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1. Introduction

In this paper we treat a convergence theorem for increasing sequences of sectorial

forms in a complex Hilbert space. More precisely, we will deal with a sequence (an)

of sectorial forms with vertex 0 and angle θ ∈ [0, π/2), with dom(an) ⊇ dom(an+1)

and such that an+1 − an is sectorial with vertex 0 and angle θ for all n ∈ N. (This

is what we mean by ‘increasing sequence’. The setup implies that the real parts of

the forms constitute an increasing sequence of symmetric forms, in the usual sense.)

We do not assume the forms to be densely defined, and hence one does not obtain

an operator An associated with an, but rather a linear relation. These notions will

be explained in more detail in Section 2 of the paper. The aim is to show that the

linear relations converge to a limit linear relation A in strong resolvent sense; see

Theorem 4.1 for the case of closed forms and Theorem 5.1 for the case of non-closable

forms.

The history of this kind of convergence results starts with the treatment of increas-

ing sequences of closed accretive symmetric forms, by Kato [7], Theorem VIII.3.13,

and Simon [12], Theorem 3.1; see also Kato [8], Theorem VIII.3.13a. It was Simon

in [12], Section 4, who advocated the use of non-densely defined (closed accretive

symmetric) forms; the notions of non-densely defined sectorial forms and their as-

sociated linear relations were developed in [5] and [9]. The result for sectorial forms
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sketched above, for the case of closed forms, is due to Batty and ter Elst, see [5],

Theorem 2.2, where it is formulated in a different guise, with series of sectorial

forms. Previously, a related kind of sequences of sectorial forms had been treated by

Ouhabaz in [10], Theorem 5.

Our proof of Theorem 4.1 is inspired by [10], proof of Theorem 5. Whereas in [5],

proof of Theorem 2.2, the convergence in strong resolvent sense is proved directly for

the sequence under consideration, we use the existing convergence result for the case

of increasing sequences of symmetric forms and then use Kato’s holomorphic families

of type (a) together with Vitali’s convergence theorem. In Remark 4.2 we show that

Ouhabaz’ result in [10], Theorem 5, can be obtained as a corollary of Theorem 4.1.

Finally, we also treat the case in which the sequence consists of non-closable forms.

Again, the result we prove is due to Batty and ter Elst; see [5], Theorem 3.2. It is

remarkable that Ouhabaz’ procedure can also be adapted to this case and yields

a proof that is barely more complicated than the proof for the case of closed forms.

In Section 2 we explain our notation concerning linear relations associated with

non-densely defined sectorial forms.

In Section 3 we discuss the correspondence between the order of non-densely de-

fined closed accretive symmetric forms and the inverses of the corresponding linear

relations. Our treatment is motivated by [8], Lemma VI.2.30.

Section 4 is devoted to the main result for the case of closed forms.

In Section 5 we treat the case of non-closable forms.

2. Preliminaries on sectorial forms, linear relations

and degenerate semigroups

Let H be a complex Hilbert space. A sectorial form a in H with vertex 0 and

angle θ ∈ [0, π/2) is a sesquilinear map a : dom(a)× dom(a) → C, where the domain

dom(a) is a subspace of H and

a(u) := a(u, u) ∈ Σθ (u ∈ dom(a))

with Σθ := {z ∈ C \ {0} ; |Arg z| < θ} if 0 < θ < π/2, and Σ0 := (0,∞). We define

a∗(u, v) := a(v, u) (u, v ∈ dom(a∗) := dom(a)),

Re a :=
a+ a∗

2
, Im a :=

a− a∗

2i

and

‖u‖a := (Re a(u) + ‖u‖2H)1/2 (u ∈ dom(a)).

The form a is called closed if (dom(a), ‖·‖a) is complete.
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Let a be a closed sectorial form. Then an m-sectorial operator A0 in H0 := dom(a)

is associated with a via

A0 := {(u, y) ∈ dom(a)×H0 ; a(u, v) = (y|v)H0
(v ∈ dom(a))},

and A0 is extended to an m-sectorial linear relation in H by

(2.1) A := A0 ⊕ ({0} ×H⊥
0 )

:= {(u, y) ∈ dom(a)×H ; a(u, v) = (y|v)H (v ∈ dom(a))}.

