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Abstract. We examine the problem of finding all solutions of two-sided vector inequali-
ties given in the tropical algebra setting, where the unknown vector multiplied by known
matrices appears on both sides of the inequality. We offer a solution that uses sparse ma-
trices to simplify the problem and to construct a family of solution sets, each defined by a
sparse matrix obtained from one of the given matrices by setting some of its entries to zero.
All solutions are then combined to present the result in a parametric form in terms of a
matrix whose columns form a complete system of generators for the solution. We describe
the computational technique proposed to solve the problem, remark on its computational
complexity and illustrate this technique with numerical examples.
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1. Introduction

The problem of solving two-sided vector inequalities in the tropical algebra setting

(where the unknown vector multiplied by known matrices appears on both sides of the

inequality) occurs in a variety of contexts, from geometry of tropical polyhedral cones

[32], [2], [15] to mean payoff games [1], [16]. In its general form, the two-sided inequal-

ity is represented asAx 6 Bx, where A andB are given matrices, x is the unknown

vector, and the matrix-vector multiplication is interpreted in terms of a tropical semi-

field (a semiring with idempotent addition and invertible multiplication).

The problem of solving the two-sided inequality is closely related to the solution

of the two-sided equation Ax = Bx, which is equivalent to two opposite two-sided
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inequalities. Both problems have no known polynomial-time solution, and hence are

considered hard to solve. The available solutions for these inequality and equation

comprise various algorithmic procedures and computational schemes developed dur-

ing the last decades in a range of works, including [5], [12], [6], [30], [27], [29], [16],

and [20]. Existing solutions of the two-sided inequality are based on elimination tech-

niques that successively simplify the problem by eliminating scalar inequalities [5],

discrete algorithms that examine subsets of indices of rows and columns of the ma-

trices involved [30], [29], reduction procedures that transform the problem into a set

of problems of lower dimension [27], and other approaches.

Although the number of algorithmic methods continues to grow, the derivation of

direct, analytical solutions of two-sided inequalities and equations is still a challenging

problem. A complete solution in closed form is known only for the inequalityAx 6 x,

which is a special case of the two-sided inequality, where the matrix on the right-

hand side is reduced to B = I [23], [24] (see also [28], [14], [29]). Application of

this solution in combination with algorithmic techniques seems to be promising to

handle the inequality in the general case.

As an example of this combined approach, one can consider the solution based on

matrix sparsification techniques in [25], [26]. Specifically in [26] a complete solution

is derived for the inequality with a reduced left-hand side in the form x 6 Bx, which

replaces this inequality by a collection of inequalities with the reduced right-hand

side, each solvable in explicit form, and then combines the solutions into one.

In this paper we extend the above solution of the inequality x 6 Bx to handle the

general two-sided inequality Ax 6 Bx. We follow an approach which uses sparse

matrices to construct a family of solution subsets, each defined by a sparse matrix

obtained from the matrix B by setting some of its entries to zero. All solutions are

then combined to present the result in a parametric form in terms of a matrix whose

columns compose a complete system of generators for the solution.

Since the brute-force production of the subsets results in exponential growth of the

number of subsets to examine, we propose a backtracking algorithm that produces

the subsets in an economic way to avoid excess computation.

The paper is organized as follows. Section 2 presents a short introduction into

the tropical algebra to provide an overview of the basic facts, symbols and results

used in the subsequent sections. In Section 3, we formulate the problem and make

some observations on the solutions. The main result is included in Section 4, which

provides a complete solution of the two-sided inequality. In Section 5, we discuss the

computational implementation of the solution, and describe a procedure of generating

solution sets. Section 6 offers numerical examples to illustrate the results.
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2. Preliminary definitions, notation and results

We start with a brief overview of basic definitions, notation and preliminary results

of tropical algebra, which underlie the solutions presented below. For further details

one can consult e.g. [3], [11], [21], [17], [19], [18], and [4].

2.1. Idempotent semifield. Consider a nonempty set X that is closed under

addition ⊕ and multiplication ⊗, and has zero 0 and one b as the neutral elements of

the operations ⊕ and ⊗, respectively. It is assumed that (X,⊕, 0) is a commutative

idempotent monoid, (X\{0},⊗, b) is an Abelian group, and multiplication distributes

over addition. The system (X,⊕,⊗, 0, b) is referred to as the idempotent semifield.

Integer powers specify repeated multiplication: 0
p = 0, x0 = b, xp = x⊗xp−1 and

x−p = (x−1)p, where x−1 is the inverse of x, for any nonzero x ∈ X and natural p.

The integer powers are assumed to extend to powers with rational exponents. In

what follows, the multiplication symbol ⊗ is omitted to save writing.

The idempotent addition induces a partial order on X such that x 6 y if and

only if x ⊕ y = y. With respect to this order, the addition possesses the extremal

properties (the majority law of addition) in the form of the inequalities x 6 x ⊕ y

and y 6 x ⊕ y satisfied for any x, y ∈ X. Furthermore, addition and multiplication

are isotone, which means that the inequality x 6 y yields x⊕ z 6 y⊕ z and xz 6 yz

for any z. The inversion is antitone: x 6 y results in x−1 > y−1 for x, y 6= 0. Finally,

the inequality x ⊕ y 6 z is equivalent to the pair of inequalities x 6 z and y 6 z.

