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FRACTIONAL q-DIFFERENCE EQUATIONS
ON THE HALF LINE

Saïd Abbasa, Mouffak Benchohrab,c, Nadjet Laledjb, and Yong Zhoud

Abstract. This article deals with some results about the existence of solutions
and bounded solutions and the attractivity for a class of fractional q-difference
equations. Some applications are made of Schauder fixed point theorem in
Banach spaces and Darbo fixed point theorem in Fréchet spaces. We use
some technics associated with the concept of measure of noncompactness and
the diagonalization process. Some illustrative examples are given in the last
section.

1. Introduction

Fractional differential equations have recently been applied in various areas of
engineering, mathematics, physics, and other applied sciences [4, 6, 7, 24, 31, 29,
30, 32] and the references therein. Recently, considerable attention has been given
to the existence of solutions of initial and boundary value problems for fractional
differential equations and inclusions with Caputo fractional derivative; [6, 23].

Fractional q-difference equations initiated in the beginning of the 19th century
[8, 15], and received significant attention in recent years. Some interesting details
about initial and boundary value problems of q-difference and fractional q-difference
equations can be found in [10, 11, 19, 20] and references therein.

In [1, 2, 3, 5, 6], Abbas et al. presented some results on the local and global
attractivity of solutions for some classes of fractional differential equations involving
both the Riemann-Liouville and the Caputo fractional derivatives by employing
some fixed point theorems. Motivated by the above papers, in this article we discuss
the existence and the attractivity of solutions for the following functional fractional
q-difference equation
(1) (cDα

q u)(t) = f
(
t, u(t)

)
; t ∈ R+ := [0,+∞) ,

with the initial condition
(2) u(0) = u0 ,
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where q ∈ (0, 1), α ∈ (0, 1], u0 ∈ R, f : R+ ×R→ R is a given continuous function,
and cDα

q is the Caputo fractional q-difference derivative of order α.
Next, by using a generalization of the classical Darbo fixed point theorem for

Fréchet spaces associated with the concept of measure of noncompactness, we
discuss the existence of solutions for the problem (1)–(2) in Fréchet spaces, where
u0 ∈ E, f : R+×E → E is a given continuous function, and E is a real (or complex)
Banach space with a norm ‖ · ‖.

Finally, we discuss the existence of bounded solutions for the problem (1)–(2) on
R+, by applying Schauder’s fixed point theorem associated with the diagonalization
process.

This paper initiates the study of Caputo fractional q-difference equations in
Fréchet spaces, the attractivity and the boundedness of the solutions of fractional
q-difference equations on the half line.

2. Preliminaries

Let I := [0, T ]; T > 0. Consider the Banach space C(I) := C(I,R) of continuous
functions from I into R equipped with the usual supremum (uniform) norm

‖u‖∞ := sup
t∈I
|u(t)| .

As usual, L1(I) denotes the space of measurable functions v : I → R which are
Lebesgue integrable with the norm

‖v‖1 =
∫ T

0
|v(t)| dt .

Let us recall some definitions and properties of fractional q-calculus. For a ∈ R, we
set

[a]q = 1− qa

1− q .

The q analogue of the power (a− b)n is
(a− b)(0) = 1 , (a− b)(n) = Πn−1

k=0(a− bqk) ; a, b ∈ R , n ∈ N .
In general,

(a− b)(α) = aαΠ∞k=0

( a− bqk

a− bqk+α

)
; a, b, α ∈ R .

Note that if b = 0, then a(α) = aα.

Definition 2.1 ([22]). The q-gamma function is defined by

Γq(ξ) = (1− q)(ξ−1)

(1− q)ξ−1 ; ξ ∈ R \ {0,−1,−2, . . .} .

Notice that the q-gamma function satisfies Γq(1 + ξ) = [ξ]qΓq(ξ).