The m-sectoriality of A, with vertex 0 and angle θ, means that

(y|x) ∈ Σθ ((x, y) ∈ A)

as well as

ran(I +A) = {x+ y ; (x, y) ∈ A} = H.

We point out that each m-sectorial linear relation A in H is of the form

A = A0 ⊕ ({0} ×H⊥
0 ),

where H0 := dom(A), and where A0 := A ∩ (H0 × H0) is an m-sectorial operator

in H0; see [5], first paragraph of Section 2.

Now assume additionally that the form a is symmetric, i.e., a∗ = a (or equiva-

lently, a is sectorial with vertex 0 and angle 0). Expressed differently, we now assume

that a is a closed accretive symmetric form. Then the operator A0 described above

is a self-adjoint operator in H0, and A is a self-adjoint linear relation, i.e.,

A∗ :=
(
(−A)⊥

)−1
= A,

where the orthogonal complement of the linear relation −A = {(x,−y) ; (x, y) ∈ A}

is taken in H ⊕H ; see [4], Section 5.

Closing this section we mention that an m-sectorial linear relation A also gives rise

to a bounded holomorphic degenerate strongly continuous semigroup. More precisely,

the operator −A0 from above generates a bounded holomorphic C0-semigroup T0

on H0. Let P0 ∈ L(H) denote the orthogonal projection onto H0. Then T (t) :=

T0(t)P0 (t > 0) defines a holomorphic degenerate strongly continuous semigroup T

on H . (‘Degenerate’ refers to the circumstance that T (0) may be different from

the identity I, and ‘strongly continuous’ to the property T (0) = s- lim
t→0+

T (t).) The

‘generator’ of T is the linear relation −A.
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We note that, for t > 0, the operator T (t) can be obtained as a contour integral

(2.2) T (t) =
1

2πi

∫

Γ

e−tλ(λI −A)−1 dλ

with a suitable (unbounded) path Γ in C. This is traditional if H0 = H . In the

above general case it then follows from (λI − A)−1 = (λI0 − A0)
−1P0, where I0 is

the identity on H0 and (2.2) with T0 and A0 in place of T and A.

3. On the order for symmetric forms and self-adjoint

linear relations

Let H be a Hilbert space. Given two accretive symmetric forms a and b in H , we

write a 6 b if dom(a) ⊇ dom(b) and a(u) 6 b(u) for all u ∈ dom(b). A crucial fact

needed in the proof of the form convergence theorem in the case of symmetric forms

is the following result.

Proposition 3.1. Let a and b be closed accretive symmetric forms in H . Let A

and B be the associated self-adjoint linear relations, and assume that the inverses

of A and B are operators belonging to L(H). Then a 6 b if and only if B−1 6 A−1.

In [12], Proposition 1.1, the above result is stated for densely defined forms, but

it appears that it is applied in the general situation nonetheless: in the proof of

Theorem 4.1, which deals with the generalization to the non-densely defined case, it

is claimed that ‘the proofs of Section 3 require no changes’. It is no surprise that

the equivalence in Proposition 3.1 also holds for non-densely defined forms; in fact,

proofs can be found in [9], Proposition 2.7 and in [6], Lemmas 3.2 and 3.3. Our proof

of this equivalence is quite different from those proofs.

The key observation of our treatment is Proposition 3.3 below, to which the fol-

lowing elementary lemma is a preparation.

Lemma 3.2. Let X be a normed space, H a Hilbert space, P ∈ L(X,H), η ∈ X ′,

c > 0 with the property that

(3.1) |ηx| 6 c‖Px‖ (x ∈ X).

Then there exists z ∈ H such that ‖z‖ 6 c and ηx = (Px|z) for all x ∈ X .