The partial order is assumed to extend to a total order to make X linearly ordered.

An example of idempotent semifield under consideration is the real semifield

Rmax,+ = (R ∪ {−∞},max,+,−∞, 0) which is often called (max,+)-algebra. In

this semifield we have the operations defined as ⊕ = max and ⊗ = +, and the neu-

tral elements as 0 = −∞ and b = 0. Furthermore, the inverse x−1 of x ∈ R coincides

with the opposite number −x in standard arithmetic. The power xy corresponds

to the arithmetic product xy which is defined for all x, y ∈ R. Finally, the order

induced by idempotent addition agrees with the natural linear order on R.

2.2. Matrices and vectors. The set of matrices with m rows and n columns

over X is denoted by Xm×n. A matrix with all entries equal to 0 is the zero matrix de-

noted by 0. A matrix is called row-regular if it has no rows with all entries equal to 0.

The addition and multiplication of conforming matrices, and multiplication of

matrices by scalars follow the standard rules where the arithmetic addition and

multiplication are replaced by the scalar operations ⊕ and ⊗.

For any nonzero matrix A = (aij) ∈ X
m×n, the multiplicative inverse transpose

(or the conjugate [9], [11]) is the matrix A− = (a−ij) ∈ X
n×m, where a−ij = a−1

ji if

aji 6= 0, and a−ij = 0 otherwise.
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Properties of scalar operations with respect to the order relations are extended to

the matrix operations where the relations are interpreted componentwise.

A square matrix with b on the diagonal and 0 elsewhere is the identity matrix

denoted by I. The non-negative integer powers of a square nonzero matrix A are

defined in the usual way: A0 = I and Ap = AAp−1 for any natural p.

The trace of a matrix A = (aij) ∈ X
n×n is given by trA = a11 ⊕ . . . ⊕ ann. The

trace possesses usual properties, specifically it is invariant under cyclic permutations:

tr(AB) = tr(BA) for any matrices A and B of compatible sizes.

Any matrix that consists of one column (row) forms a column (row) vector. A vec-

tor with all elements equal to 0 is the zero vector. For the sake of simplicity, the zero

vector is denoted by the same symbol as the zero matrix 0. Any vector x without

zero elements is called regular, which can be expressed as x > 0.

All vectors below are considered column vectors unless transposed. The set of

column vectors over X with n elements is denoted by Xn.

A row-regular matrix that has exactly one nonzero entry in each row is called

strictly row-monomial [8]. The next statement describes properties of these matrices.

Lemma 2.1. If a matrix A is strictly row-monomial, then A−A 6 I 6 AA−.

P r o o f. To verify the first inequality A−A 6 I, we show that it holds for each

pair of rows of the matrices on both sides. Consider the matrix A−, and note that

each row with all entries equal to 0, if it exists in A−, yields the same zero row in

A−A on the left-hand side, which is trivially less than any row on the right.

Next, we check that every row of A− with nonzero entries produces a pair of

coinciding rows on both sides of the first inequality. The multiplication of such row

by the column of the same number in A sets the diagonal entry of this row in A−A

to b to make it equal to the corresponding entry in I. Moreover, this row must have

the other entries equal to 0 as in I, since otherwise the matrix A is to have more

than one nonzero entries in a row, which contradicts that A is row-monomial.

Considering that for any row-regular matrix A, all diagonal entries in AA− are

equal to b, we conclude that the second inequality I 6 AA− holds as well. �

Finally, note that if a matrix A is strictly row-monomial, then the inequality

Ax > y, where x and y are vectors, is equivalent to x > A−y. Indeed, we can

multiply the first inequality by A− on the left to obtain x > A−Ax > A−y, which

yields the second. At the same time, the multiplication of the second inequality by A

on the left produces the first inequality as Ax > AA−y > y.

2.3. Linear dependence. A vector b ∈ X
m is linearly dependent on vectors

a1, . . . ,an ∈ X
m if there exist scalars x1, . . . , xn ∈ X such that b = x1a1⊕. . .⊕xnan.

A vector b is collinear with a if b = xa for some scalar x.
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To test the linear dependence of vectors, various formal criteria [10], [13], [4] are

used based on existence conditions for solutions of the equation Ax = b, where A is

a matrix built from the vectors a1, . . . ,an. Specifically, the following result [22] (see

also [11]) offers a simple criterion, which requires no more than O(mn) operations.

Lemma 2.2. A vector b is linearly dependent on vectors a1, . . . ,an if and only

if the condition (A(b−A)−)−b = b holds with matrix A = (a1, . . . ,an).

A system of vectors a1, . . . ,an is linearly dependent if at least one vector is linearly

dependent on others. Two systems of vectors are equivalent if each vector of one

system is linearly dependent on vectors of the other system.

Consider a system a1, . . . ,an that may have linearly dependent vectors. To con-

struct an equivalent linearly independent system, we can use a procedure that suc-

cessively reduces the system until it becomes linearly independent (see e.g. [13], [4]).

The procedure applies the criterion provided by Lemma 2.2 to examine the vectors

one by one. It removes a vector if it is linearly dependent on others, or leaves the

vector in the system otherwise. As one can see, the procedure yields a linearly inde-

pendent system equivalent to the original one with no more than O(mn2) operations.

