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Abstract. The present paper is devoted to some applications of the notion of L-Dunford-
Pettis sets to several classes of operators on Banach lattices. More precisely, we estab-
lish some characterizations of weak Dunford-Pettis, Dunford-Pettis completely continuous,
and weak almost Dunford-Pettis operators. Next, we study the relationships between L-
Dunford-Pettis, and Dunford-Pettis (relatively compact) sets in topological dual Banach
spaces.
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1. Introduction and notation

Recall that a subset A of a Banach space X is called a Dunford-Pettis set (DP set

for short) whenever every weakly null sequence (fn) in X ′ converges uniformly to

zero on A, that is, lim
n→∞

sup
x∈A

|fn(x)| = 0, see [1].

A norm bounded subset A of a topological dual Banach space X ′ is called

⊲ an L-set, if every weakly null sequence (xn) in X converges uniformly to zero on A,

that is, lim
n→∞

sup
f∈A

|f(xn)| = 0;

⊲ an L-Dunford-Pettis set, if every weakly null sequence (xn) which is a DP set in X

converges uniformly to zero on A, that is, lim
n→∞

sup
f∈A

|f(xn)| = 0, see [9].

In X ′ it is clear that:

DP set ⇒ L-set ⇒ L-DP set.
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Recently, the authors of [2] introduced a weak version of L-sets, the so called almost

L-sets, that is, such that every disjoint weakly null sequence (xn) in a Banach lat-

tice E converges uniformly to zero on A, that is, lim
n→∞

sup
f∈A

|f(xn)| = 0. Clearly, each

L-set in a dual Banach lattice is an almost L-set.

Let us recall from [5] that a norm bounded subset A of a Banach lattice E is

said to be almost Dunford-Pettis if every disjoint weakly null sequence (fn) of E
′

converges uniformly on A, that is, lim
n→∞

sup
x∈A

|fn(x)| = 0.

An operator T from a Banach space X into another Banach space Y is called

⊲ Dunford-Pettis if T carries each relatively weakly compact set in X to relatively

compact set in Y , equivalently, whenever ‖T (xn)‖ → 0 for every weakly null

sequence (xn) in X , see [1];

⊲ weak Dunford-Pettis if T carries each relatively weakly compact set in X to

a Dunford-Pettis set in Y , equivalently, whenever fn(T (xn)) → 0, as n → ∞

for every weakly null sequence (xn) in X and every weakly null sequence (fn)

in Y ′, see [1];

⊲ Dunford-Pettis completely continuous (DPcc for short) if T carries each Dunford-

Pettis set in X to relatively compact set in Y , equivalently, whenever for each

weakly null sequence (xn) which is a Dunford-Pettis set inX , we have ‖T (xn)‖ → 0

as n → ∞, see [10].

An operator T from a Banach lattice E into a Banach space Y is said to be almost

Dunford-Pettis if ‖T (xn)‖ → 0 in Y for every weakly null sequence (xn) consisting of

pairwise disjoint elements in E, see [11]. Recall from [4] that an operator T : X → F

from a Banach space X into a Banach lattice F is called weak almost Dunford-Pettis

if T carries each relatively weakly compact set in X to an almost Dunford-Pettis

set in F , equivalently, whenever fn(T (xn)) → 0 for every weakly null sequence (xn)

in X and every disjoint weakly null sequence (fn) in F ′. A Banach space X has

⊲ the Dunford-Pettis property (DP property for short), if xn
w
→ 0 in X and fn

w
→ 0

in X ′ imply fn(xn) → 0, see [1];

⊲ the relatively compact Dunford-Pettis property (DPrc property for short) if every

weakly null sequence which is a Dunford-Pettis set in X is norm null, see [10];

⊲ the Schur property, if every weakly null sequence in X is norm null.

Let us recall from [5] that a Banach lattice E has the weak Dunford-Pettis prop-

erty (wDP property for short), if every relatively weakly compact set in E is al-

most Dunford-Pettis, equivalently, whenever fn(xn) → 0 for every weakly null se-

quence (xn) in E and for every disjoint weakly null sequence (fn) in E′. Note that

a Banach lattice E has the positive Schur property if each weakly null sequence with

positive terms is norm null. It is pointed out that E has the positive Schur property

if and only if each weakly null disjoint sequence in E converges to zero in norm.
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Note that there is an L-Dunford-Pettis set which fails to be an almost L-set (L-set).

