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Fixed point approximation under

Mann iteration beyond Ishikawa

Anthony Hester, Claudio H. Morales

Abstract. Consider the Mann iteration xn+1 = (1−αn)xn+αnTxn for a nonex-
pansive mapping T : K → K defined on some subset K of the normed space X.
We present an innovative proof of the Ishikawa almost fixed point principle for
nonexpansive mapping that reveals deeper aspects of the behavior of the process.
This fact allows us, among other results, to derive convergence of the process
under the assumption of existence of an accumulation point of {xn}.

Keywords: Mann iteration; fixed point; nonexpansive mapping

Classification: 47H10

1. Introduction

In 1953 W.R. Mann in [9] introduced an iteration process of the form

(1) xn+1 = (1− αn)xn + αnTxn

for scalars αn ∈ [0, 1]. Since then, this process has been extensively studied by

a number of authors. Among them, we find W.R. Mann [9], W.G. Dotson [5],

F. E. Browder and W.V. Petryshyn [3], Z. Opial [10], M. Edelstein [6], M.A.

Krasnosel’skii [8], H. Schaefer [14], C. Outlaw and C.W. Groetsch [11], and more

recently [1], [2], [12], [13]. However, one of the most significant contribution

on the topic was done by S. Ishikawa [7] in 1976 for nonexpansive mappings,

which stimulated immensely the study of this process for various other types of

operators.

The main purpose of this paper is three-fold. First, we present a quite different

proof (see Theorem 1) of Ishikawa’s work. In this case, we are able to extend the

result, including a refined and unknown behavior of the Mann iteration process.

Second, we connect the approximation of the fixed points of a nonexpansive

mapping to the behavior of all the Mann iterations (see Theorem 2). Others [2]

have derived similar results, but not to the generality presented in this paper.

Third, in the light of a failed attempt of proving convergence of the process

in [4], we succeed in proving convergence of the process (see Theorem 3).
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Throughout the paper we assume that X is a normed space, and K is a subset

of X . In addition, some of the proofs appeal to various Mann iterations that

only differ in the initial point, since the scalars {αn} will remain exactly the same

in a given proof. We also adopt for a typical Mann iteration {xn} with initial

point x0, and scalars {αn}, as in (1), the notation

(2) η(x0) = lim
n→∞

‖xn − Txn‖.

We make some standard assumptions such as the infinite sum of the αk is infinite,

as well as, the sequence {αk} is bounded away from 1. In these two cases, we

show examples (see Section 5) that reflect the necessity of these conditions to

prove that η(x0) = 0.

2. Preliminaries

Lemma 1. Let K be a subset of a normed space X and let T : K → X be

a nonexpansive mapping. If the iteration {xn} is defined by (1), then ‖xn+1 −

Txn+1‖ ≤ ‖xn − Txn‖ for each n.

Lemma 2. If α ∈ (0, 1) and {αk}
m>0
k=1 lives in (0, α], then

Pm(α1, · · · , αm) ≡
1

1− α1

1

1− α2
· · ·

1

1− αm
≤

( 1

1− α

)n 1

1− δ

where

n =
⌊σ
α

⌋
, δ = σ − nα, σ =

m∑

k=1

αk.

Proof: Define β(x) = (1 − x)−1. The inequality is obviously true for m = 1.

Supposem = 2, and let σ ∈ (0, 2α). Maximizing P2 subject to the constraints ak ∈

(0, α], a1 + a2 = σ, equates to maximizing p2(a) = β(a)β(σ− a), max(0, σ−α) ≤

a ≤ min(σ, α).

Since p′2(a) = β(a)β(σ − a)(β(a) − β(σ − a)), it follows that p′2(σ/2) = 0. We

conclude that p2 must achieve its maximum at either endpoint, so

P2(α1, α2) ≤ p2(min(σ, α)) =





1

1− σ
, σ ≤ α

1

1− α

1

1− σ + α
, σ > α





=





1

1− δ
, σ ≤ α

1

1− α

1

1− δ
, σ > α





=
( 1

1− α

)n 1

1− δ
.
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Suppose inequality holds for some m ≥ 2, then

Pm+1(α1, · · · , αm, αm+1) ≤
( 1

1− α

)nm 1

1− δm

1

1− αm+1
,

where

σm =

m∑

k=1

αk, nm =
⌊σm

α

⌋
, δm = σm − nmα.