2.4. Solution of vector inequality. We now present a complete solution to

a two-sided vector inequality of a special form. Given a matrix A ∈ X
n×n, consider

the problem to find regular vectors x ∈ X
n to satisfy the inequality

(2.1) Ax 6 x.

The problem is examined in different contexts under various assumptions in some

publications, including [28], [14], [29], where similar solutions based on the concept

of the Kleene star operator (the Kleene closure) are given.

To describe a solution in explicit form, we introduce a function that maps any

square matrix A ∈ X
n×n onto the scalar Tr(A) = trA⊕ . . .⊕ trAn.

Consider the operator (the Kleene star) which takes the matrix A to the series

A∗ = I ⊕A⊕A2 ⊕ . . .

Suppose the condition Tr(A) 6 b holds, which implies that each cyclic product

of entries in A, including the diagonal entries, is less than or equal to b. Then, the

series converges (see e.g. [7], [10] and also [31]) so that the Kleene star becomes

A∗ = I ⊕A⊕ . . .⊕An−1.

As a consequence, the inequality A∗ > Ak is then valid for all integers k > 0.
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The next result offers a complete solution in a parametric form [23], [24].

Theorem 2.1. For any matrix A the following statements hold.

(1) If Tr(A) 6 b, then all regular solutions to (2.1) are given in parametric form

by x = A∗u, where u is any regular vector.

(2) If Tr(A) > b, then there is only the trivial solution x = 0.

We note that the calculation of both the function Tr(A) and the matrix A∗ in the

theorem requires at most O(n4) operations if direct matrix computations are used,

and O(n3) operations with an application of the Floyd-Warshall algorithm.

3. Two-sided inequality

We are now in a position to formulate the problem of interest. Given matrices

A,B ∈ X
m×n, we need to find regular vectors x ∈ X

n that satisfy the inequality

(3.1) Ax 6 Bx.

It is not difficult to verify that the solution set of inequality (3.1) is closed under

vector addition and scalar multiplication. Indeed, let x and y be vectors such that

the inequalitiesAx 6 Bx andAy 6 By hold, and consider any vector z = αx⊕βy,

where α and β are scalars. Then we have Az = αAx⊕ βAy 6 αBx⊕ βBy = Bz,

which means that the vector z is a solution of inequality (3.1) as well.

Without loss of generality, we may assume that both matrices A and B are row-

regular. Otherwise, if the matrixA has a zero row, say row i, then the corresponding

scalar inequality ai1x1⊕ . . .⊕ainxn 6 bi1x1⊕ . . .⊕binxn trivially holds, and thus this

inequality can be removed, whereas row i is eliminated from both matrices. Let the

matrix A be row-regular and suppose the matrix B has a zero row i, which leads to

the inequality ai1x1⊕ . . .⊕ainxn 6 0. This inequality holds only if each unknown xj

with aij 6= 0 is set to zero, which results in the non-regular solution of no interest.

Under additional assumptions, some solutions of inequality (3.1) can be directly

obtained in explicit form. As an example, consider the next result.

Lemma 3.1. Let A and B be row-regular matrices such that Tr(B−A) 6 b.

Then inequality (3.1) has solutions given by

x = (B−A)∗u, u > 0.

760



P r o o f. By Theorem 2.1, the condition Tr(B−A) 6 b is equivalent to the

existence of regular solutions x of the inequality B−Ax 6 x. Moreover, all regular

solutions of this inequality are given by x = (B−A)∗u, where u is a regular vector

of parameters.

Since the matrix B is row-regular, and thus I 6 BB−, the multiplication of the

inequality B−Ax 6 x by B on the left yields Ax 6 BB−Ax 6 Bx, which shows

that all solutions of this inequality satisfy inequality (3.1) as well. �

4. Complete solution using sparse matrices

We now derive a complete solution of inequality (3.1) by applying a matrix sparsi-

fication technique to represent all solutions as a family of solution sets in parametric

form. Each member of the family is described by a generating matrix calculated

with a strictly row-monomial matrix obtained from the matrix B on the right-hand

side of (3.1). Then, we combine all solutions by using a single generating matrix.

To handle inequality (3.1), in a similar way as in [5], [30] we first set to 0 each

entry of the matrices A and B that do not affect the set of regular solutions. The

next statement introduces the sparsified matrices obtained as a result.

Lemma 4.1. Let A = (aij) and B = (bij) be row-regular matrices. Define the

sparsified matrices Â = (âij) and B̂ = (b̂ij) with the entries

(4.1) âij =

{
aij if aij > bij ;

0 otherwise;
b̂ij =

{
bij if bij > aij ;

0 otherwise.

Then, replacing the matrix A by Â and B by B̂ does not change the regular

solutions of inequality (3.1).

P r o o f. For each i = 1, . . . ,m, consider all nonzero solutions x1, . . . , xn ∈ X of

the inequality which corresponds to row i in the matrices A and B, and takes the

form

(4.2) ai1x1 ⊕ . . .⊕ ainxn 6 bi1x1 ⊕ . . .⊕ binxn.