P r o o f. Define η̃ : ran(P ) → K by η̃(Px) := ηx for all x ∈ X ; note that (3.1)

implies that η̃ is well-defined and continuous on ran(P ), ‖η̃‖ 6 c. The Riesz-Fréchet

representation theorem implies that there exists z ∈ ran(P ) such that ‖z‖ 6 c and

ηx = η̃(Px) = (Px|z) for all x ∈ X . �
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Assuming that G and H are Hilbert spaces and that C and D are linear rela-

tions in G × H , we will say that D dominates C if for all (x, y) ∈ D there exists

z ∈ H such that (x, z) ∈ C and ‖z‖ 6 ‖y‖. If C and D are operators, this simply

means that dom(D) ⊆ dom(C) and ‖Cx‖ 6 ‖Dx‖ for all x ∈ dom(D). The follow-

ing fundamental property concerning this notion is a more elaborate version of [8],

Lemma VI.2.30.

Proposition 3.3. Let G, H be Hilbert spaces, and let C, D be closed linear

relations in G×H . Then D dominates C if and only if C⊥ dominates D⊥.

P r o o f. It clearly suffices to show ‘⇒’. Let (x, y) ∈ C⊥.

Let (f, g) ∈ D. By hypothesis, there exists h ∈ H such that (f, h) ∈ C and

‖h‖ 6 ‖g‖. Then (f, h) ⊥ (x, y), hence

|(−f |x)| = |(h|y)| 6 ‖h‖ ‖y‖ 6 ‖g‖ ‖y‖,

and with P : D → H , (f, g) 7→ g and η : D → K, (f, g) 7→ (−f |x) it follows that

|η(f, g)| 6 ‖y‖ ‖P (f, g)‖ (note that h has dropped out of these properties). Now

we can apply Lemma 3.2 to obtain z ∈ H such that ‖z‖ 6 ‖y‖ and (−f |x) =

(P (f, g)|z) = (g|z) for all (f, g) ∈ D, i.e., (x, z) ∈ D⊥ and ‖z‖ 6 ‖y‖.

Summarizing, we have shown that C⊥ dominates D⊥. �

P r o o f of Proposition 3.1. Let A0 be the accretive self-adjoint operator in

dom(a) associated with a, and denote by Pa the orthogonal projection onto dom(a).

The (accretive self-adjoint) square root of A−1 will be denoted by A−1/2. We point

out that then A
−1/2
0 , the square root of A−1

0 , is the restriction of A
−1/2 to dom(a),

and we define

A1/2 := (A−1/2)−1 = {(x, y) ∈ H ×H ; (x, Pay) ∈ A
1/2
0 }.

The corresponding notation and properties will also be used for b.

It is evident that a 6 b if and only if B
1/2
0 dominates A

1/2
0 . The latter, in turn,

holds if and only if B1/2 dominates A1/2. (Clearly, A
1/2
0 dominates A1/2, but also

conversely: if (x, y) ∈ A1/2, then (x, Pay) ∈ A
1/2
0 and ‖Pay‖ 6 ‖y‖. By the same

token, B
1/2
0 and B1/2 dominate each other. As it is easily seen that domination is

transitive, one concludes the last assertion above.)

On the other hand, A−1 > B−1 if and only if A−1/2 dominates B−1/2.

Finally we observe that

(A−1/2)⊥ = ((−A−1/2)∗)−1 = −(A−1/2)−1 = −A1/2
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by the self-adjointness of A−1/2, and similarly (B−1/2)⊥ = −B1/2. Now, applying

Proposition 3.3 we conclude that B1/2 dominates A1/2 if and only if A−1/2 domi-

nates B−1/2.

This proves the asserted equivalence. �

4. Monotone convergence of sectorial forms

In this section we prove the main result concerning closed forms. The basic idea is

to use the well-established convergence result for symmetric forms and to ‘propagate’

it to the case of sectorial forms by holomorphy.

Theorem 4.1. Let H be a complex Hilbert space, and let θ ∈ [0, π/2). Let (an)

be a sequence of closed sectorial forms in H with vertex 0 and angle θ, and assume

that dom(an) ⊇ dom(an+1) and that an+1−an is sectorial with vertex 0 and angle θ

for all n ∈ N. For n ∈ N let An be the m-sectorial linear relation associated with an.