If σm + αm+1 < α, then

nm+1 =
⌊σm + αm+1

α

⌋
=

⌊σm

α

⌋
= nm, δm+1 = δm + αm+1.

If σm + αm+1 ≥ α, then

nm+1 =
⌊σm + αm+1

α

⌋
=

⌊σm

α

⌋
+ 1 = nm + 1, δm+1 = δm + αm+1 − α.

These facts, combined with the case m = 2, allow us to obtain the following

Pm+1(α1, · · · ,αm, αm+1)

≤
( 1

1− α

)nm





1

1− δm − αm+1
, σm + αm+1 < α

1

1− α

1

1− δm − αm+1 + α
, σm + αm+1 ≥ α





=
( 1

1− α

)nm+1 1

1− δm+1
.

The principle of mathematical induction provides the coup de grâce. �

Lemma 3. If α ∈ (0, 1), η > 0, and ε ≥ 0, then

S = Pmη − (η + ε)(α0 + α1β1 + α2β1β2 + · · ·+ αmPm)

≥ (1− α)η − ε
( 1

1− α

)1+σ/α

for each sequence {αk}
m>0
k=0 in (0, α] where

σ =
m∑

k=1

αk, βk =
1

1− αk
, Pk =

k∏

j=1

βj for each k.

Proof: Note that

Ŝ = 1 + α1β1 + α2β1β2 + · · ·+ αmPm = β1 + α2β1β2 + · · ·+ αmPm

= β1β2 + · · ·+ αmPm = · · · = Pm,
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so

S = Pmη − (η + ε)(α0 − 1 + Pm) = (1− α0)(η + ε)− εPm ≥ (1 − α)η − εPm.

For a fixed σ, the product Pm achieves a maximum when we set as many αk = α

as possible (this follows from single variable optimization for m = 2, and extends

to m > 2 via induction, see Lemma 2), the cardinality of which we denote with

n =
⌊σ
α

⌋
≤

σ

α
.

So

Pm ≤
( 1

1− α

)n+1

≤
( 1

1− α

)1+σ/α

independently of m. �

3. Ishikawa

In this section, we present the inequality, see Lemma 4, crucial in proving our

two main theorems, Theorems 2 and 3. We also use this inequality to provide

a simpler proof (done in contrapositive form by Theorem 1) of Ishikawa’s famous

Lemma 2, see [7]. The following notation will be used from now on.

σ(m,n) =
n∑

k=m

αk, αk ∈ (0, a] for some a < 1, and
∞∑

k=0

αk = ∞.

Lemma 4. Let K be a subset of the normed space X , and T : K → X . Define

a Mann iteration {xn} on K, η(x0) > 0, and ‖Txn+1 − Txn‖ ≤ ‖xn+1 − xn‖ for

each n, then

‖xn − xm−1‖ ≥
(
(1− a)η(x0)− εm

( 1

1− a

)1+σ(m,n)/a)
σ(m− 1, n− 1)

for each 0 < m < n, where εn = ‖xn − Txn‖ − η(x0).

Proof: Let ϕ ∈ X∗ such that ‖ϕ‖ = 1. Define

∆k = xk − xk−1, δk = ‖∆k‖, ηk = ‖xk − Txk‖,

and set

Γk =
1

αk−1
∆k −

1− αk−2

αk−2
∆k−1

= Txk−1 − xk−1 − (1 − αk−2)(Txk−2 − xk−2) = Txk−1 − Txk−2

for each k. The sequential nonexpansive nature of T implies that

δk−1 = ‖∆k−1‖ ≥ ‖Txk−1 − Txk−2‖ = ‖Γk‖ ≥ Re〈Γk, ϕ〉,
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or

Re〈∆k−1, ϕ〉 ≥
αk−2

1− αk−2

( 1

αk−1
Re〈∆k, ϕ〉 − δk−1

)
.

To reduce the notational burden, set

γk = Re〈∆k, ϕ〉, βk =
1

1− αk
> 1,

then

γk ≥ αk−1βk−1

(γk+1

αk
− δk

)
= αk−1βk−1

(γk+1

αk
− αk−1ηk−1

)
.

