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Can a Lucas number be a sum of three repdigits?

Chèfiath A. Adegbindin, Alain Togbé

Abstract. We give the answer to the question in the title by proving that

L18 = 5778 = 5555 + 222 + 1

is the largest Lucas number expressible as a sum of exactly three repdigits.
Therefore, there are many Lucas numbers which are sums of three repdigits.

Keywords: Pell equation; repdigit; linear forms in complex logarithms

Classification: 11A25, 11B39, 11J86

1. Introduction

Let {Lm}m≥0 be the sequence of Lucas numbers given by Lm+2 = Lm+1+Lm

for m ≥ 0, where L0 = 2 and L1 = 1. A few terms of this sequence are

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521,

843, 1364, 2207, 3571, 5778, 9349, 15127, 24476, . . .

The Binet formula for its general term is

(1) Lm = αm + βm

for all m ≥ 0, where α = (1+
√
5)/2 and β = (1−

√
5)/2 are the two roots of the

characteristic equation x2 − x− 1 = 0.

In this paper, we study the Diophantine equations

(2) Ln = d1

(10m1 − 1

9

)

+ d2

(10m2 − 1

9

)

+ d3

(10m3 − 1

9

)

for some integers m1 ≤ m2 ≤ m3 and d1, d2, d3 ∈ {1, 2, . . . , 9}.
F. Luca and various co-authors have considered similar problems to the one

addressed in this paper. The papers [9] and [7] give all Fibonacci, Lucas, Pell and

Pell–Lucas numbers that are repdigits. The paper [5] gives all Fibonacci numbers

that are sums of two repdigits, while the paper [1] provides all Pell and Pell–Lucas

numbers that are sums of three repdigits. For other related problems, one can

refer to [2], [3], [6], [8]–[12].
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Our main result is the following.

Theorem 1.1. The largest Lucas number which is a sum of exactly three repdigits

is

L18 = 5778 = 5555 + 222 + 1.

Remark. In fact, the only Lucas numbers that are sums of three repdigits are

given in Table 1. The representations are not unique.

5778 = 5555 + 222 + 1

843 = 666 + 111 + 66

521 = 333 + 111 + 77

322 = 222 + 99 + 1

199 = 111 + 77 + 11

123 = 99 + 22 + 2

76 = 66 + 9 + 1

47 = 44 + 2 + 1

29 = 22 + 5 + 2

18 = 11 + 5 + 2

11 = 7 + 3 + 1

7 = 4 + 2 + 1

4 = 2 + 1 + 1

3 = 1 + 1 + 1

Table 1. All solutions of equation (2).

In the next section, we prove the above theorem in three parts. In the first

part, we use a computational method to prove that there is no solution to the

problem for n ∈ [19, 1000]. Moreover, we get an estimate of n in terms ofm3. The

second part consists in the use of Baker’s method to bound n,m1,m2,m3. For

that, we apply a result due to E.M. Matveev concerning a lower bound of linear

forms of logarithms of algebraic numbers. In the last part, we complete the proof

of the theorem by reducing the bounds obtained for n,m1,m2,m3. To do this,

we use a version of the Baker–Davenport reduction given by B.M.M. de Weger

in [14].
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2. Proof of Theorem 1.1

2.1 An elementary estimate. We assume that

(3) Ln = d1

(10m1 − 1

9

)

+ d2

(10m2 − 1

9

)

+ d3

(10m3 − 1

9

)

for some integers m1 ≤ m2 ≤ m3 and d1, d2, d3 ∈ {1, 2, . . . , 9}. A quick computa-

tion with Maple reveals no solutions in the interval n ∈ [19, 1000]. For this compu-

tation, we first noted that L1000 has 209 digits. Thus, we generated the list of all

numbers which are sums of at most 2 repdigits with at most 209 digits each, let us

call it A. Then, for every n ∈ [19, 1000], we computed M := ⌊logLn/log 10⌋ + 1

(the number of digits of Ln) and then checked whether Ln − d(10m − 1)/9 is

a member of A for some digit d ∈ {1, . . . , 9} and some m ∈ {M − 1,M}. This

computation took a few minutes.