Define

dom(a) :=

{
u ∈

⋂

n∈N

dom(an) ; sup
n∈N

Re an(u) < ∞

}
.

Then for all u, v ∈ dom(a) the limit a(u, v) := lim
n→∞

an(u, v) exists, the form a thus

defined is a closed sectorial form with vertex 0 and angle θ, and An → A (n → ∞) in

strong resolvent sense, where A is the m-sectorial linear relation associated with a.

P r o o f. (i) Similarly to the well-known symmetric case one shows that a as de-

fined above is a closed sectorial form; see [5], Lemma 2.1. For completeness we include

the argument. The Cauchy-Schwarz inequality implies that dom(a) is a vector space,

and from the sectoriality of the forms an− am (n > m) and the polarization identity

one concludes that lim
n→∞

an(u, v) exists for all u, v ∈ dom(a). Clearly, a thus defined

is a sectorial form. For the closedness of a we have to show that (dom(a), ‖·‖a) is

complete. Let (un) be a ‖·‖a-Cauchy sequence in dom(a). Then u := limun ex-

ists in H , and (un) is a ‖·‖am
-Cauchy sequence, hence un → u in (dom(am), ‖·‖am

)

since am is closed for all m ∈ N. For all n ∈ N one has

sup
m∈N

Re am(u− un) 6 sup
m∈N, k>n

Re am(uk − un) = sup
k>n

Re a(uk − un) < ∞.

This inequality implies u ∈ dom(a), and

Re a(u− un) 6 sup
k>n

Re a(uk − un) → 0 (n → ∞)

shows that un → u in the ‖·‖a-norm.
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(ii) Assume that all the forms an are symmetric. In this case one has an 6 an+1

for all n ∈ N, and the assertion follows from [12], Theorem 4.1; recall that for this

general case our Proposition 3.1 replaces [12], Proposition 1.1.

(iii) In the general case there exists C > 0 such that

|Im an(u)| 6 C Re an(u) (u ∈ dom(an)),

|Im(an+1(u)− an(u))| 6 C Re(an+1(u)− an(u)) (u ∈ dom(an+1))

for all n ∈ N, and

|Im a(u)| 6 C Re a(u) (u ∈ dom(a)).

Then for z ∈ Ω := {z ∈ C; |Re z| < 1/C} the forms

an,z := Re an + z Im an (n ∈ N), az := Re a+ z Im a

are closed sectorial forms in H . Indeed, for z ∈ Ω, u ∈ dom(an) we have

Re an,z(u) = Re an(u) + Re z Im an(u) > (1 − |Re z|C)Rean(u) > 0,

|Im an,z(u)| = |Im z Im an(u)| 6 |Im z|C Re an(u) 6
|Im z|C

1− |Re z|C
Re an,z(u),

and similarly for a instead of an. For z ∈ Ω, n ∈ N let An,z be the m-sectorial linear

relation associated with an,z, and let Az be the m-sectorial linear relation associated

with az.

For x ∈ (−1/C, 1/C), n ∈ N, u ∈ dom(an+1) we have

x Im(an(u)− an+1(u)) 6
1

C
|Im(an+1(u)− an(u))| 6 Re(an+1(u)− an(u)),

which implies

an,x = Re an + x Im an 6 Re an+1 + x Im an+1 = an+1,x.

Hence, (an,x)n is an increasing sequence of closed accretive symmetric forms. Note

that for all x ∈ (−1/C, 1/C) the limit form of the sequence (an,x) has the domain

{
u ∈

⋂

n∈N

dom(an,x) ; sup
n∈N

an,x(u) < ∞

}
= dom(a) = dom(ax),

and that an(u) → a(u) implies an,x(u) → ax(u) as n → ∞, for all u ∈ dom(a). From

the case treated in part (ii) above we conclude that

(4.1) (I +An,x)
−1 → (I +Ax)

