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Abstract. Consider the first-order linear delay (advanced) differential equation
'(t) +p()z(r(1) =0 (2'(t) — g(t)z(a(t) = 0), t>to,

where p (¢q) is a continuous function of nonnegative real numbers and the argument 7(t)
(o(t)) is not necessarily monotone. Based on an iterative technique, a new oscillation
criterion is established when the well-known conditions

t o(t)
lim sup p(s)ds > 1 (lim sup/ q(s)ds > 1)
t

t—o0 7(t) t—o0

and
t

1 o(t) 1
lim inf p(s)ds > o (lim inf q(s)ds > E)

t—o0 7(t) t—oo Jy

are not satisfied. An example, numerically solved in MATLAB, is also given to illustrate
the applicability and strength of the obtained condition over known ones.

Keywords: differential equation; non-monotone argument; oscillatory solution; nonoscil-
latory solution; Grénwall inequality

MSC 2020: 34K06, 34K11

1. INTRODUCTION
Consider the first-order delay differential equation (DDE)
(E) 2(t) + p(t)z(r(t) =0, > to,
and the (dual) advanced differential equation (ADE)
(E') 2'(t) = qt)z(o(t)) =0, t=>to,
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where p(t) > 0, ¢(t) > 0, and 7, o are Lebesgue measurable functions satisfying

(1.1) T(t) <t, t>=ty and tlgglo T(t) = 00
and

(1.19) o(t) >t, t=to,
respectively.

Definition 1. A solution of (E) is a function absolutely continuous on [tg, 00)
and satisfying (E) for all ¢ > ¢y. By a solution of (E’) we mean a function absolutely
continuous on [tg, 00) and satisfying (E’) for all ¢ > t,.

Definition 2. A solution of (E) or (E’) is said to be oscillatory if it has arbitrarily
large zeros. Otherwise, it is called nonoscillatory. An equation is oscillatory if all its
solutions oscillate.

The problem of establishing sufficient conditions for the oscillation of all solutions
of equations (E) and (E’) has been the subject of many investigations. The reader
is referred to [1]-[8], [10], [11], [13]-[17], [19]-[23] and the references cited therein.
Most of these papers concern a special case where the arguments are nondecreasing.
Some of these papers study the general case where the arguments are not necessarily
monotone. See, for example, [2]—[8], [14], and the references cited therein. For the
general theory of differential equations, the reader is referred to the monographs [9],
[12], [18].

1.1. DDEs. In 1972, Ladas et al. (see [16]), and in 1982, Koplatadze and Chan-
turija (see [13]) proved that if

(1.2) lim sup /t p(s)ds > 1
t—oo Jr(t)
or
! 1
(1.3) o= litrgiogf T(t)p(s) ds > o

respectively, then all solutions of (E) are oscillatory.
Assume that the argument 7(¢) is not necessarily monotone. Set

(1.4) h(t) :=sup7(s), t=to.
s<t

Clearly, the function h(t) is nondecreasing and 7(t) < h(t) < t for all ¢ > to.
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In 2011, Braverman and Karpuz (see [1]) proved that if

(1.5) lim sup /h " p(s) exp ( /T " du) ds > 1,

t—o0 (t) (s)

then all solutions of (E) are oscillatory.

Several improvements were made to the above condition, see [2]-[6] to arrive at

the recent form (see [5])

t h(s) u
(1.6) lim inf/ p(s) exp </ p(u) exp (/ di (&) d{) du> ds > 1,
=00 Jh(t) 7(s) 7(u) €

where

)=o) (1+ | ;)p@ o [ ;)p<u> o [ ?u) da(6)de ) au) s )

with

do(t) = p(t) (1 + /T:t)p(s) exp (/T:S)p(W) exp (/\0 /T:;)p(w dU> dW) dS)

and )¢ is the smaller root of the transcendental equation A = e®*.