So, from now on, we may assume that n > 1000.

We next investigate the size of m1,m2,m3 versus n.

Lemma 2.1. All solutions of equation (2) satisfy

m3 log 10− 4 < n logα < m3 log 10 + 3.

Proof: The proof follows easily from the fact that αn−1 < Ln < αn+1. One can

see that

αn−1 < Ln < 3 · 10m3 .

Taking the logarithm on both sides, we get (n−1) logα < log 3+m3 log 10, which

leads to

n logα < logα+ log 3 +m3 log 10 < m3 log 10 + 3.

Similarly, the lower bound follows. �

2.2 Bounds of n,m1,m2,m3. To find bounds for n,m1,m2,m3, we will use

Baker’s method. So we need a result from the theory of lower bounds for nonzero

linear forms in logarithms of algebraic numbers. Thus, we recall here Theorem 9.4

of [4], which is a modified version of a result of E.M. Matveev [13]. Let L be an

algebraic number field of degree dL. Let η1, η2, . . . , ηl ∈ L not 0 or 1 and b1, . . . , bl
be nonzero integers. We put

D = max{|b1|, . . . , |bl|},
and

Γ =

l
∏

i=1

ηbii − 1.
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Let A1, . . . , Al be positive integers such that

Aj ≥ h′(ηj) := max{dLh(ηj), | log ηj |, 0.16} for j = 1, . . . , l,

where for an algebraic number η of minimal polynomial

f(X) = a0(X − η(1)) · · · (X − η(k)) ∈ Z[X ]

over the integers with positive a0, we write h(η) for its Weil height given by

h(η) =
1

k

(

log a0 +

k
∑

j=1

max{0, log |η(j)|}
)

.

The following consequence of Matveev’s theorem is Theorem 9.4 in [4].

Theorem 2.1. If Γ 6= 0 and L ⊆ R, then

log |Γ| > −1.4 · 30l+3l4.5d2
L
(1 + log dL)(1 + logD)A1A2 · · ·Al.

To apply this result, we return to equation (2) and use the Binet formula (1)

to get

αn + βn = d1

(10m1 − 1

9

)

+ d2

(10m2 − 1

9

)

+ d3

(10m3 − 1

9

)

.

The equation (2) can be expressed

(4) 9(αn + βn)− d110
m1 − d210

m2 − d310
m3 = −(d1 + d2 + d3).

We examine (4) in three different steps as follows.

Step 1: Equation (4) gives

(5) 9αn − d310
m3 = d110

m1 + d210
m2 − 9βn − (d1 + d2 + d3),

which we rewrite as

|9αn − d310
m3|= |d110m1 + d210

m2 − 9βn − (d1 + d2 + d3)|< 54 · 10m2 .

Thus, dividing both sides by d310
m3 , we get

(6)
∣

∣

∣

( 9

d3

)

αn10−m3 − 1
∣

∣

∣
<

54

10m3−m2

.

Let

(7) Γ1 :=
( 9

d3

)

αn10−m3 − 1.
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Suppose that Γ1 = 0. Then, we have

αn =
d310

m3

9
.

Conjugating in Q(α), we get

βn =
d310

m3

9
.

Consequently, we obtain

10m3

9
≤ d310

m3

9
= |β|n < 1,

which leads to 10m3/9 < 1 which is false. Thus, Γ1 6= 0. With the notations of

Theorem 2.1, we take

η1 =
9

d3
, η2 = α, η3 = 10, b1 = 1, b2 = n, b3 = −m3.

Since 10m3−1 < Ln < αn+1, we have that m3 ≤ n. Therefore, we can take D = n.

Observe that L := Q(η1, η2, η3) = Q(α), so dL = 2. We now need to take Aj for

j = 1, 2, 3 such that

Aj ≥ max{dLh(ηj), | log ηj |, 0.16}.
Note that

h(η1) ≤ h(9) + h(d3) ≤ h(9) + h(9) ≤ 2h(9).