In fact, the closed unit ball BL2[0,1] is an L-Dunford-Pettis set in L2[0, 1] but fails to

be an L-set, as L2[0, 1] has the DPrc property without the positive Schur property

(respectively, Schur property) see Corollary 2.7 and [2], Corollary 3.9.

In this paper, the concept of an L-Dunford-Pettis set in a topological dual Banach

space is used to characterize several classes of operators (weak Dunford-Pettis, weak

almost Dunford-Pettis and Dunford-Pettis completely continuous) acting between

Banach lattices (or mapping a Banach space into a Banach lattice) (see Theorem 2.1,

Theorem 2.6 and Theorem 2.11). As consequences, we investigate new characteri-

zations of various properties (Dunford-Pettis, weak Dunford-Pettis and relatively

compact Dunford-Pettis) in Banach spaces or Banach lattices (see Corollary 2.2,

Corollary 2.7 and Corollary 2.12). Note that each Dunford-Pettis (relatively com-

pact) set in a dual Banach space is L-Dunford-Pettis, but the converse is not true in

general. In fact, Bℓ∞ is an L-Dunford-Pettis set because ℓ
1 has the DPrc property

(see Corollary 2.7), but it is not Dunford-Pettis (respectively, relatively compact). In

Theorem 2.8, we give an operator characterization of the class of L-Dunford-Pettis

sets to coincide with Dunford-Pettis (respectively, relatively compact) in a topologi-

cal dual Banach space.

To state our results, we need to fix some notation and recall some definitions.

A Banach lattice is a Banach space (E, ‖·‖) such that E is a vector lattice and its

norm satisfies the following property: for each x, y ∈ E such that |x| 6 |y|, we have

‖x‖ 6 ‖y‖. If E is a Banach lattice, its topological dual E′, endowed with the

dual norm, is also a Banach lattice. We will use the term an operator T : X → Y

between two Banach spaces to mean a bounded linear mapping, its dual operator T ′

is defined from Y ′ into X ′ by T ′(f)(x) = f(T (x)) for each f ∈ Y ′ and for each

x ∈ X . An operator T between two Banach lattices E and F is positive if T (x) > 0

in F whenever x > 0 in E. A sequence (xn) of a Banach lattice E is disjoint if

|xn| ∧ |xm| = 0 for n 6= m. We refer the reader to [1] for unexplained terminology of

the Banach lattice theory and positive operators.

2. Main results

We start by the following characterizations of weak Dunford-Pettis operator.

Theorem 2.1. Let T : X → Y be an operator between two Banach spaces. The

following statements are equivalent:

(1) T is a weak Dunford-Pettis operator;

(2) T ′ carries L-Dunford-Pettis sets in Y ′ to L-sets in X ′;
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(3) for an arbitrary Banach space Z and for every DPcc operator S : Y → Z, the

product ST is Dunford-Pettis;

(4) for an arbitrary Banach space Z and for every weakly compact operator

S : Y → Z, the product ST is Dunford-Pettis;

(5) for an arbitrary Banach space Z and for every weakly compact operator

S : Z → X, the adjoint operator (TS)′ carries L-Dunford-Pettis sets in Y ′ to

relatively compact sets in Z ′.

P r o o f. (1) ⇒ (2) Let A be an L-Dunford-Pettis set in Y ′ and let (xn) be

a weakly null sequence in X , then by our hypothesis on T we have (T (xn)) is a weakly

null and Dunford-Pettis sequence in Y . Since

lim
n→∞

sup
f∈T ′(A)

|f(xn)| = lim
n→∞

sup
g∈A

|g(T (xn))| = 0,

we see that T ′(A) is an L-set in X ′.

(2) ⇒ (3) Let Z be a Banach space and let S : Y → Z be a DPcc opera-

tor. Then S′(BZ′) is an L-Dunford-Pettis set, and by our hypothesis we see that

T ′(S′(BZ′)) is an L-set. Hence ST is a Dunford-Pettis operator.