Suppose that the condition aij 6 bij holds for some j = 1, . . . , n. Then the

inequality aijxj 6 bijxj 6 bi1x1 ⊕ . . . ⊕ binxn is valid for all xj ∈ X, which shows

that the term aijxj cannot be greater than the right-hand side of inequality (4.2).

Observing that this term cannot violate (4.2), it can be eliminated by setting aij = 0.

If the condition aij > bij is satisfied, then the inequality aijxj > bijxj is valid for

all xj 6= 0. Since in this case the term bijxj does not contribute to the right-hand

side of (4.2), we can set bij = 0 without affecting all regular solutions. �
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As it is easy to see, the above replacement procedure requires O(mn) operations.

In what follows, the matrices Â and B̂ obtained from A and B according to (4.1)

are referred to as refined matrices of the inequality or simply as refined matrices.

4.1. Solution using matrix sparsification. To derive a family of subsets that

describe all solutions of inequality (3.1), we state and prove the next theorem.

Theorem 4.1. Let A and B be refined row-regular matrices, and G be a strictly

row-monomial matrix obtained from B by fixing one nonzero entry in each row

while setting the others to 0. Denote by G the set of the matrices G which satisfy

the condition trHn 6 b, where H = G−(A⊕B).

Then, all regular solutions of inequality (3.1) are given by the conditions

(4.3) x = (I ⊕Hn−1)u, H = G−(A⊕B), G ∈ G, u > 0.

P r o o f. Let us show that any regular solution of inequality (3.1) is given by

conditions (4.3) and vice versa. We take a regular solution x = (xj) of (3.1) with

matrices A = (aij) and B = (bij), and examine, for certain p, the scalar inequality

(4.4) ap1x1 ⊕ . . .⊕ apnxn 6 bp1x1 ⊕ . . .⊕ bpnxn.

Our purpose is to reduce, under appropriate conditions, this inequality to a simpler

inequality with one term on the right, which presents a key component of the solution

approach. Suppose that inequality (4.4) holds for some x1, . . . , xn and consider the

sum on the right-hand side. Since the order defined by the relation 6 is linear,

we can pick out a term, say bpqxq, that is maximal among all terms, and thereby

produces the value of the sum. Then, we can replace (4.4) by two inequalities

bpqxq > bp1x1⊕ . . .⊕ bpnxn and bpqxq > ap1x1⊕ . . .⊕ apnxn, where bpq > 0. Finally,

we combine these inequalities into an equivalent inequality that is given by

(4.5) bpqxq > (ap1 ⊕ bp1)x1 ⊕ . . .⊕ (apn ⊕ bpn)xn.

Further assume that we select maximum terms in all scalar inequalities in (3.1)

and then substitute an inequality in the form of (4.5) for each scalar inequality.

Let G be a strictly row-monomial matrix that is formed from B by fixing the entry

which corresponds to the maximum term in each row, while setting the other entries

to 0. By using matrix G, the inequalities obtained for each row are combined into

the vector inequality Gx > (A⊕B)x. Since the matrix G is strictly row-monomial,

this vector inequality is equivalent to the inequality x > G−(A⊕B)x, which takes

the form x > Hx with the notation H = G−(A⊕B).
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By assumption, the inequality x > Hx has a regular solution x. Then it follows

from Theorem 2.1 that the condition Tr(H) 6 b holds, whereas all regular solutions

of the inequality are given by x = H∗u with a regular vector u.

Consider now a vector x = H∗u, where u is a regular vector, andH = G−(A⊕B)

with a strictly row-monomial matrix G such that Tr(H) 6 b. To verify that x

satisfies inequality (3.1), we note that H∗ > Hk for all k > 0 since Tr(H) 6 b, and

henceH∗ > H⊕. . .⊕Hn = HH∗. Moreover, we see thatH = G−(A⊕B) > G−A

and BG− > GG− > I as B > G. Using these inequalities yields

BH∗ > BHH∗ > BG−AH∗ > AH∗.

Therefore, we see that Bx = BH∗u > AH∗u = Ax, and thus x satisfies (3.1).

It remains to verify that H∗ = I ⊕Hn−1 and Tr(H) = trHn so as to represent

the solution as in the statement of the theorem. Since H = G−(A ⊕B) > G−B,

we have H2 = (G−A ⊕G−B)2 > G−B(G−A ⊕G−B) > G−BG−(A ⊕B). By

observing that BG− > I, we further obtain

H2 > G−BG−(A⊕B) > G−(A⊕B) = H ,

and then conclude that Hk+1 > Hk for all k > 1. As a result, the equalities

H∗ = I ⊕H ⊕ . . .⊕Hn−1 = I ⊕Hn−1 and Tr(H) = trH ⊕ . . .⊕ trHn = trHn

are valid, which completes the proof. �

Let us note that to find one solution subset according to Theorem 4.1, we need

to solve inequality (2.1) with the matrix H = G−(A ⊕ B). Since H is a square

matrix of order n, one can obtain the solution in O(n4) operations by direct matrix

multiplications or in O(n3) with the Floyd-Warshall algorithm. By observing that

Hk = G−F k−1(A ⊕B) holds for all k > 1, where F = (A ⊕B)G− is a matrix of

order m, we refine these estimates of complexity by replacing n by min(m,n).