This implies that

2h(η1) < 8.8.

Thus, we can take

A1 = 8.8.

Clearly,

h(η2) =
1

2
logα, h(η3) = log(10).

We have

max{2h(η2), | log η2|, 0.16} = log(α) < 0.49 := A2,(8)

max{2h(η3), | log η3|, 0.16} = 2 log(10) < 4.7 := A3.(9)

We apply Theorem 2.1 to obtain

log |Γ1| > −1.4 · 30l+3l4.5d2
L
(1 + log dL)(1 + logD)A1A2A3.

Comparing this last inequality with (6) leads to

(m3 −m2) log(10) < log(54) + 1.97 · 1013(1 + logn),

giving

(10) m3 −m2 < 8.6 · 1012(1 + logn).
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Step 2: Equation (4) becomes

(11) 9αn − d310
m3 − d210

m2 = d110
m1 − 9βn − (d1 + d2 + d3),

which we rewrite as

|9αn − 10m2(d310
m3−m2 + d2)| = |d110m1 − 9βn − (d1 + d2 + d3)|

< 45 · 10m1 .

Thus, dividing both sides by 10m2(d310
m3−m2 + d2), we get

(12)
∣

∣

∣

( 9

d310m3−m2 + d2

)

αn10−m2 − 1
∣

∣

∣
<

45

10m2−m1

.

Let

(13) Γ2 :=
( 9

d310m3−m2 + d2

)

αn10−m2 − 1.

Suppose that Γ2 = 0. Then, we have

αn =
d210

m2

9
+
d310

m3

9
.

Conjugating in Q(α), we get

βn =
d210

m2

9
+
d310

m3

9
.

Consequently, we obtain

10m3

9
≤ d210

m2

9
+
d310

m3

9
= |β|n < 1,

the same contradiction as when we assumed that Γ1 = 0. Thus, Γ2 6= 0. To apply

Theorem 2.1, we take

η1 =
9

d310m3−m2 + d2
, η2 = α, η3 = 10, b1 = 1, b2 = n, b3 = −m2.

Again we take D = n. Furthermore, we have

h(η1) = h
( 9

d310m3−m2 + d2

)

≤ h(9) + h(d310
m3−m2 + d2)

≤ h(9) + h(d3) + h(d2) + (m3 −m2)h(10) + log 2

≤ 7.3 + 2.4(m3 −m2).

That is,

2h(η1) < 14.6 + 4.8(m3 −m2).
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Thus, we take

A1 = 14.6 + 4.8(m3 −m2).

Since η2, η3 are the same as in Γ1, we use the same values for A2, A3. From

Theorem 2.1, we obtain

log |Γ2| > −1.4 · 30l+3l4.5d2
L
(1 + log dL)(1 + logD)A1A2A3.

Comparing this last inequality with (12) leads to

(m2 −m1) log(10) < log(45) + 2.3 · 1012(14.6 + 4.8(m3 −m2))(1 + logn).

Hence, using inequality (10), we obtain

(m2 −m1) log(10)− log(45) < 2.3 · 1012
(

14.6 + 4.8(8.6 · 1012(1 + logn))
)

× (1 + logn).

The above inequality gives us

(14) m2 −m1 < 4.21 · 1025(1 + logn)2.

Step 3: Equation (4) becomes

(15) 9αn − d310
m3 − d210

m2 − d110
m1 = −9βn − (d1 + d2 + d3),

which we rewrite as

∣

∣

∣
αn − 10m3

d210
m2−m3 + d110

m1−m3 + d3
9

∣

∣

∣
=

∣

∣

∣
− βn − d1 + d2 + d3

9

∣

∣

∣
< 4.

Thus, dividing both sides by αn, we get

(16)
∣

∣

∣
1− α−n10m3

d210
m2−m3 + d110

m1−m3 + d3
9

∣

∣

∣
<

1

αn−2.9
.