(3) ⇒ (4) Follows from [10], Corollary 1.1.

(4) ⇒ (1) Let (xn) be a weakly null sequence in X , and let (fn) be a weakly null

sequence in Y ′.

Consider the operator S : Y → c0 defined by

S(x) = (fn(x))
∞

n=1.

Theorem 5.26 of [1] proves that S is weakly compact operator, and by our hypothe-

sis ST is Dunford-Pettis. Since

|fn(T (xn))| 6 ‖S(T (xn))‖∞,

we deduce that fn(T (xn)) → 0 as n → ∞, and we are done.

(2) ⇒ (5) Let S : Z → X be a weakly compact operator and A an L-Dunford-

Pettis set in Y ′, then by our hypothesis T ′(A) is an L-set in X ′, and by [7], Theo-

rem 4.4 we have (TS)′(A) is a relatively compact set in Z ′.

(5) ⇒ (1) Let (xn) be a weakly null sequence in X , and let (fn) be a weakly null

sequence in Y ′.

Consider the operator S : ℓ1 → X defined by

S((λn)n) =

∞
∑

n=1

λnxn.
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Note that S is a weakly compact operator (see [1], Theorem 5.26) and its adjoint

S′ : X ′ → ℓ∞ is defined by

S′(f) = (f(xn))n>1,

and we have S′(X ′) ⊂ c0. Now, we put A = {fn : n ∈ N}, from [9], Proposition 2.3

we see that A is an L-Dunford-Pettis set, and hence by our hypothesis (TS)′(A) is

a relatively compact set in c0. It follows from [1], Section 3.2, Exercise 14 that

|fn(T (xn))| = |T ′(fn)(xn)| 6 sup
g∈T ′(A)

|g(xn)| → 0.

This proves that T is a weak Dunford-Pettis operator. �

As a consequence, we obtain:

Corollary 2.2. Let X be a Banach space. The following statements are equiva-

lent:

(1) X has the Dunford-Pettis property;

(2) L-Dunford-Pettis subsets of X ′ are L-sets;

(3) DPcc operators from X into an arbitrary Banach space Z are Dunford-Pettis;

(4) weakly compact operators from X into an arbitrary Banach space Z are

Dunford-Pettis;

(5) the adjoint of each weakly compact operator from an arbitrary Banach space Z

into X carries L-Dunford-Pettis sets in X ′ to relatively compact sets in Z ′.

Corollary 2.3. Let T be an operator from a reflexive Banach space X into a Ba-

nach space Y .

An operator T ′ is a Dunford-Pettis operator if and only if T ′ carries L-Dunford-

Pettis sets in Y ′ to relatively compact sets in X ′.

P r o o f. For “only if” part since T ′ is Dunford-Pettis operator then T ′ is weak

Dunford-Pettis and by [3], Theorem 3.1 we see that T is weak Dunford-Pettis. As X

is reflexive, the identity operator I : X → X is weakly compact. Since T ′ = (TI)′,

it follows from Theorem 2.1 that T ′ carries L-Dunford-Pettis sets in Y ′ to relatively

compact sets in X ′.

For “if” part let A be a relatively weakly compact set in Y ′, then by [9], Proposi-

tion 2.3, A is an L-Dunford-Pettis sets in Y ′ and by our hypothesis T ′(A) is a rela-

tively compact set in X ′. This proves that T ′ is a Dunford-Pettis operator. �

As a simple consequence of Corollary 2.3 we obtain:

Corollary 2.4. Let X be a reflexive Banach space. The following statements are

equivalent:
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(1) X ′ has the Schur property;

(2) X ′ has finite dimension;

(3) every L-Dunford-Pettis set in X ′ is relatively compact.

The following Proposition gives a characterization of L-Dunford-Pettis sets in

terms of sequences.

Proposition 2.5. Let X be a Banach space and let A be a norm bounded subset

of X ′. The following statements are equivalent:

(1) A is an L-Dunford-Pettis set in X ′.