In the simplest case when the refined matrixB has no more than one nonzero entry

in each column, which yields only one strictly row-monomial matrix G, the above

estimates determine the overall complexity of complete solution. As the number of

nonzero entries in the matrixB rises, the number of matricesG that can be obtained

from B increases very rapidly, and becomes exponentially large in the worst case.

As a worst case for the brute-force generation of the row-monomial matrices, one

can consider the case of a matrix B without zero entries, which formally yields nm

matrices G. To overcome the problem of increasing complexity, we propose below

a backtracking procedure intended to reduce the number of matrices G to examine.

4.2. Closed-form representation of solution. The next result shows how to

represent all solutions in a compact parametric form using a single generating matrix.
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Corollary 4.1. Under the conditions and notations of Theorem 4.1, denote by S

the matrix whose columns form the maximal independent system of columns in the

matrices I ⊕Hn−1 = I ⊕ (G−(A⊕B))n−1 for all G ∈ G.

Then, all regular solutions of inequality (3.1) are given in parametric form by

x = Sv, v > 0.

P r o o f. By Theorem 4.1, the solution set is the union of sets, each generated by

the columns of the matrix I⊕Hn−1 = I⊕(G−(A⊕B))n−1 for allG ∈ G. Observing

that the solution set is closed under vector addition and scalar multiplication, we

conclude that this union is the linear span of all columns in the generating matrices.

Furthermore, we reduce the set of columns by eliminating those which are linearly

dependent on others, and thus can be deleted without affecting the entire linear span.

With the matrix S formed from the reduced set of columns, all solutions are given

in parametric form by x = Sv, where v is any regular vector of appropriate size. �

If only one matrixG is available, the derivation of the generating matrix S reduces

to checking the linear dependence of columns of one matrix I⊕Hn−1, which requires

O(n3) operations. It is not difficult to see that in the worst case, the computational

complexity increases as square of the number of matrices G obtained.

5. Computational implementation of solution

To derive a complete solution of two-sided inequality (3.1), we offer a solution

procedure that involves: (i) preliminary refinement of the matrices, (ii) generation

of the solution sets, and (iii) derivation of the matrix which generates all solutions.

5.1. Refinement of matrices. We begin the procedure with the refinement of

the matrices according to Lemma 4.1. Suppose the inequality, after refinement, gets

zero rows in the matrix A or B. Then, as it was shown before, one can reduce the

inequality by deleting some rows in A and B or conclude that there is no regular

solution.

Provided that both matrices A and B upon refinement are row-regular, the pro-

cedure passes to the next step of generating the family of solution sets.

5.2. Generation of solution sets. Consider the solution offered to inequal-

ity (3.1) by Theorem 4.1 in the form of a family of solution sets and note that each

member of the family involves a strictly row-monomial matrix G to calculate the

corresponding generating matrix I ⊕Hn−1 from the matrix H = G−(A⊕B). The

matricesG are successively obtained from the matrix B by setting to 0 all but one of

the entries in each row ofB. Since the number of the strictly row-monomial matrices
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may be excessively large, we propose a backtracking procedure that aims at rejecting

in advance those matrices which cannot serve to provide a solution.

The procedure consecutively checks rows i = 1, . . . , n of the matrix B to find and

fix, over all j = 1, . . . , n, a nonzero entry bij , while setting the other entries to 0. The

selection of a nonzero entry bpq in row p implies that the term bpqxq is taken maximal

over all q, which establishes relations between xq and xj with j 6= q. We exploit these

relations to modify entries in the remaining rows by setting them to 0 provided that

these entries cannot affect the corresponding scalar inequalities in (3.1). One step

of the procedure is completed when a nonzero entry is fixed in the last row, which

makes a new strictly row-monomial matrix G fully defined.

A new step of the procedure is to take the next nonzero entry in the current row

if such an entry exists. Otherwise, the procedure has to go back to the previous row

to cancel the last selection of nonzero entry and roll back all modifications made

to the matrix in accordance with this selection. Next, the procedure fixes a new

nonzero entry in this row, if it exists, or continues back to the previous rows until

an unexplored nonzero entry is found. On selection of a new entry, the procedure

continues forward to modify and fix nonzero entries in the next rows.

The procedure is repeated until no more nonzero entries can be selected in the

first row. A description of the procedure in recursive form is given in Algorithm 5.1.

To describe the row modification routine in the procedure in more detail, suppose

there are nonzero entries fixed in rows i = 1, . . . , p−1, and the procedure now selects

an entry bpq in row p. Since this selection implies that bpqxq is assumed to be the

maximum term with bpq > 0 on the right-hand side of inequality (4.4), it follows

from (4.5) that the inequality xq > b−1
pq (apj ⊕ bpj)xj is satisfied for all j = 1, . . . , n.

We use two criteria to test whether an entry in the matrix B can be set to 0 in

the course of the building of a row-monomial matrix. Consider inequality (4.2) for

i = p+1, . . . , n. Provided the condition biqb
−1
pq (apj⊕bpj) > aij holds for all j, the term

biqxq alone makes this inequality true because biqxq > biqb
−1
pq (apj ⊕ bpj)xj > aijxj .