Lemma 1 implies that {ηk} does not increase so

(3)

γk ≥ αk−1

(
βk

( γk+2

αk+1
− αkηk

)
− αk−1ηk−1

)

≥ αk−1

(
βk

γk+2

αk+1
− ηk−1(αk−1 + αkβk)

)

≥ αk−1

(
βkβk+1

γk+3

αk+2
− ηk−1(αk−1 + αkβk + αk+1βkβk+1)

)
· · ·

Define

Pk,q = βkβk+1 · · ·βk+q, Sk,q = αk−1 + αkβk + · · ·+ αk+qPk,q.

Then (3) becomes

(4) γk ≥ αk−1

(
Pk,q

γk+q+2

αk+q+1
− ηk−1Sk,q

)
for any q ≥ 0.

Let 0 < m < n, choose j ∈ J∆n+2, where J : X → 2X
∗

represents the normalized

duality mapping. Set ϕ = j/‖j‖, then γn+2 = δn+2. For m ≤ k ≤ n equation (4)

along with Lemma 3 imply that

(5)

γk ≥ αk−1

(
Pk,q

γn+2

αn+1
− ηkSk,q

)
= αk−1

(
Pk,qηn+1 − ηkSk,q

)

≥ αk−1

(
Pk,qη(x0)− (η(x0) + εm)Sk,q

)

≥ αk−1

(
(1− a)η(x0)− εm

( 1

1− a

)1+σ(k,n)/a)

where q = n− k. Thus,

‖xn − xm−1‖ = Re〈xn − xm−1, ϕ〉 =

n∑

k=m

Re〈∆k, ϕ〉 =

n∑

k=m

γk

≥
(
(1 − a)η(x0)− εm

( 1

1− a

)1+σ(m,n)/a) n∑

k=m

αk−1

for any 0 < m < n. �



270 A. Hester, C.H. Morales

Now we are ready to state and prove Ishikawa’s Lemma 2, see [7], in contra-

positive form.

Theorem 1. Let K be a convex subset of the normed space X and let T : K → X

be a nonexpansive mapping with the iteration {xn} defined in K. If η(x0) > 0,

then {xn} is unbounded. Moreover, if η(x0) is attained, then ‖xn‖ → ∞ as

n → ∞.

Proof: Suppose η is attained. This means there exists n0 ∈ N such that ‖xn −

Txn‖ = η for all n ≥ n0. Then εm = ‖xm − Txm‖ − η(x0) = 0 for all m > n0.

Lemma 4 implies that

‖xn − xm−1‖ ≥ (1− a)ησ(m− 1, n− 1) → ∞

as n → ∞. Suppose η is not attained. Fix r > 1 and choose ε > 0 small enough

so that

(1− a)η − ε
( 1

1− a

)1+r/a

≥
1− a

2
η.

Select m > 1 large enough such that εm < ε. Lemma 4 implies that

‖xn − xm−1‖ ≥
(
(1− a)η − εm

( 1

1− a

)1+σ(m,n)/a)
σ(m− 1, n− 1)

≥
(
(1− a)η − ε

( 1

1− a

)1+r/a)
σ(m− 1, n− 1)

≥
1− a

2
ησ(m − 1, n− 1)

for n > m where σ(m,n) ≤ r. We can certainly choose n such that σ(m,n) >

r − 1, which implies that

‖xn − xm−1‖ ≥
1− a

2
η(r − 1).

Since we place no restrictions on r > 1, we can find two elements in the se-

quence {xn} that lie arbitrarily far apart, making the sequence unbounded. �

We derive as a direct consequence of Theorem 1, the well-known result of

S. Ishikawa, see Lemma 2 of [7].

Corollary 1 (S. Ishikawa [7]). Let K be a subset of the normed space X and

T : K → X be a nonexpansive mapping. If the iteration {xn} is defined and

bounded, then ‖xn − Txn‖ → 0 as n → ∞.

4. Main results

Theorems 2 and 3 represent the main results of this paper.
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J. Borwein, S. Reich, and I. Shafrir came close to proving Theorem 2, see

Corollary 9 in their paper [2], but fell short because they utilize the Banach con-

traction theorem in [2, Lemma 6], which they require for the proof of Corollary 9

in [2]. Thus, their result requires completeness of the underlying space whereas

ours does not.