Put

(17) Γ3 := 1− α−n10m3
d210

m2−m3 + d110
m1−m3 + d3

9
.

The fact that Γ3 6= 0 can be justified by a similar argument as the fact that

Γ1 6= 0. In order to apply Theorem 2.1, we take

η1 =
d210

m2−m3 + d110
m1−m3 + d3

9
, η2 = α, η3 = 10,

b1 = 1, b2 = −n, b3 = m3.
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We have D = n, and A2 and A3 are as in (8) and (9). As for A1, we have

h(η1) = h
(d210

m2−m3 + d110
m1−m3 + d3

9

)

≤ h
(d210

m2−m3 + d110
m1−m2 + d3

9

)

≤ h(9) + h(d210
m2−m3 + d110

m1−m2 + d3)

≤ h(9) + h(d1) + h(d2) + h(d3) + (m3 −m2)h(10)

+ (m2 −m1)h(10) + 2 log 2

≤ 10.2 + 2.4(m3 −m2) + 2.4(m2 −m1).

That is,

2h(η1) < 20.4 + 4.8(m3 −m2) + 4.8(m2 −m1).

Thus, we can take

A1 = 20.4 + 4.8(m3 −m2) + 4.8(m2 −m1).

Theorem 2.1 tells us that

log |Γ4| > −1.4 · 30l+3l4.5d2
L
(1 + log dL)(1 + logD)A1A2A3.

Comparing this last inequality with (16) leads to

n log(α) − log(4) < 2.3 · 1012(20.4 + 4.8(m3 −m2) + 4.8(m2 −m1))(1 + logn).

Hence, using inequality (10) and (14), we obtain

n log(α)− log(α2.9) < 2.3 · 1012(20.4 + 4.8(8.6 · 1012(1 + logn))

+ 4.8(4.21 · 1025(1 + logn)2))(1 + logn).

The above inequality gives us

n < 4.8233 · 1041.
Lemma 2.1 implies

m1 ≤ m2 ≤ m3 < 1.0080 · 1041.
We summarize what we have proved so far in the following lemma.

Lemma 2.2. All solutions of equation (2) satisfy

m1 ≤ m2 ≤ m3 < 1.0080 · 1041, n < 4.8233 · 1041.

2.3 Reducing the bound. As the above bounds are high, we need to reduce

them by using a reduction method. Here, we present a variant of the reduction

method of Baker and Davenport due to B.M.M. de Weger [14].
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Let ϑ1, ϑ2, β ∈ R be given, and let x1, x2 ∈ Z be unknowns. Let

(18) Λ = β + x1ϑ1 + x2ϑ2.

Let c, δ be positive constants. Set X = max{|x1|, |x2|}. Let X0, Y be positive.

Assume that

|Λ| < c · exp(−δ · Y ),(19)

X ≤ X0.(20)

We put ϑ = −ϑ1/ϑ2. We assume that x1 and x2 are coprime. Let the continued

fraction expansion of ϑ be given by

[a0, a1, a2, . . .],

and let the kth convergent of ϑ be pk/qk for k = 0, 1, 2, . . .We may assume without

loss of generality that |ϑ1| < |ϑ2| and that x1 > 0. We have the following results.

Lemma 2.3 (see Lemma 3.2 in [14]). Let

A = max
0≤k≤Y0

ak+1.

If (19) and (20) hold for x1, x2 and β = 0, then

(21) Y <
1

δ
log

(c(A+ 2)X0

|ϑ2|
)

.

When β 6= 0 in (18), we put ψ = β/ϑ2. Then we have

Λ

ϑ2
= ψ − x1ϑ+ x2.

Let p/q be a convergent of ϑ with q > X0. For a real number x we let ‖x‖ =

min{|x− n| : n ∈ Z} be the distance from x to the nearest integer. We have the

following result.

Lemma 2.4 (see Lemma 3.3 in [14]). Suppose that

‖qψ‖ > 2X0

q
.