(2) For every sequence (fn) in A and every weakly null sequence (xn) which is

a Dunford-Pettis set in X , we have fn(xn) → 0 as n → ∞.

P r o o f. (2) ⇒ (1) Assume by way of contradiction that A is not an L-Dunford-

Pettis set in X ′. Then there exists a weakly null sequence (xn) which is a Dunford-

Pettis subset of X such that sup
f∈A

|f(xn)| > ε > 0 for some ε > 0 and each n. Hence,

for every n there exists some fn in A such that |fn(xn)| > ε, which is impossible due

to our hypothesis (2). This proves that A is an L-Dunford-Pettis set in X ′.

(1) ⇒ (2) Let (fn) be a sequence in A and (xn) a weakly null sequence which is

a Dunford-Pettis set in X . Since

|fn(xn)| 6 sup
f∈A

|f(xn)|

for every n, and A is an L-Dunford-Pettis set in X ′, hence fn(xn) → 0 as n → ∞.

This completes the proof. �

Now, we give a characterization of DPcc operators from a Banach space into

a Banach lattice.

Theorem 2.6. Let T : X → F be an operator from a Banach space into a Banach

lattice. The following statements are equivalent:

(1) T is a DPcc operator;

(2) T ′(BF ′) is an L-Dunford-Pettis set;

(3) T ′([−f, f ]) and {T ′(fn) : n ∈ N} are L-Dunford-Pettis sets for each f ∈ B+
F ′

and for each disjoint sequence (fn) ⊂ B+
F ′ ;

(4) |T (xn)| → 0 weakly in F and fn(T (xn)) → 0 for every weak null and Dunford-

Pettis sequence (xn) in X and for each disjoint sequence (fn) ⊂ B+
F ′ .

P r o o f. (1) ⇒ (2) Follows from the equality sup
f∈T ′(B

F ′)

|f(xn)| = ‖T (xn)‖ for

every weak null and Dunford-Pettis sequence (xn) in X .
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(2) ⇒ (3) Obvious.

(3) ⇒ (4) Let (xn) be a weakly null and Dunford-Pettis sequence in X and let (fn)

be a disjoint sequence in B+
F ′ . As {T ′(fn) : n ∈ N} is an L-Dunford-Pettis set in X ′,

hence from Proposition 2.5 we see that fn(T (xn)) = T ′(fn)(xn) → 0 as n → ∞.

On the other hand, let f ∈ B+
F ′ then it follows from [1], Theorem 1.23 that

f(|T (xn)|) = sup{g(T (xn)) : g ∈ [−f, f ]} = sup{T ′g(xn) : g ∈ [−f, f ]}

= sup{h(xn) : h ∈ T ′([−f, f ])}.

Since T ′([−f, f ]) is an L-Dunford-Pettis set in X ′, we conclude that |T (xn)| → 0

weakly in F .

(4) ⇒ (1) It follows from Dodds and Fremlin, see [6], Corollary 2. �

In particular, we obtain the following result:

Corollary 2.7. Let E be a Banach lattice. The following statements are equiva-

lent:

(1) E has the DPrc property;

(2) BE′ is an L-Dunford-Pettis set;

(3) [−f, f ] and {fn : n ∈ N} are L-Dunford-Pettis sets for each f ∈ B+
E′ and for

each disjoint sequence (fn) ⊂ B+
E′ ;

(4) |xn| → 0 weakly in E and fn(xn) → 0 for every weak null and Dunford-Pettis

sequence (xn) in E and for each disjoint sequence (fn) ⊂ B+
E′ .

In the next result we give an operator characterization of the class of L-Dunford-

Pettis sets to coincide with that of Dunford-Pettis (respectively, relatively compact)

sets in a dual Banach space.

Theorem 2.8. Let X be a Banach space.

(1) Every L-Dunford-Pettis set inX ′ is Dunford-Pettis if, and only if, T ′′ is Dunford-

Pettis whenever Y is an arbitrary Banach space and T : X → Y is a DPcc

operator.

(2) Every L-Dunford-Pettis set in X ′ is relatively compact if, and only if, T is

compact whenever Y is an arbitrary Banach space and T : X → Y is a DPcc

operator.