Observing that the other terms do not contribute to the inequality, the entries bij
can be set to 0 for all j 6= q without affecting the solution set under construction.

If the above condition is not valid, verify the condition biqb
−1
pq (apj ⊕ bpj) > bij

for every j 6= q. Suppose that the last condition holds for some j, and therefore

biqxq > biqb
−1
pq (apj ⊕ bpj)xj > bijxj . Since the term bijxj is now dominated by biqxq,

it does not affect the right-hand side of (4.2), which allows us to set bij = 0.

Consider the worst case for the brute-force generation of strictly row-monomial

matrices, which occurs when the matrix B has no zero entries. It is not difficult to

see that an application of the first criterion results in only n matrices G, each formed

from B by fixing the entries of one column and replacing the other entries by 0.
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Algorithm 5.1 GenerateSparseMatrices(B,G)

procedure Backtrack(B, p, q)

comment: Sparsify rows i > p in the matrix G = (bij)

if p 6 m

then





comment: Verify whether bpq can be fixed in row p

if bpq 6= 0

then





comment: Copy B into the matrix B′ = (b′ij)

B′ ← B

comment: Sparsify row p in B′ with b′pq fixed

for each j 6= q do b′pj ← 0

comment: Sparsify rows i > p in B′

for i← p+ 1 to m

do





flag← true

for each j 6= q

do





if biqb
−1
pq (apj ⊕ bpj) < aij

then

{
flag← false

break
if flag

then for each j 6= q do b′ij ← 0

else





for each j 6= q

do

{
if biqb

−1
pq (apj ⊕ bpj) > bij

then b′ij ← 0

if p = m

then

{
comment: Store B′ if completed

G ← G ∪ {B′}

else





comment: Apply recursion otherwise

for j ← 1 to n

do Backtrack(B′, p+ 1, j)
else return

main

comment: Generate the set G of sparse matrices from the matrix B

global m,n,A,G = ∅

for j ← 1 to n

do Backtrack(B, 1, j)
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5.3. Derivation of solution matrix. The solution matrix S is formed by com-

bining all columns of the matrices which generate the members of the solution family.

To eliminate linear dependent columns, the procedure examines each new generating

matrix as it becomes available. A column of this matrix is accepted to extend the

matrix S if it is linearly independent of columns in S or rejected otherwise.

6. Numerical examples

To illustrate the computational technique involved in the solution procedure, we

present example problems to solve inequality (3.1) in terms of the Rmax,+ semifield.

E x am p l e 6.1. Suppose that the matrices on the left- and right-hand sides of

the two-sided inequality are respectively given by

A0 =




0 2 3

0 −1 3

3 2 −1


 , B0 =




2 −1 2

1 0 2

−1 3 1


 ,

where we use the symbol 0 = −∞ to save writing.

To solve the inequality, we first replace the matrices A0 and B0 by the refined

matrices A and B, and calculate the sum of the refined matrices to obtain

A =




0 2 3

0 0 3

3 0 0


 , B =




2 0 0

1 0 0

0 3 1


 , A⊕B =




2 2 3

1 0 3

3 3 1


 .

We start deriving the strictly row-monomial matrices G by fixing the nonzero

entry b11 in the first row of the matrix B. Next, we apply two criteria to check if

any of the nonzero entries in the next rows can be replaced by zero.

Observing that b21b
−1

11 (a13⊕b13) = 2 < a23 = 3, we see that the first criterion does

not allow setting b22 to 0. At the same time, we have b21b
−1

11 (a12⊕b12) = 1 > b22 = 0,

which means that b22 can be set to 0 according to the second criterion.

Finally, two nonzero entries in the third row yield two matrices

G1 =




2 0 0

1 0 0

0 3 0


 , G2 =




2 0 0

1 0 0

0 0 1


 .

Furthermore, we form the multiplicative inverse transposes

G−

1 =



−2 −1 0

0 0 −3

0 0 0


 , G−

2 =



−2 −1 0

0 0 0

0 0 −1


 ,
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and then calculate the matrices

H1 = G−

1 (A⊕B) =




0 0 2

0 0 −2

0 0 0


 , H2 = G−

2 (A⊕B) =




0 0 2

0 0 0

2 2 0


 .

Next, we evaluate the second and third powers of the matrix H1 to obtain

H2
1 = H3

1 =




0 0 2

0 0 2

0 0 0


 , trH3

1 = 0 = b,

which means that the matrix H1 satisfies the conditions of Theorem 4.1.

In contrast, the matrix H2 does not satisfy the conditions, because

H2
2 =




4 4 2

0 0 0

2 2 4


 , H3

2 =




4 4 6

0 0 0

6 6 4


 , trH3

2 = 4 > b.

As a result, we take the matrix H1 to form the generating matrix

I ⊕H2
1 =




0 0 2

0 0 2

0 0 0


 .

Since the first two columns in this matrix coincide, we drop one of them to repre-

sent all regular solutions of the two-sided inequality as

x = Sv, S =




0 2

0 2

0 0


 , v > 0.

In terms of conventional algebra, the solution takes the parametric form

x1 = x2 = max(v1, v2 + 2), x3 = v2, v1, v2 ∈ R,

or the equivalent compact form

x1 = x2 > x3 + 2.