−1 (n → ∞)

strongly, for all x ∈ (−1/C, 1/C).
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For each n ∈ N, the family (an,z)z∈Ω is a holomorphic family of type (a) in the

sense of Kato, and similarly for the family (az)z∈Ω. By Kato [8], Theorem VII.4.2,

we also refer to the recent proof in [13], this implies that the mappings Ω ∋ z 7→

(I+An,z)
−1 ∈ L(H) (n ∈ N) and Ω ∋ z 7→ (I+Az)

−1 ∈ L(H) are holomorphic. (The

quoted references only cover the case in which the families (an,z)z∈Ω and (az)z∈Ω are

defined on dense subspaces. For the general case one has to use the description (2.1)

of the associated m-sectorial linear relations; see also Theorem 5.2.)

In view of the convergence (4.1) and the estimate ‖(I+An,z)
−1‖ 6 1 for all n ∈ N,

z ∈ Ω, Vitali’s convergence theorem shows that (I +An,z)
−1 → (I+Az)

−1 (n → ∞)

strongly, for all z ∈ Ω. (We refer to [3], Theorem 2.1, for an elegant proof of Vitali’s

theorem.) In particular, setting z = i we obtain an = an,i for all n ∈ N and a = ai,

and therefore (I +An)
−1 → (I +A)−1 (n → ∞) strongly. �

Remark 4.2. In [10], Theorem 5, Ouhabaz proved the following convergence

theorem. Let an (n ∈ N) and a be densely defined closed sectorial forms with vertex 0

and angle θ0 ∈ [0, π/2), (Re an)n increasing to Rea in the sense of Theorem 4.1, and

suppose that Im a(u) = lim
n→∞

Im an(u) for all u ∈ dom(a). Assume that Im an(u) 6

Im an+1(u) for all u ∈ dom(an+1), n ∈ N. Then (An) converges to A in strong

resolvent sense, where An is associated with an for n ∈ N, and A is associated with a.

We show that this result can be obtained as a corollary of Theorem 4.1 (or [5],

Theorem 2.2). Obviously,

an+1(u)− an(u) ∈ {z ∈ C ; 0 6 Arg z 6 π/2}

for all u ∈ dom(an+1), n ∈ N. Let η ∈ (0, π/2 − θ0). Then replacing an by e−iηan
one easily checks that the sequence (e−iηan)n of forms satisfies the hypotheses of

Theorem 4.1 above, with θ := max{θ0 + η, π/2 − η}. In order to check that the

sequence (e−iηan)n converges to the form e−iηa we note that

cos θ0 |an(u)| 6 Re an(u) 6 |an(u)|,

cos θ |e−iηan(u)| 6 Re(e−iηan(u)) 6 |e−iηan(u)|

for all u ∈
⋂

n∈N

dom(an), n ∈ N, and this implies that

{
u ∈

⋂

n∈N

dom(an) ; sup
n∈N

Re(e−iηan)(u) < ∞

}
= dom(a) = dom(e−iηa).

Analogously one can treat the alternative case in [10], Theorem 5, where the se-

quence (Im an) is decreasing instead of increasing, i.e., Im an(u) > Im an+1(u) for all

u ∈ dom(an+1), n ∈ N.

In view of the above, Theorem 4.1 implies that one can relax the hypotheses in

Ouhabaz’ result.
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The remainder of this section is devoted to explaining the implications of the

convergence in Theorem 4.1 for the associated degenerate strongly continuous semi-

groups. For all n ∈ N let Tn be the holomorphic degenerate strongly continuous

semigroup generated by −An, and let T be generated by −A. We are going to

explain why

(i) for all u ∈ H , t > 0 one has

(4.2) T (t)u = lim
n→∞

Tn(t)u

with uniform convergence on compact subsets of (0,∞),

(ii) for all u ∈ ran(T (0)) = dom(a), t > 0 one has (4.2) with uniform convergence

on compact subsets of [0,∞).

A preliminary observation for the proof of both the assertions is that the set C\Σθ

is contained in the resolvent sets of An for all n ∈ N and of A by our hypotheses.