1.2. ADEs. By Theorem 2.4.3 of [18], if

o(t)
(1.7) limsup/ q(s)ds > 1,
¢

t—o0

then all solutions of (E’) are oscillatory.
In 1983, Fukagai and Kusano (see [11]) proved that if

a(t) 1
(1.8) 8= 1iminf/ q(s)ds > >
t

t—o0

then all solutions of (E’) are oscillatory.
Assume that the argument o(t) is not necessarily monotone. Set

(1.9) o(t) = ir;fta(s), t > to.

Clearly, the function o(t) is nondecreasing and o(t) > o(t) > t for all t > to.
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In 2015, Chatzarakis and Ocalan (see [7]) proved that if

o(t) a(s)
(1.10) 1imsup/ q(s) exp (/ q(u) du) ds > 1,
t e

t—o00 (t)

then all solutions of (E') oscillate.
Several improvements were made to the above condition, see [2]-[7] to arrive at
the recent form (see [5])

o(t) o(s) o(u) 1
(1.11) 1iginf/ q(s) exp (/ q(u) exp (/ vi(€) d§> du) ds > —,
o Jt o(s) u €

where

el =ao(1+ [ " (s exp (/ " gty exp (/ " @ dc) au) as

with

volt) = q(t) <1 + /t " q(s) exp < /t " g(w) exp (Ao /w " q(u) du> dw> ds>.

The motivation for considering equations in the form of (E) or (E’), with non-
monotone arguments, is justified not only by its pure mathematical interestingness,
but also because such equations describe in a more realistic way a wide class of
natural phenomena of natural disturbances (e.g. noise in communication systems)
affecting parameters of the equation cause non-monotone deviations in the argument
of the solutions. Thus, an interesting question arising is that of obtaining oscillation
criteria in the case where the argument 7(¢) or o(t) is not necessarily monotone.
In the present paper, we achieve this goal by establishing criteria which, up to our
knowledge, essentially improve all other known results in the literature.

2. MAIN RESULTS

2.1. DDEs. The proof of our main result is essentially based on the following
lemmas.

Lemma 1 (][9], Lemma 2.1.1). Assume that h(t) is defined by (1.4). Then

t t
o :=lim inf/ p(s)ds = lim inf/ p(s)ds.
T h

t—o0 (t) t—o0 (t)
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Lemma 2 ([23], [9] (Lemma 2.1.2)). Assume that h(t) is defined by (1.4), a €
(0,1/e] and z(t) is an eventually positive solution of (E). Then

(2.1) htrglorolf o0

2 >\07
al

where \g is the smaller root of the transcendental equation A\ = e**.

Theorem 1. Assume that h(t) is defined by (1.4) and for some [ € N

o t h(s) u 1
(2.2) htrgggf /h(t)p(s) exp (/T(S) p(u) exp (/T(u) bi(€) df) du) ds > >

where

(o) =) (1+ [ ;)p<s> o [ ;)p(u) o [ ?u) b de ) au) as

() =01+ [ :t) e [ () s e [ )
X exp (/\0 / :;) () du> dw) dy) ds)

and Ao is the smaller root of the transcendental equation \ = e**. Then all solutions

with

of (E) are oscillatory.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory
solution z(t) of (E). Since —x(¢) is also a solution of (E), we can confine our discussion
only to the case where the solution x(¢) is eventually positive. Then there exists
t1 > to such that z(¢) and = (7(¢)) > 0 for all ¢ > ¢;. Thus, from (E) we have
2'(t) = —pt)z(r(¢)) < 0 for all ¢ > ¢, which means that z(¢) is an eventually
nonincreasing function of positive numbers.

Now we divide (E) by z(¢) > 0 and integrate on [7(t), ], so

t ' (u) _ t ux(T(u)) "
/T(t) z(u) = /T(t)p( ) z(u) 4

(2.3) 2(1 (1)) = 2(¢) exp ( /T t p(u)xg((u“))) du).
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Combining (E) and (2.3), we have

(2.4) z'(t) + p(t)z(t) exp (/(t) p(u)xg((uu))) du) =0.