P r o o f. (1) For the “only if” part, let Y be a Banach space and T : X → Y

a DPcc operator. Then T ′(BY ′) is an L-Dunford-Pettis set, hence T ′(BY ′) is

a Dunford-Pettis set. This proves that T ′′ is a Dunford-Pettis operator.

For the “if” part, assume by way of contradiction that there exists an L-Dunford-

Pettis set A ofX ′ that is not Dunford-Pettis. Then there exist a weakly null sequence

1053



(fn) ⊂ X ′′, a sequence (gn) ⊂ A and ε > 0 such that |fn(gn)| > ε. Consider the

operator T : X → ℓ∞ defined by

T (x) = (gn(x))n>1

for all x ∈ X . We show that T is DPcc. As (gn) ⊆ A is an L-Dunford-Pettis set for

every weakly null sequence (xm) which is a DP set in X we have

‖T (xm)‖ = sup
n

|gn(xm)| → 0 as m → ∞,

so T is a Dunford-Pettis completely continuous operator, and we have

T ′((λn)
∞

n=1) =

∞
∑

n=1

λngn

for every (λn)
∞

n=1 ∈ ℓ1 ⊂ (ℓ∞)′. If e′n is the usual basis element in ℓ
1 then T ′(e′n) = gn

for all n ∈ N. By our hypothesis T ′′ is Dunford-Pettis. Hence, T ′(B(ℓ∞)′) is

a Dunford-Pettis set in X ′. Now, we have

ε < |fn(gn)| = |fn(T
′(e′n))| 6 sup

x∈B(ℓ∞)′

|fn(T
′(x))| → 0,

as n → ∞. We obtain a contradiction.

(2) For the “only if” part, let Y be a Banach space and T : X → Y a DPcc

operator. Then T ′(BY ′) is an L-Dunford-Pettis set, hence T ′(BY ′) is a relatively

compact set. This proves that T ′ is a compact operator, and hence T is also compact.

For the “if” part, assume by way of contradiction that there exists an L-Dunford-

Pettis subset A of X ′ that is not relatively compact. So there is a sequence (fn) ⊆ A

with no convergent subsequence. It is clear that the operator T : X → ℓ∞ defined

by T (x) = (fn(x)) for all x ∈ X is DPcc. Now, we prove that T is not compact. We

have T ′((λn)
∞

n=1) =
∞
∑

n=1
λnfn for every (λn)

∞

n=1 ∈ ℓ1 ⊂ (ℓ∞)′. If e′n is the usual basis

element in ℓ1 then T ′(e′n) = fn for all n ∈ N. Thus, T ′ is not a compact operator

and neither is T . We obtain a contradiction, and we are done. �

For proof of the next proposition, we need the following lemma which is just

Lemma 1.3 of [10].

Lemma 2.9. Let X be a Banach space.

A sequence (xn) in X is DP if and only if fn(xn) → 0 as n → ∞ for every weakly

null sequence (fn) in X ′.
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Proposition 2.10. Let T : E → F be a positive operator between two Banach

lattices.

If T is a weak almost Dunford-Pettis operator then T carries each disjoint weakly

null sequence (xn) in E to a Dunford-Pettis one in F .

P r o o f. Assume by way of contradiction that there exists a disjoint weakly

null sequence (xn) in E such that (T (xn)) is not a Dunford-Pettis sequence in F .

By Lemma 2.9 there exists a weakly null sequence (fn) in F ′ such that fn(T (xn))

does not converge to 0. Then there exist some ε > 0 and a subsequence (which

we denote by fn(T (xn)) again) satisfying |fn(T (xn))| > ε for all n ∈ N. By the

inequality |fn(T (xn))| 6 |fn|(T (|xn|)) for all n ∈ N, we get that |fn|(T (|xn|)) > ε

for all n ∈ N. As (xn) is a disjoint weakly null sequence in E, it follows from [11],

Remark 1 that (|xn|) is a weakly null sequence in E, and hence (T (|xn|)) is a weakly

null sequence in F . Now, an easy inductive argument shows that there exist a sub-

sequence (zn) of (|xn|) and a subsequence (gn) of (fn) such that

|gn|(T (zn)) > ε

and

4n
n
∑

i=1

|gi|(T (zn+1)) <
1

n

for all n > 1. Put

h =

∞
∑

n=1

2−n|gn|

and

hn =

(

|gn+1| − 4n
n
∑

i=1

|gi| − 2−nh

)+

.