Furthermore, fixing θ′ ∈ (θ, π/2), the resolvents obey an estimate

(4.3) ‖(λ−An)
−1‖ 6

c

|λ|

on C \ (Σθ′ ∪ {0}) and the same for A with a constant c > 0 independent of n.

Finally, the strong resolvent convergence implies that (λ − An)
−1 → (λ − A)−1

strongly, uniformly for λ on compact subsets of C \ (Σθ′ ∪ {0}).

In order to show the convergence in (i) we now specify the path Γ mentioned in the

formula (2.2) as the boundary of the set Σθ′ ∪BC(0, 1), oriented ‘counterclockwise’.

Then the assertion is an easy consequence of (2.2) for the semigroups Tn and T ,

the estimate (4.3) and the strong resolvent convergence formulated at the end of the

previous paragraph; see [9], Theorem 2.3. Another source for (i) is [1], Theorem 5.2,

where the erroneously asserted uniform convergence on [0, τ ] has to be replaced by

uniform convergence on compact subsets of (0,∞).

For the convergence (ii) we refer to [1], Theorem 4.2 (a). Alternatively, one can

prove (ii) by adapting the proof of the Trotter approximation theorem in [11], Sec-

tion 3.4, to the case of degenerate strongly continuous semigroups.

5. The case of non-closable sectorial forms

In this section we show that the following result, contained in [5], Theorem 3.2,

can be obtained by the method presented in Section 4.

Theorem 5.1. Let H be a complex Hilbert space, and let θ ∈ [0, π/2). Let (an)

be a sequence of sectorial forms in H with vertex 0 and angle θ, and assume that
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dom(an) ⊇ dom(an+1) and that an+1 − an is sectorial with vertex 0 and angle θ, for

all n ∈ N. For n ∈ N let An be the m-sectorial linear relation associated with an.

Then there exists an m-sectorial linear relation A such that An → A (n → ∞) in

strong resolvent sense.

Note that the only difference between the hypotheses in this theorem and those

in Theorem 4.1 is that here the forms an are no longer supposed to be closed; the

“price” one has to pay is that in the conclusion there is no longer a description of

the limit linear relation in terms of the forms an.

Before entering our proof of this result we have to explain how a linear relation

is associated with a non-closable (short for “not necessarily closable”) form. Let a

be a sectorial form in H with vertex 0 and angle θ ∈ [0, π/2). The norm ‖·‖a on

dom(a) ⊆ H is defined as in Section 2. Let V be the completion of (dom(a), ‖·‖a).

Then the continuous extension j : V → H of the embedding dom(a) →֒ H is not

necessarily injective; in fact, a is called closable if j is injective.

The form a on dom(a) has a unique continuous extension ã : V ×V → C, and this

extension is j-coercive and sectorial with vertex 0 and angle θ. (By definition, ã being

j-coercive, called ‘j-elliptic’ in [2] and [5], means that there exists ω ∈ R such that

the form (u, v) 7→ ã(u, v) +ω(ju|jv)H is coercive. In the present case, this condition

holds with ω = 1.) The (m-sectorial) linear relation A associated with (a, j) is then

given by

A = {(x, y) ∈ H ×H ; ∃u ∈ V : ju = x, ã(u, v) = (y|jv)H (v ∈ V )}.

If a is symmetric, then the linear relation A is self-adjoint, and the (closed!) accretive

form associated with A is the closure of the regular part ar of a, defined in [12],

Section 2. For these definitions and properties we refer to [2], Section 3, and [5],

Section 3.

Next, we state a generalization of the result on holomorphic families of type (a),

used in the proof of Theorem 4.1.

Theorem 5.2. Let V and H be complex Hilbert spaces, j ∈ L(V,H), let Ω ⊆ C

be open, and let θ ∈ [0, π/2). For each z ∈ Ω let az : V × V → C be a bounded

j-coercive sectorial form with vertex 0 and angle θ, and let Az denote the m-sectorial

linear relation associated with (az, j). Assume that for all u, v ∈ V the function

Ω ∋ z 7→ az(u, v) ∈ C is holomorphic.