We divide (2.4) by z(t) > 0 and integrate on [7(t), ], so

L5t o= [ permal [ o5 oe) o

(2.5) 2(7(t)) = z(t) exp < /T Zt) p(w) exp ( / :;) p(u) xg(i;‘)” du> dw) .

Combining (E) and (2.5), we have

w

(2.6)  2(8) + p(t)a(t) exp ( / Zw p(w) exp ( / N p() 2 du) dw) ~0.

a(u)

We divide (2.6) by z(t) > 0 and integrate on [7(s), ], so

/T :S) j((j)) dy = — /T ;)p(y) exp ( /T jy)p(w) exp ( /T :@MM% dU> dw) dy

2.7)

stoto) =st0yesn [ pwese( [ porese( [ s DD ar) ) ay).

Integrating (E) from 7(¢) to ¢, using (2.7), multiplying by p(¢) and taking into account
the fact that 2/(t) = —p(t)x(7(t)), we obtain

Y

0=+/(0)+ p0)a(t) + p01e() [ ;) pistesn( | ;) ses( [ e

X exp ( /T :;) p(u)x(;((;))) du> dw> dy> ds.

Since 7(u) < h(u), clearly

t

0 &0+ p0)s() + p0(0) [ o) e (/ () swes( [ fy) p(w)

X exp ( /T :}) p(u)“’;h(gz‘)» du) dw) dy) ds.
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Taking into account the fact that Lemmas 1 and 2 are satisfied, the last inequality
becomes

0> o/(t) + p(t) (1 + [ ;)p<s) exp < / () p(y) exp ( / fy) pw)

<o -2) | :’w) pla)du ) ) dy ) s ) ()

(2.8) 2’ (t) + bo(t,e)x(t) <0

bntsc) =6 (1+ [ ;) e [ ;) s e [ )
« exp(()\o g / Z,) p() du> dw> dy) ds).

Applying the Gronwall inequality in (2.8), we obtain

u

(2.9) x(r(u)) = z(u) exp (/T bo(€,€) df).

()

Now we divide (E) by z(t) > 0, integrate on [(s), ¢] and use (2.9), so

[ e [ oo [ ([ e

(2.10) 2(7(s)) > z(t) exp ( / ;) p(u) exp < / ?u) bo(€, €) dg) du) .

or

Integrating (E) from 7(¢) to t and using (2.10), we obtain

t t u
x(t) — z(7(t)) + x(t)/ p(s) exp (/ p(u) exp (/ bo(&,€) df) du) ds < 0.
7(t) 7(s) 7(u)

Multiplying the last inequality by p(t), we have

p(t)x(t) — p(t)z(7(t)) +p(t)x(t)/(t)p(8) exp (/( )p(U)

X exp(/? )bo(f,s) d§> du) ds <0,
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which, in view of (E), becomes

0+ p(0a(0) +plt)alt) | ;)p@ exp ( / () p() exp( / () bo(€,2) dg) du) ds < 0.

Hence, for sufficiently large ¢

s+ o1+ [ ;)p<s) o | :s)pw) (| ?u) in(6.2)de ) du ) s ) < 0

2/ (t) + bi(t,e)x(t) <0,

where

bi(t,e) = p(t) (1 + /T Zt) p(s) exp ( /T zs) p(u) exp ( /T 7;) bol€, ) df) du) ds).

Following the above procedure, we can inductively construct the inequalities
' (t) + byt e)z(t) <0, l€EN,

where

bit.e) =) (1+ [ ;)p<s) oo [ ;)p(u) o [ JURCE ac) au) as

and

(2.11) x(1(s)) = z(h(t)) exp (/T:)t)p(u) exp </T7:u) bi(,e) d§> du).