C. E. Chidume in [4, Theorem 4] claims to have proved Theorem 3, but a close

inspection of his proof reveals several fundamental and uncorrectable errors. J. Bo-

rwein, S. Reich, and I. Shafrir have a version, see [2, Corollary 10], of Theorem 3,

but, again, they require completeness of the space.

To obtain Theorems 2 and 3, we start with three lemmas, the first of which

appears as Theorem 3 in [2] in Borwein, Reich, and Shafrir’s paper.

Lemma 5 ([2, Theorem 3 ]). Let K be a convex subset of the normed space X

and let T : K → K be a nonexpansive mapping. For any {xn} on K,

lim
n→∞

‖xn − Txn‖ = inf
x∈K

‖x− Tx‖.

As we observe in Theorem 1 and Corollary 1, boundedness of the iteration

appears to be important. The next result establishes an equivalent condition for

a bounded iteration.

Lemma 6 (Bounded). Let K be a convex subset of X , and T : K → K be

a nonexpansive mapping. If there exists a bounded sequence {zi} in K such that

‖zi − Tzi‖ → 0, then {xn} is bounded.

Proof: Let ̺ = supi ‖zi − x0‖, then ̺ < ∞. For a particular i,

‖xn+1 − zi‖ ≤ ‖xn − zi‖+ αn‖Tzi − zi‖,

hence,

‖xn+1 − zi‖ ≤ ‖x0 − zi‖+ ‖Tzi − zi‖
n∑

k=0

αk ≤ ̺+ ‖Tzi − zi‖
n∑

k=0

αk.

Consequently,

‖xn+1 − x0‖ ≤ ‖xn+1 − zi‖+ ‖zi − x0‖ ≤ 2̺+ ‖Tzi − zi‖
n∑

k=0

αk → 2̺

as i → ∞. Therefore, {xn} lives in B(x0; 2̺). �

Lemma 7 (Divergence). Let K be a convex subset of the normed space X ,

T : K → K be a nonexpansive mapping, {zi} be a bounded sequence in K, and

η(zi) come from the Mann iteration created using zi as a starting point. If

‖zi − Tzi‖ − η(zi) → 0, η = lim inf
i→∞

η(zi) > 0

as i → ∞, then ‖xn‖ → ∞ as n → ∞ for any initial point x0 ∈ K.
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Proof: Set η = 1
2 lim infi→∞ η(zi), then η > 0 and without loss of generality we

assume that each η(zi) > 0. Suppose {xn} has a bounded subsequence {xnk
},

then there exists ̺ > 0 such that zi, xnk
∈ B(x0; ̺) for each i, k. Choose k such

that

σ(0, nk − 1) ≥
3̺

m1
, m1 =

1− a

2
η.

Set r = σ(1, nk) + 1, and choose ε > 0 small enough so that

(1− a)η − ε
( 1

1− a

)1+r/a

> m1.

Choose i large enough such that ‖zi − Tzi‖ − η(zi) ≤ ε and set ζ0 = zi, then

εn = ‖ζn − Tζn‖ − η(zi) ≤ ‖zi − Tzi‖ − η(zi) ≤ ε

for each n. Lemma 4 implies that

‖ζn − ζ0‖ ≥
(
(1− a)η(zi)− ε1

( 1

1− a

)1+σ(1,n)/a)
σ(0, n− 1)

≥
(
(1− a)η − ε

( 1

1− a

)1+r/a)
σ(0, n− 1)m1σ(0, n− 1)

for n where σ(1, n) ≤ r. Since σ(1, nk) < r,

‖ζnk
− ζ0‖ > m1σ(0, nk − 1) ≥ 3̺,

hence,

‖ζnk
− x0‖ ≥ ‖ζnk

− ζ0‖ − ‖ζ0 − x0‖ > 3̺− ̺ = 2̺.

But

‖ζnk
− x0‖ ≤ ‖ζnk

− xnk
‖+ ‖xnk

− x0‖ < ‖ζ0 − x0‖+ ̺ ≤ 2̺.

Therefore, we have reached a contradiction. �

Theorem 2 (AFP). Let K be a convex subset of the normed space X and let

T : K → K be a nonexpansive mapping.