Then, the solutions of (19) and (20) satisfy

Y <
1

δ
log

( q2c

|ϑ2|X0

)

.
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Now, we are ready to lower the above bounds. Thus, we return to equation (2)

We rewrite it into the form

Ln =
d310

m3

9
+

(

d1
10m1 − 1

9
+ d2

10m2 − 1

9
− d3

9

)

.

Observe that the term in parentheses is always positive as

(

d1
10m1 − 1

9
+ d2

10m2 − 1

9
− d3

9

)

≥ 2
10m1 − 1

9
− 1

9
≥ 2− 1

9
≥ 7

4
> 0.

Hence, we have

αn − d310
m3

9
=

(

d1
10m1 − 1

9
+ d2

10m2 − 1

9
− d3

9

)

− βn ≥ 7

4
− 1

α1000
> 0.

Thus, the number Γ1 from (7) appearing inside the absolute value in inequality

(6) is positive. Hence, with the above notations, we have

αn − d310
m3

9
=
d310

m3

9
(eΛ1 − 1) > 0.

Let

Λ1 = n log η2 −m3 log η3 + log η1.

Therefore, we obtain

0 < Λ1 < exp (Λ1)− 1 = Γ1 <
54

10m3−m2

,

which implies that

0 < log
( 9

d3

)

+m3(− log 10) + n logα <
54

10m3−m2

< 101.74 exp(−2.30 · (m3 −m2)).

Thus

Λ1 < 101.74 exp(−2.30 · (m3 −m2)),

with Y := m3 −m2 < 1.0080 · 1041.
Therefore, to apply Lemma 2.4 we take

c = 101.74, δ = 2.3, X0 = 1.0080 · 1041, ψ =
log(9/d3)

log 10
,

ϑ = − logα

log 10
, ϑ1 = − logα, ϑ2 = log 10, β = log(9/d3).

The smallest value of q > X0 is q = q86. We find that q90 satisfies the hypothesis

of Lemma 2.4. Applying Lemma 2.4, we get m3 −m2 ≤ 46 (over all the values of

d3 6= 9).
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When d3 = 9, we get that β = 0. The largest partial quotient ak for 0 ≤ k ≤
197 is a139 = 770. Applying Lemma 2.3,m3−m2 = Y < m3 ≤ X0 := 1.0080·1041
implies that

m3 −m2 <
1

2.3
log

(101.74(770 + 2) · 1.0080 · 1041
| log 10|

)

,

We obtain m3 −m2 ≤ 45, so we get the same conclusion as before, namely that

m3 −m2 ≤ 46.

We now take 0 ≤ m3 −m2 ≤ 46. Let

Λ2 = n log η2 −m2 log η3 + log η1.

From equation (4), we have that

d310
m3 + d210

m2

9
(eΛ2 − 1) = −βn + d1

10m1 − 1

9
−
(d3 + d2

9

)

> − (−1)n

αn
+

10m1

9
− 1

3
.

Furthermore, we get

− (−1)n

αn
+

10m1

9
− 1

3
> − 1

αn
+

7

9
> − 1

α1000
+

7

9
> 0.

Thus, we have

eΛ2 − 1 > 0.

So, from (11) we see that

αn − d310
m3

9
− d210

m2

9
=

(d310
m3

9
+
d210

m2

9

)

(eΛ2 − 1) > 0,

then

0 < Λ2 < eΛ2 − 1 = Γ2 <
45

10m2−m1

,

which implies that

0 < log
( 9

d310m3−m2 + d2

)

+m2(− log 10) + n logα

<
45

10m2−m1

< 101.66 exp(−2.30 · (m2 −m1)).

Thus, we get

Λ2 < 101.66 exp(−2.30 · (m2 −m1)),

with Y := m2 −m1 < 1.0080 · 1041.
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Therefore, in order to apply Lemma 2.4 we take

c = 101.66, δ = 2.3, X0 = 1.0080 · 1041, ψ =
log(9/(d310

m3−m2 + d2))

log 10
,

ϑ = − logα

log 10
, ϑ1 = − logα, ϑ2 = log 10, β = log

( 9

d310m3−m2 + d2

)

.