By [1], Lemma 4.35 the sequence (hn) is disjoint. Since 0 6 hn 6 |gn+1| for all n > 1

and (gn) is weakly null in F
′, it follows from [1], Theorem 4.34 that (hn) is a weakly

null in F ′. As T is a weak almost Dunford-Pettis operator, we see that T (zn+1) is

an almost Dunford-Pettis sequence in F , therefore hn(T (zn+1)) → 0 as n → ∞.

On the other hand, we have

hn(T (zn+1)) >

(

|gn+1| − 4n
n
∑

i=1

|gi| − 2−nh

)

(T (zn+1)) > ε−
1

n
− 2−nh(T (zn+1))

and we see that hn(T (zn+1)) > ε/2 must hold for all n sufficiently large (because

2−nh(T (zn+1)) → 0). This leads to a contradiction, and we are done. �
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The next result characterizes positive weak almost Dunford-Pettis operators be-

tween two Banach lattices.

Theorem 2.11. Let T : E → F be a positive operator between two Banach

lattices. The following statements are equivalent:

(1) T is weak almost Dunford-Pettis;

(2) T ′ carries each L-Dunford-Pettis subset of F ′ to an almost L-set in E′;

(3) for an arbitrary Banach space Z and every DPcc operator S : F → Z the

product ST is almost Dunford-Pettis;

(4) for an arbitrary Banach space Z and every weakly compact operator S : F → Z

the product ST is almost Dunford-Pettis;

(5) for every weakly compact operator S : F → c0 the product ST is almost

Dunford-Pettis.

P r o o f. (1) ⇒ (2) Let A be an L-Dunford-Pettis set in F ′, we prove that T ′(A)

is an almost L-set in E′. Let (xn) be a disjoint weakly null sequence in E, by our

hypothesis and Proposition 2.10 we see that (T (xn)) is a weakly null and Dunford-

Pettis set in F . This implies that

sup
f∈T ′(A)

|f(xn)| = sup
g∈A

|g(T (xn))| → 0

as n → ∞, and we conclude that T ′(A) is an almost L-set in E′.

(2) ⇒ (3) Let Z be a Banach space and let S : F → Z be a DPcc operator.

Then S′(BZ′ ) is an L-Dunford-Pettis subset of F ′, and by our hypothesis we see

that T ′(S′(BZ′)) is an almost L-set in E′. Thus ST is an almost Dunford-Pettis

operator.

(3) ⇒ (4) It follows from [10], Corollary 1.1.

(4) ⇒ (5) Obvious.

(5) ⇒ (1) Let (xn) be a disjoint weakly null sequence in E and let (fn) be a disjoint

weakly null sequence in F ′, we prove that fn(T (xn)) → 0 as n → ∞. Consider the

operator S : F → c0 defined by

S(x) = (fn(x))
∞

n=1.

Theorem 5.26 of [1] proves that S is a weakly compact operator, and by our hypoth-

esis ST is almost Dunford-Pettis. Since

|fn(T (xn))| 6 ‖S(T (xn))‖∞ → 0

as n → ∞, it follows from [4], Theorem 2.5, assertion (6) that T is weak almost

Dunford-Pettis, as desired. �
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As a consequence we derive the following characterizations of the weak Dunford-

Pettis property.

Corollary 2.12. Let E be a Banach lattice. The following statements are equiv-

alent:

(1) E has the weak Dunford-Pettis property;

(2) L-Dunford-Pettis subsets of E′ are almost L-sets;

(3) every DPcc operator from E into an arbitrary Banach space Z is almost

Dunford-Pettis;

(4) every weakly compact operator from E into an arbitrary Banach space Z is

almost Dunford-Pettis;

(5) every weakly compact operator from E into c0 is almost Dunford-Pettis.
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