(1) If T does not have an almost fixed point, then ‖xn‖ → ∞.

(2) If {xn} has a bounded subsequence, then T has an almost fixed point

and the entire sequence is bounded, hence, ‖Txn − xn‖ → 0.

Proof: Set

η = inf
x∈K

‖Tx− x‖,

then Lemma 5 ([2, Theorem 3]) implies that ‖Txn − xn‖ → η. Let {zi = xni
}

represent a subsequence of {xn}, then

‖Tzi − zi‖ → η.
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Let η(zi) come from the Mann iteration created using zi as a starting point, then

(6) ‖Tzi − zi‖ − η(zi) ≤ ‖Tzi − zi‖ − η → 0.

Suppose T does not have an almost fixed point, η > 0. If {xn} has a bounded

subsequence, then equation (6) implies we are under the purview of Lemma 7,

which implies that ‖xn‖ → ∞.

Assume now that {xn} does have a bounded subsequence, then Part 1 implies

that η = 0. Since {zi} is a subsequence of {xn}, then ‖zi−Tzi‖ → η(x0) and due

to Lemma 5, η = η(x0) = 0. Hence, by Lemma 6, the sequence {xn} is bounded

and ‖Txn − xn‖ → 0 as n → ∞. �

We derive the following corollary, which appears to be an extension of a well-

known lemma of S. Ishikawa.

Corollary 2. Let K be a subset of the normed space X and let T : K → X be

a nonexpansive mapping. Let {xn} be a Mann iteration defined on K containing

a bounded subsequence, then ‖xn − Txn‖ → 0 as n → ∞.

Theorem 3 (Accumulation). Let K be a convex subset of the normed space X

and let T : K → K be a nonexpansive mapping. If p is an accumulation point

of {xn}, then p is a fixed point of T and xn → p.

Proof: Theorem 2 implies that ‖Txn − xn‖ → 0. Since {xn} accumulates at p,

we can find a subsequence {xnk
} of {xn} such that xnk

→ p as k → ∞. So

‖Tp− p‖ ≤ ‖p− xnk
‖+ ‖Txnk

− xnk
‖+ ‖xnk

− p‖ → 0

as k → ∞, hence, p is a fixed point of T . Since

‖xn+1 − p‖ ≤ (1− αn)‖xn − p‖+ αn‖Txn − Tp‖ ≤ ‖xn − p‖,

xn → p. �

5. Remarks

The following examples show the necessity of the two most standard assump-

tions on the {αn} concerning the Mann iteration process.

Example 1. Necessity of bounding {αn} away from 1 in Theorem 1. Let X = l∞

and define T : X → X as the right shift operator, then T is nonexpansive. Set

x1 = (1, 0, 0, · · · ), αn = e−1/n2

, then

‖xn+1 − xn‖ ≥

n∏

k=1

e−1/n2

≡ pn.
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But

ln pn > −
π
2

6
for each n, and hence ‖xn − Txn‖ 6→ 0.

Example 2. Necessity of requiring that

∞∑

n=1

αn = ∞

in Theorem 1. Let αn = 1/n2, X = R, and define T : X → X by Tx = x+ a for

some a 6= 0, then T is nonexpansive and

M =

∞∑

n=0

αn < ∞.

Thus,

|xk+1 − x0| ≤ |Tx0 − x0|

∞∑

n=0

αn = M |x0 − Tx0|

for each k. Therefore, {xn} is a bounded sequence, but

|xk − Txk| = |a| > 0,

|xk − Txk| does not converge to 0.

The fundamental result of Ishikawa ensures the almost fixed point property of T

under the assumption that the Mann iteration process is bounded. However, the

convergence of this process to a fixed point of T is not guaranteed.

Example 3. The following example shows that assuming T has a fixed point is

not enough for the Mann iteration to converge to a fixed point. Let X = l∞ and

define T : X → X as the right shift operator. Then T is nonexpansive, and 0 is

the unique fixed point of T . Set

x1 = (1, 0, 0, · · · ), αn =
1

n
,

then {xn} is bounded since T has a fixed point. However, the iteration orbits

around 0, but never gets closer than about 0.15 to 0.
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