Now, dividing (E) by z(t) and integrating from h(t) to t we have

wh(t) [ alr(s)
() /h@p“ o(s) O

from which, in view of 7(s) < h(s) and by (2.11), we obtain

W [ s [ 1))

Taking into account that x is nonincreasing and h(s) < s, the last inequality leads to

(212)  In x(xhé’;)) > /h t(t) p(s) exp ( / ?()) p(u) exp ( / ?u) bi(€, ) df) du> ds.

442

In




From (2.2), it follows that there exists a constant ¢ > 0 such that for a sufficiently
large t it holds that

t h(s) u 1
/h(t)p(s) exp (/T(S) p(u) exp (/T(u) bi(€) df) du) ds >c¢> o

Choose ¢ such that ¢ > ¢’ > 1/e. For every € > 0 such that ¢ — e > ¢/ we have

t h(s) u 1
. b dé ) du |ds > c— > 2
(2.13) /h(t)p(s) exp </T(S) p(u) exp (/T(u) (&, ¢€) {) u> s=zc—e>c > S

Combining inequalities (2.12) and (2.13), we obtain

z(h(t) _

In 20 >c

. w(h®) _ oo
() Ze® Z2ec >1,

which implies

x(h(t)) = (ec)z(t).

Repeating the above procedure, it follows by induction that for any positive integer &,

(ec)*  for sufficiently large t.

Since ec’ > 1, there is k € N satisfying k£ > 2(In2 —In¢’)/(1 + In¢’) such that for ¢
sufficiently large

(2.14) 200) 3 (o)t > (3)2.

Taking the integral on [h(t), t], which is not less than ¢/, we split the interval into two
parts where integrals are not less than 3¢’. Let ¢, € (h(t),t) be the splitting point:

tm h(s) u J
(2.15) /h(t) p(s) exp (/T(S) p(u) exp </T(u) bi(&,¢€) df) du) ds > 2

t h(s) u /
/tm p(s) exp (/T(S) p(u) exp (/T(u) bi(€,€) d§> du) ds > —.

Integrating (E) from h(t) to t,,, using (2.11) and the fact that z(¢,,) > 0, we obtain

b(t)) > a(h(tn) [ " p(s) exp ( / " wyexp ( / " hes) dg) du) s,

h(t) (s) (u)

| Q
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which, in view of the first inequality in (2.15), implies
(2.16) x(h(t)) > =z (h(tm)).

Similarly, integrating (E) from ¢,, to t, using (2.11) and the fact that z(¢) > 0, we

have
olt) > a(h(t) [ " pls)exp < / :;)pw) exp ( / () h(€,) dg) du> s,

m

which, in view of the second inequality in (2.15), implies
C/

(2.17) 2(tm) > S(h(t)).

Combining the inequalities (2.16) and (2.17), we obtain

2 2\2
2(h(tn)) < Sa(b(t) < (5) oltn).
which contradicts (2.14).
The proof of the theorem is complete. O

2.2. ADEs. The corresponding theorem is stated below while its proof is omitted,
as it is quite similar to this for Theorem 1.

Theorem 2. Assume that o(t) is defined by (1.9) and for some | € N

o(t) o(s) o(u)
(2.18) litm inf ) q(s) exp (/g q(u) exp </u g1(&) d{) du> ds > %,

— 00 (8)

where

qi(t) = q(t) (1 + /ta(t) q(s) exp (/tU(S) q(u) exp (/:(U) gi-1(§) dé) du) ds>

with
go(t) = q(t) (1 + /tg(t) q(s) exp (/:(S) q(y) exp (/:(y) q(w)

X exp ()\0 /w " du) dw) dy) ds)

and Ao is the smaller root of the transcendental equation A = e®*. Then all solutions
of (E) are oscillatory.
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Example 1. Consider the advanced differential equation

(2.19) 2 (t) — %x(a(t)) =0, t=0,

with (see Figure 1(a))

t+1 if t € [3.5k, 3.5k + 1],
3t—Tk—1 ifte[3.5k+1,3.5k+ 1.5,
o(0) = —t+Tk+5 ifte[3.5k+1.5,3.5k+ 2],
t+1 if t € [3.5k + 2,3.5k + 2.5),
3t—Tk—4 ifte[3.5k+2.5,3.5k+3],
[ ]

—t+T7k+8 ifte[3.5k+3,3.5k+3.5],

where k € Ny and Ny is the set of nonnegative integers.