Definition 2.2 ([22]). The q-derivative of order n ∈ N of a function u : I → R is
defined by (D0

qu)(t) = u(t),

(Dqu)(t) := (D1
qu)(t) = u(t)− u(qt)

(1− q)t ; t 6= 0, (Dqu)(0) = lim
t→0

(Dqu)(t) ,
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and
(Dn

q u)(t) = (DqD
n−1
q u)(t) ; t ∈ I, n ∈ {1, 2, . . .} .

Set It := {tqn : n ∈ N} ∪ {0}.

Definition 2.3 ([22]). The q-integral of a function u : It → R is defined by

(Iqu)(t) =
∫ t

0
u(s)dqs =

∞∑
n=0

t(1− q)qnu(tqn) ,

provided that the series converges.

We note that (DqIqu)(t) = u(t), while if u is continuous at 0, then
(IqDqu)(t) = u(t)− u(0) .

Definition 2.4 ([9]). The Riemann-Liouville fractional q-integral of order α ∈
R+ := [0,∞) of a function u : I → R is defined by (I0

qu)(t) = u(t), and

(Iαq u)(t) =
∫ t

0

(t− qs)(α−1)

Γq(α) u(s)dqs ; t ∈ I .

Note that for α = 1, we have (I1
qu)(t) = (Iqu)(t).

Lemma 2.5 ([27]). For α ∈ R+ and λ ∈ (−1,∞) we have

(Iαq (t− a)(λ)) = Γq(1 + λ)
Γq(1 + λ+ α) (t− a)(λ+α) ; 0 < a < t < T .

In particular,
(Iαq 1)(t) = 1

Γq(1 + α) t
(α) .

Definition 2.6 ([28]). The Riemann-Liouville fractional q-derivative of order
α ∈ R+ of a function u : I → R is defined by (D0

qu)(t) = u(t), and

(Dα
q u)(t) = (Ddαeq Idαe−αq u)(t) ; t ∈ I ,

where dαe is the smallest integer greater or equal to α.

Definition 2.7 ([28]). The Caputo fractional q-derivative of order α ∈ R+ of a
function u : I → R is defined by (CD0

qu)(t) = u(t), and

(CDα
q u)(t) = (Idαe−αq Ddαeq u)(t) ; t ∈ I .

Lemma 2.8 ([28]). Let α ∈ R+. Then the following equality holds:

(Iαq CDα
q u)(t) = u(t)−

dαe−1∑
k=0

tk

Γq(1 + k) (Dk
qu)(0) .

In particular, if α ∈ (0, 1), then
(Iαq CDα

q u)(t) = u(t)− u(0) .

From the above lemma, and in order to define the solution for the problem
(1)–(2), we conclude with the following lemma.
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Lemma 2.9. Let f : I × R → R be continuous. Then the problem (1)–(2) is
equivalent to the problem of obtaining the solutions of the integral equation

u(t) = u0 + (Iαq f(·, u(·)))(t) .

3. Existence and attractivity results

By BC we denote the Banach space of all bounded and continuous functions
from R+ into R equipped with the norm

‖u‖BC := sup
t∈R+

|u(t)| .

Let ∅ 6= Ω ⊂ BC, and let G : Ω→ Ω, and consider the solutions of the equation
(3) (Gu)(t) = u(t) .
We introduce the following concept of attractivity of solutions for equation (3).

Definition 3.1. Solutions of equation (3) are locally attractive if there exists
a ball B(u0, η) in the space BC such that, for arbitrary solutions v = v(t) and
w = w(t) of equation (3) belonging to B(u0, η) ∩ Ω, we have
(4) lim

t→∞
(v(t)− w(t)) = 0 .

When the limit (4) is uniform with respect to B(u0, η) ∩ Ω, solutions of equation
(3) are said to be uniformly locally attractive (or equivalently that solutions of (3)
are locally asymptotically stable).

Lemma 3.2 ([16, p. 62]). Let D ⊂ BC. Then D is relatively compact in BC if
the following conditions hold:

(a) D is uniformly bounded in BC,

(b) The functions belonging to D are almost equicontinuous on R+,
i.e. equicontinuous on every compact subset of R+,

(c) The functions from D are equiconvergent, that is, given ε > 0 there exists
T (ε) > 0 such that |u(t)− limt→∞ u(t)| < ε for any t ≥ T (ε) and u ∈ D.