Then the mapping Ω ∋ z 7→ (I + Az)
−1 ∈ L(H) is holomorphic.

If ran(j) is dense in H , then the proof can be given in the same way as in [13], proof

of Theorem 1.1. Otherwise we define H0 := ran(j) and apply the previous case to the
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m-sectorial operators Az,0 associated with (az , j) in H0. Then the description (2.1)

of Az yields the assertion. Indeed, the resolvent (I + Az)
−1 decomposes according

to the orthogonal sum H0 ⊕H⊥
0 , where the restriction to H0 is (IH0

+ Az,0)
−1 and

the restriction to H⊥
0 is the zero operator.

P r o o f of Theorem 5.1. (i) First we treat the case in which all the forms an
are symmetric. In this case we refer to [12], Corollary 2.4, for the property that

one has an,r 6 an+1,r for all n ∈ N, where an,r denotes the regular part of an. (In

the quoted reference the property needed here is only formulated for densely defined

forms. However, it is immediate that the proof of [12], Theorem 2.2, which is the

basis for the quoted property, works also for non-densely defined forms.) Then we

conclude from [12], Theorem 4.1, that the sequence (An) converges (to some A) in

strong resolvent sense.

(ii) For the general case we define

an,z := Rean + z Im an (n ∈ N, z ∈ C)

and note that the arguments as in step (iii) of the proof of Theorem 4.1 yield a con-

stant C > 0 such that

|Im an,z(u)| 6
|Im z|C

1− |Re z|C
Re an,z(u)

for all z ∈ Ω := {z ∈ C ; |Re z| < 1/C}, n ∈ N, u ∈ dom(an), and

(5.1) an,x 6 an+1,x (x ∈ (−1/C, 1/C), n ∈ N).

In particular, for z ∈ Ω, n ∈ N the form an,z is sectorial; let An,z be the linear relation

associated with an,z (as explained above). From (5.1) and step (i) we conclude that,

for x ∈ (−1/C, 1/C), there exists an operator Rx ∈ L(H) such that (I +An,x)
−1 →

Rx (n → ∞) strongly.

For n ∈ N, let Vn be the completion of (dom(an), ‖·‖an
), jn : Vn → H the continu-

ous extension of the embedding dom(an) →֒ H as described above, let ãn be the con-

tinuous extension of an to Vn×Vn, and define the jn-coercive sectorial forms ãn,z by

ãn,z := Re ãn + z Im ãn.

Then ãn,z is the continuous extension of an,z, so An,z is associated with ãn,z. The

application of Theorem 5.2 shows that Ω ∋ z 7→ (I+An,z)
−1 ∈ L(H) is holomorphic.

As in step (iii) of the proof of Theorem 4.1, Vitali’s convergence theorem implies the

strong convergence of ((I +An)
−1 = (I + An,i)

−1)n∈N to an operator R ∈ L(H). It

follows from Lemma 5.3, proved subsequently, that the linear relation A determined

by R = (I +A)−1 is m-sectorial. �
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Lemma 5.3. Let H be a complex Hilbert space, (An) a sequence of m-sectorial

relations in H with vertex 0 and angle θ ∈ [0, π/2), and assume that R :=

s-lim(I + An)
−1 exists. Then the linear relation A determined by R = (I +A)−1 is

m-sectorial with vertex 0 and angle θ.

P r o o f. Note that A = R−1− I = {(y, x−y) ; (x, y) ∈ R}. Clearly, ran(I+A) =

dom(R) = H . Let (x, y) ∈ R. With yn := (I + An)
−1x, i.e., (yn, x − yn) ∈ An, we

have (x − yn|yn) ∈ Σθ and yn → y, hence (x− y|y) ∈ Σθ. �

Remark 5.4. We did not derive Theorem 5.1 as a corollary of Theorem 4.1, but

rather the proofs of the two results are “the same”. However, we comment on the

following decisive difference. In Theorem 4.1 we had the limit form a at our disposal,

and each of the linear relations Az in step (iii) of the proof was associated with the

form az = Rea+ z Im a, whereas in the proof of Theorem 5.1, the linear relation A

is obtained in an indirect way as a limit in strong resolvent sense.