A o(t) A o(t)
12 12 y
11 11 JTy=t
10 10 /
7/
9 9 Y
8 8 P
7 7 ’
7/
6 6 s
5 5 7
4 4 e
3 3 s
2 2 L 717/6
1 1y, l .
1234567891011 1T234567891011
4/3
(a) (b)

Figure 1. The graphs of o(t) and o(t).

By (1.9), we see (Figure 1 (b)) that

t+1 if ¢ € [3.5k, 3.5k + 1],
3t—Tk—1 ifte[3.5k+1,35k+4/3],
35k+3  ifte[3.5k+4/3,3.5k+2],
t+1 if t € [3.5k +2,3.5k + 2.5,
3t—Tk—4 ifte[3.5k+2.5,3.5k+17/6],
35k+4.5 ift € [3.5k+17/6,3.5k + 3.5).
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It is easy to see that

o(t) 8.5k42 g7a
8 = lim inf/ q(s)ds = lim inf/ ———ds =0.2984
t—oo [, k— o0 3.5k+1 1250

and therefore the smaller root of €%2984* = ) is \g = 1.62308.
Observe that the function F;: Ry — Ry defined as

E@%=[dﬂﬂ@@m<A:ﬂﬂW€m(Ldmm@MM>mods

attains its minimum at ¢t = 3.5k + 1, k € Ny, for every [ € N. Specifically, by using
an algorithm on MATLAB software, we obtain

3.5k+2 a(s) o (u)
Fi(t=35k+1)= / q(s) exp (/ q(u) exp(/ g1(8) df) du) ds ~ 0.3685
3.5k+1 o(s) u

and therefore condition (2.18) of Theorem 2 is satisfied for [ = 1. Thus, all solutions
of (2.19) are oscillatory.
Observe, however, that

o(t) 8.5k+3  g73
lim sup/ p(s)ds = lim sup/ ds ~0.4973 < 1,
t—oo Jt k—oo J3.5k+4/3 1250

1
B=0.2984 < -,
€

o(t) o(s)
lim sup/ q(s) exp (/ q(u) du) ds
t—o0 t o(t)
3.5k+3 o(s)
= lim sup/ q(s) exp (/ q(u) du) ds
k—oo J3.5k+4/3 3.5k+3
3.5k+1.5 3s—Th—1
= limsup (/ q(s) exp (/ q(u) du) ds
k—oo \J3.5k+4/3 3.5k+3
3.5k+2 —s+Th+5
—l—/ q(s) exp (/ q(u) du) ds
3.5k+1.5 3.5k+3

3.5k+2.5 s+1
—|—/ q(s) exp (/ q(u) du> ds
3.5k+2 3.5k+3

3.5k+3 35—Th—4
—I—/ q(s) exp (/ q(u) du) ds) ~0.5939 < 1
3 3

.5k+2.5 .5k+3

and

o(t) o(s) o(u) 1
lim inf/ q(s) exp (/ q(u) eXp(/ gol(f)d§> du) ds ~0.3603 < —.
t—o00 t Q(S) w (&

That is, none of the conditions (1.7), (1.8), (1.10) and (1.11) (for [ = 1) is satisfied.
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Comments. It is worth noting that the improvement of condition (2.18) to the
corresponding condition (1.8) is significant, approximately 23.5%, if we compare the
values on the left-side of these conditions. Also, observe that condition (1.11) does
not lead to oscillation for the first iteration. On the contrary, condition (2.18) is
satisfied from the first iteration. This means that our condition is better and much
faster than (1.11).
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