Note that we can verify the obtained result by solving the problem from scratch.

In the usual setting, inequality (3.1) corresponds to the system

max{x2+2, x3+3} 6 x1+2, x3+3 6 max{x1+1, x2}, x1+3 6 max{x2+3, x3+1}.
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The first inequality is equivalent to the pair of inequalities x2 + 2 6 x1 + 2 and

x3 + 3 6 x1 + 2, which yield x2 6 x1 and x3 + 1 6 x1. Since x2 6 x1, the right-

hand side of the second inequality becomes max{x1 + 1, x2} = x1 + 1, whereas the

inequality itself reduces to x3 + 2 6 x1, which replaces the inequality x3 + 1 6 x1.

In the third inequality, the condition x2 6 x1 makes the term x2+3 under the max

operator less than the left-hand side of this inequality. If the third inequality holds,

then this term cannot contribute to the right-hand side, and thus can be removed

to put the third inequality in the form x1 + 3 6 x2 + 3 or equivalently, in x1 6 x2.

By combining the last inequality with the inequalities x2 6 x1 and x3 + 2 6 x1, we

come back to the solution x1 = x2 > x3 + 2.

E x am p l e 6.2. Consider the inequality examined in [27], [29] with the refined

matrices

A =

(
0 0 0 0 4 2 6

0 5 6 0 0 0 2

)
, B =

(
0 1 5 0 0 0 0

3 0 0 0 2 4 0

)
.

To solve the problem, we first construct a set of strictly row-monomial matrices G

by selecting appropriate nonzero entries in the matrix B to fix and setting the other

entries to 0. Then, we test each matrix G to remove those which do not satisfy the

condition given by Theorem 4.1 for inclusion of the matrix into the set G of proper

matrices. Finally, we use the matrices G ∈ G to calculate the generating matrices,

and combine the columns in these matrices to produce a single generating matrix.

In the first row of the matrix B, we fix the entry b11 = 0 and set the other

nonzero entries to 0. Then, we verify whether nonzero entries other than b21 in the

second row can be replaced by 0. We begin with the first criterion which requires

the condition b21b
−1

11 (a1j ⊕ b1j) > a2j to hold for all j > 1. With j = 2, we have

b21b
−1

11 (a12 ⊕ b12) = 4 and a22 = 5, which makes this condition unsatisfied.

Next, we apply the second criterion to check the condition b21b
−1

11 (a1j⊕ b1j) > b2j .

Since b21b
−1

11 (a14 ⊕ b14) = 3 > b24 = 0, we set b24 = 0 according to this criterion. In

the same way, we put b25 = b26 = 0, which leads to a single matrix

G1 =

(
0 0 0 0 0 0 0

3 0 0 0 0 0 0

)
.

Let us fix the next entry b12 = 1. Since b22 = 0, we have b22b
−1

12 (a1j ⊕ b1j) = 0

for all j, and thus both conditions of the first and second criteria cannot hold for

nonzero entries of the second row in B to allow setting them to 0.
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In this case, we have four matrices, each corresponding to a nonzero entry in the

second row of B, given by

G2 =

(
0 1 0 0 0 0 0

3 0 0 0 0 0 0

)
, G3 =

(
0 1 0 0 0 0 0

0 0 0 0 0 0 0

)
,

G4 =

(
0 1 0 0 0 0 0

0 0 0 0 2 0 0

)
, G5 =

(
0 1 0 0 0 0 0

0 0 0 0 0 4 0

)
.

For the same reason, the selection of the entry b13 = 5 does not reduce the number

of nonzero entries in the second row of B and yields another four matrices

G6 =

(
0 0 5 0 0 0 0

3 0 0 0 0 0 0

)
, G7 =

(
0 0 5 0 0 0 0

0 0 0 0 0 0 0

)
,

G8 =

(
0 0 5 0 0 0 0

0 0 0 0 2 0 0

)
, G9 =

(
0 0 5 0 0 0 0

0 0 0 0 0 4 0

)
.

We now form the matrices Hi = G−

i (A ⊕B) and examine their traces to decide

whether the matrix Gi is accepted or rejected for each i = 1, . . . , 9. Since the trace

is invariant under cyclic permutations, we replace the traces for Hi by those of the

matrices Fi = (A⊕B)G−

i which have a lower order to simplify calculations.

First, we take the matrix G1 and calculate

G−

1 =




0 −3

0 0

0 0

0 0

0 0

0 0

0 0




, A⊕B =

(
0 1 5 0 4 2 6

3 5 6 0 2 4 2

)
.

Then, we successively obtain

F1 = (A⊕B)G−

1 =

(
0 −3

3 0

)
, F k

1 = F1, k > 1; trF1 = 0.

Observing that trH7
1 = trF 7

1 = 0 = b, we retain the matrix G1 to form the

generating matrix

S1 = I ⊕H6
1 = I ⊕G−

1 F
5
1 (A⊕B) =




0 2 5 0 4 2 6

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




.
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Next, we examine the matrix G2 to obtain

F2 = (A⊕B)G−

2 =

(
0 −3

4 0

)
, F 2

2 =

(
1 −3

4 1

)
, trF 2

2 = 1.

Since trH7
2 = trF 7

2 > trF 2
2 = 1 > 0 = b, the matrix G2 is rejected.