We get q = q96 > X0. By applying Lemma 2.4, over all the possibilities for the

digits d2, d3 ∈ {1, . . . , 9} and m3 − m2 ∈ {0, . . . , 46} except for m3 = m2 and

d2 + d3 = 9, we get m2 −m1 ≤ 51.

In the exceptional cases m3 = m2 and d3 + d2 = 9, one actually gets that

β = 0, and the largest partial quotient ak for 0 ≤ k ≤ 197 is a139 = 770.

Applying Lemma 2.3 with m2 −m1 = Y < m2 ≤ X0 := 1.0080 · 1041,

m2 −m1 <
1

2.3
log

(101.66(770 + 2) · 1.0080 · 1041
| log 10|

)

,

we obtain m2 −m1 ≤ 45. So we get the same conclusion as before, namely that

m2 −m1 ≤ 51.

We now take 0 ≤ m3 −m1 ≤ 97 and 0 ≤ m3 −m2 ≤ 46. Let

Λ3 = m3 log η3 − n log η2 + log η1.

From equation (4), we have that

αn(1 − eΛ3) = −βn − d1 + d2 + d3
9

= −
(

βn +
d1 + d2 + d2

9

)

.

Furthermore,

βn +
d1 + d2 + d3

9
> − 1

αn
+

1

3
> − 1

α1000
+

1

3
> 0.

Thus,

eΛ3 − 1 > 0.

So,

0 < Λ3 < eΛ3 − 1 = |Γ3| <
4

αn
<

1

αn−2.9
.

which implies that

0 < log
(d210

m2−m3 + d110
m1−m3 + d3

9

)

+m3 log 10 + n(− logα)

<
4

αn
< α2.9 exp(−0.48 · n).
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We keep the value for X0 = 4.8233 · 1041, and only change ψ to

ψ′ =
log

(

(d210
m2−m3 + d110

m1−m3 + d3)/9
)

log 10
, c = α2.9, δ = 0.48, v =

logα

log 10
,

v1 = logα, v2 = log 10, β = log
(d210

m2−m3 + d110
m1−m3 + d3

9

)

.

We get q = q99 > X0 and by Lemma 2.4, we get n ≤ 263. This holds for all choices

of d1, d2, d3 ∈ {1, . . . , 9}, m3 −m2 ∈ [0, 46] and m3 −m1 ∈ [0, 97] except when

m1 = m2 = m3, m1 = m2 = m3 + 1, d1 + d2 = 10, d3 = 8 and d1 + d2 + d3 = 9.

For the exceptional casesm3 = m2, m3 = m1, m1 = m2 = m3+1, d1+d2 = 10,

d3 = 8 and d1 + d2 + d3 = 9, one actually gets that β = 0, so the largest partial

quotient ak for 0 ≤ k ≤ 201 is a138 = 770. Applying again Lemma 2.3 with

n = Y < m1 ≤ X0 := 4.8233 · 1041,

n <
1

0.48
log

(α2.9(770 + 2) · 4.8233 · 1041
| log 10|

)

,

we obtain n ≤ 214, so we get the same conclusion as before, namely that n ≤ 263.

But this contradicts the assumption that n > 1000. Hence, the theorem is proved.
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[12] Marques D., Togbé A., On repdigits as product of consecutive Fibonacci numbers, Rend.

Istit. Mat. Univ. Trieste 44 (2012), 393–397.
[13] Matveev E.M., An explicit lower bound for a homogeneous rational linear form in loga-

rithms of algebraic numbers, II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125–180
(Russian); translation in Izv. Math. 64 (2000), no. 6, 1217–1269.

[14] de Weger B.M.M., Algorithms for Diophantine Equations, CWI Tract, 65, Stichting Math-
ematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1989.

Ch.A. Adegbindin:
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