,{0} ,Z2)

a9, a10

a11 =
⎛
⎜⎜⎜
⎝

1
1,1,1,1

1,1,1,1,1,1
1,1,1,1

⎞
⎟⎟⎟
⎠

α11 = [3 ∶ 4] l2 ⋅ (Z2;{0} ,
{0} ,{0} ,{0} ) a11

a12 =
⎛
⎜⎜⎜
⎝

2
2,2,2,2

1,2,2,1,1,2
1,0,1,1

⎞
⎟⎟⎟
⎠

α12 = [3 ∶ 4∣1]
l2 ⋅ ((Z2)2; ⟨χ1⟩ ,

⟨χ1, χ2⟩ , ⟨χ2⟩ ,
⟨χ1 + χ2⟩ )

a12, a13

a14 =
⎛
⎜⎜⎜
⎝

3
3,3,3,3

2,2,2,2,2,2
1,1,1,1

⎞
⎟⎟⎟
⎠

α14 = [1 ∶ 2∣34]
l3 ⋅ ((Z3)3; ⟨χ1, χ2⟩ ,

⟨χ2, χ3⟩ , ⟨χ3, χ1⟩ ,
⟨χ1 + χ2, χ2 + χ3⟩ )

a14

a15 =
⎛
⎜⎜⎜
⎝

4
4,4,4,4

3,3,3,3,3,4
2,2,2,2

⎞
⎟⎟⎟
⎠

α15 =
− ing(12; 34) Not representable a15

Tab. 1. The vertices and faces of the base simplex of non-Ingleton

cone. The dihedral group D2 acts on the simplex by transposing 1 and

2 and, independently, 3 and 4, so we list only one representative in

each orbit. To shorten notations we set l2 = (ln 2)−1 and l3 ∶= (ln 3)−1.

By (Zn)
k we mean the direct product of k copies of the cyclic group

of order n and χ1, . . . , χk stand for the standard generators in (Zn)
k.
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Repeatedly applying Theorem 3.1 to the resulting diagram after circular permutation
of terminal spaces we obtain a Λ4-diagram

[X ′′] = ⟨[X ′′

1 ], [X ′′

2 ], [X ′′

3 ], [X ′′

4 ]⟩

such that

Ai[X ′′] = 0 for i = 1,2,3,4

Ai[X ′′] = Ai[X ] for i = 5, . . . ,15.

Therefore, for any tuple (x1, . . . , x14) of non-negative numbers there exists a tuple
(x′′1 , . . . , x′′14) such that

Φ(x1, . . . , x14) ≤ Φ(x′′1 , . . . , x′′14)
x′′i = 0 for i = 1,2,3,4

x′′i = xi for i = 5, . . . ,14.

In other words for any tuple (x1, . . . , x14) of non-negative numbers holds

Φ(x1, . . . , x14) ≤ Φ(0,0,0,0, x5, . . . , x14).

On the other hand, given a diagram [Y] with Ai[Y] = 0, i = 1,2,3,4, and a tuple of
non-negative numbers (x1, x2, x3, x4), we can expand the arrows in the four admissible
fans, that we described above, to lengths (x1, x2, x3, x4). The resulting diagram [Y ′′]
satisfies

Ai[Y ′′] =
⎧⎪⎪⎨⎪⎪⎩

xi i = 1,2,3,4

Ai[Y] i = 5, . . . ,15.

This implies

Φ(x1, . . . , x14) ≥ Φ(0,0,0,0, x5, . . . , x14)

for any non-negative (x1, . . . , x14). ◻

Note that for n > 4 there are projection Γ(Λn) → Γ(Λ4) defined by forgetting some
n − 4 random variables. These projections together with Theorem 4.1 imply similar
dimension reduction results for higher-order cones Γ(Λn), n ≥ 4.

(Received May 15, 2019)
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[12] F. Matúš: Infinitely many information inequalities. In: IEEE International Symposium
on Information Theory, ISIT 2007, IEEE, pp. 41–44. DOI:10.1109/isit.2007.4557201
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