In the same way, we find

F3 =

(
0 0

4 0

)
, F 2

3 =

(
4 0

4 4

)
, trF 2

3 = 4,

F4 =

(
0 2

4 0

)
, F 2

4 =

(
6 2

4 6

)
, trF 2

4 = 6,

F5 =

(
0 −2

4 0

)
, F 2

5 =

(
2 −2

4 2

)
, trF 2

5 = 2,

and then conclude that the matrices G3, G4, and G5 are to be rejected as well.

Furthermore, for the matrix G6 we have

F6 =

(
0 −3

1 0

)
, F k

6 = F6, k > 1, trF6 = 0.

Taking into account that trH7
6 = trF 7

6 = 0, we accept the matrix G6, which

yields the generating matrix

S6 = I ⊕H6
6 = I ⊕G−

6 F
6
6 (A⊕B) =




0 2 3 −2 2 1 4

0 0 0 0 0 0 0

−5 −3 0 −5 −1 −3 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




.

The matrices G7 and G8 are rejected, because

F7 =

(
0 0

1 0

)
, F 2

7 =

(
1 0

1 1

)
, trF 2

7 = 1,

F8 =

(
0 2

1 0

)
, F 2

8 =

(
3 2

1 3

)
, trF 2

8 = 3.

Finally, to decide on the matrix G9, we obtain

F9 =

(
0 −2

1 0

)
, F k

9 = F9, k > 1, trH9 = 0.
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As trH7
9 = 0 = b, we take G9 to produce the generating matrix

S9 = I ⊕H6
9 = I ⊕G−

9 F
6
9 (A⊕B) =




0 0 0 0 0 0 0

0 0 0 0 0 0 0

−4 −2 0 −5 −1 −3 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

−1 1 2 −3 1 0 3

0 0 0 0 0 0 0




.

Now, it remains to combine the columns of the matrices S1, S6 and S9 into

one set of columns, and then refine this set by removing those columns which are

linearly dependent on others. First, we take the columns from S1 and note that they

constitute a linearly independent system since each column starting from the second

has a nonzero element which is the only nonzero element in its row.

Next, we find columns in S6 that are independent of columns in S1, and thus have

to be included in the set of generators. To apply the criterion of Lemma 2.2 to all

columns of S6 simultaneously, we evaluate the matrix

(S1(S
−

6 S1)
−)−S6 =




0 2 5 0 4 2 6

−2 0 3 −2 2 0 4

−3 −1 2 −3 1 −1 3

2 4 7 2 6 4 8

−2 0 3 −2 2 0 4

−1 1 4 −1 3 1 5

−4 −2 1 −4 0 −2 2




,

and inspect its diagonal for the entries equal to 0 = b.

Since the first two diagonal elements are zeros, we drop the corresponding two

columns of S6. Adding the other columns to the matrix S1 yields the matrix

S1,6 =




0 2 5 0 4 2 6 3 −2 2 1 4

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −5 −1 −3 1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0




.
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We examine the columns of the matrix S9 and calculate the matrix

(S1,6(S
−

9 S1,6)
−)−S9 =




0 2 4 −1 3 1 5

−2 0 2 −3 1 −1 3

−3 −1 0 −5 −1 −2 1

2 4 5 0 4 3 6

−2 0 1 −4 0 −1 2

−1 1 3 −2 2 0 4

−4 −2 −1 −6 −2 −3 0




.

Observing that all diagonal entries are equal to 0 = b, all columns in the matrix S9

can be dropped. As a result, we set S = S1,6 to describe all regular solutions of the

inequality in the form

x = Su, u > 0.

Finally, note that the number of columns in the generating matrix S is 12, which

is less than the number of elements in the sets of generating vectors, obtained in [30],

[29]. At the same time, it is not difficult to verify using the criterion of Lemma 2.2

that the vectors in both these sets are linearly dependent on columns in the matrix S,

and thus cannot generate solutions other than those already produced by S.

7. Conclusion

In this paper, we have examined a two-sided inequality (where the unknown vec-

tor multiplied by given matrices appears on both sides) in a general setting of an

arbitrary idempotent semifield. There are some algorithmic techniques and com-

putational procedures developed in the last years to solve the inequality, which,

however, cannot guarantee polynomial-time complexity of the solution. This makes

it rather expedient and advisable to develop new methods and techniques that could

complement and supplement existing solutions.

To solve the inequality, we used an approach that transforms it into a collection

of more simple inequalities with matrices obtained by sparsification of a given ma-

trix. These inequalities are solved analytically in explicit form, which yields a com-

plete solution of the two-sided inequality given by a family of sets, each defined in

a parametric form by a generating matrix. Since in practical problems the number

of sparse matrices to define the members of the family can be sufficiently large, we

have proposed a backtracking procedure which discards matrices that do not produce

solutions, and hence reduces the computational cost.
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Possible lines of future research include a thorough evaluation of the computa-

tional complexity of the solution and an extension of the results to solve two-sided

equations.

A c k n ow l e d gm e n t s. The author sincerely thanks the anonymous referee for

the insightful comments, valuable suggestions and corrections, which have been in-
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important references and for giving a simple solution for Example 6.1 from scratch.
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