An idea to prove Theorem 5.1 as a direct corollary of Theorem 4.1 would be

as follows. Denote by ân the closed sectorial form with dom(ân) ⊆ H associated

with An. As by hypothesis an+1 − an is sectorial (uniformly in n), it is tempting to

think that ân+1 − ân might be sectorial (with the same vertex and angle). However,

this idea fails dramatically, as we will illustrate by Example 5.5 (a).

A noteworthy feature concerning the operators An,z associated with Re an +

z Im an, for the non-closable forms an presented in Example 5.5, is illustrated in

part (b) of this example: none of the families (An,z)z∈Ω corresponds to a family

(b+ zc)z∈Ω with closed symmetric forms b and c.

Example 5.5. Let H = L2(0, 1).

(a) We present a sequence (an) of non-closable sectorial forms in H , with vertex 0

and angle π/4, an+1 − an symmetric and accretive for all n, where the associated

closed forms ân are all symmetric, and the sequence (ân) is strictly decreasing.

For n ∈ N we define dom(an) := C[0, 1],

an(u, v) :=

∫
uv + nu(0)v(0) + i

(
u(0)

∫
v +

(∫
u

)
v(0)

)
.

Then

(Re an)(u, v) =

∫
uv + nu(0)v(0),

(Im an)(u, v) = u(0)

∫
v +

(∫
u

)
v(0) (u, v ∈ dom(an)).

Because of |
∫
u| 6 ‖u‖2 and |u(0)|‖u‖2 6

1

2
(‖u‖22 + |u(0)|2

)
we obtain

|Im an(u)| 6 Re an(u) (u ∈ dom(an), n ∈ N).

Also, an+1(u)− an(u) = |u(0)|2 > 0 for all u ∈ dom(an+1), n ∈ N.
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For all n ∈ N, the an-norm on C[0, 1] is equivalent to ‖u‖ := (‖u‖22 + |u(0)|2)1/2.

Therefore, V := L2(0, 1) ⊕ C is a completion (C[0, 1], ‖·‖an
), and the continuous

extension j : V → L2(0, 1) of the embedding C[0, 1] →֒ L2(0, 1) is given by

j(u, α) = u ((u, α) ∈ L2(0, 1)⊕ C).

The continuous extension ãn of an to V × V is given by

ãn((u, α), (v, β)) =

∫
uv + nαβ + i

(
α

∫
v +

(∫
u

)
β

)
.

For u, f ∈ L2(0, 1) we have (u, f) ∈ An if and only if there exists α ∈ C such that

for all (v, β) ∈ V one has

(5.2)

∫
uv+nαβ+i

(
α

∫
v+

(∫
u

)
β

)
= ãn((u, α), (v, β)) = (f |j(v, β)) =

∫
fv.

This property is equivalent to α = −(i/n)
∫
u and f = u +

(
n−1

∫
u
)
1. This shows

that the operator An associated with the form an is given by Anu = u+
(
n−1

∫
u
)
1

(u ∈ L2(0, 1)), and the associated closed form ân with dom(ân) ⊆ L2(0, 1) is given by

ân(u, v) =

∫
uv +

1

n

∫
u

∫
v (u, v ∈ L2(0, 1)).

Hence all the forms ân are symmetric, ân+1 6 ân for all n ∈ N, and An → I in

L(L2(0, 1)).

(b) For the forms from part (a), using (4.2) with z in place of i, one can compute

the operators An,z associated with the form an,z := Re an + z Im an for |Re z| < 1.

The result is

An,zu = u−
z2

n

(∫
u

)
1 (u ∈ L2(0, 1)),

with the associated closed form

ân,z(u, v) =

∫
uv −

z2

n

∫
u

∫
v (u, v ∈ L2(0, 1)).

In contrast, the forms (ân)z := Re ân + z Im ân = ân do not depend on z since ân is

symmetric. The only points z where the forms (ân)z and ân,z coincide are z = ±i.
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