In the sequel we will make use of the following fixed point theorems.

Theorem 3.3 (Schauder fixed point theorem, [21]). Let E be a Banach space and
Q be a nonempty bounded convex and closed subset of E, and let N : Q→ Q be a
compact and continuous map. Then N has at least one fixed point in Q.

In this section, we are concerned with the existence and the attractivity of
solutions of the problem (1)–(2).

Definition 3.4. By a solution of the problem (1)–(2) we mean a function u ∈ BC
that satisfies the equation (1) on I and the initial condition (2).

The following hypotheses will be used in the sequel.
(H1) The function f : R+ × R→ R is continuous.
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(H2) There exists a continuous function p : R+ → R+ such that
|f(t, u)| ≤ p(t) , for t ∈ R+ , and each u ∈ R ,

and
lim
t→∞

(Iαq p)(t) = 0 .
Set

p∗ = sup
t∈R+

(Iαq p)(t) .

Now, we present a theorem concerning the existence and the attractivity of
solutions of our problem (1)–(2).
Theorem 3.5. Assume that the hypotheses (H1) and (H2) hold. Then the problem
(1)–(2) has at least one solution defined on R+. Moreover, solutions of problem
(1)–(2) are uniformly locally attractive.
Proof. Consider the operator N such that, for any u ∈ BC,
(5) (Nu)(t) = u0 +

(
Iαq f

(
·, u(·)

))
(t) .

The operator N maps BC into BC Indeed the map N(u) is continuous on R+ for
any u ∈ BC, and for each t ∈ R+, we have

|(Nu)(t)| ≤ |u0|+
∫ t

0

(t− qs)(α−1)

Γq(α) |f
(
s, u(s)

)
|dqs

≤ |u0|+
∫ t

0

(t− qs)(α−1)

Γq(α) p(s)dqs

≤ |u0|+ p∗

= R .

Thus
(6) ‖N(u)‖BC ≤ R .
Hence, N(u) ∈ BC, and the operator N maps the ball

BR := B(0, R) = {w ∈ BC : ‖w‖BC ≤ R}
into itself.
From Lemma 2.9, the solutions of the problem (1)–(2) are the fixed points of
the operator N . We shall show that the operator N : BR → BR satisfies all the
assumptions of Theorem 3.3. The proof will be given in several steps.

Step 1. N is continuous.
Let {un}n∈N be a sequence such that un → u in BR. Then, for each t ∈ R+, we
have

(7) |(Nun)(t)− (Nu)(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α) |f
(
s, un(s)

)
− f

(
s, u(s)

)
|dqs .

Case 1. If t ∈ [0, T ], T > 0, then, since un → u as n→∞ and f is continuous, by
the Lebesgue dominated convergence theorem, equation (7) implies

‖N(un)−N(u)‖BC → 0 as n→∞ .
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Case 2. If t ∈ (T,∞), T > 0, then from the hypotheses and (7), we get

(8) |(Nun)(t)− (Nu)(t)| ≤ 2
∫ t

0

(t− qs)(α−1)

Γq(α) p(s)dqs .

Since un → u as n→∞ and (Iαq p)(t)→ 0 as t→∞, then (8) gives

‖N(un)−N(u)‖BC → 0 as n→∞ .

Step 2. N(BR) is uniformly bounded.
This is clear since N(BR) ⊂ BR and BR is bounded.

Step 3. N(BR) is equicontinuous on every compact subset [0, T ] of R+; T > 0.
Let t1, t2 ∈ [0, T ], t1 < t2, and let u ∈ BR. Set p̃∗ = sup

t∈[0,T ]
p(t). Then we have

|(Nu)(t2)− (Nu)(t1)| ≤
∫ t1

0

|(t2 − qs)(α−1) − (t1 − qs)(α−1)|
Γq(α) |f

(
s, u(s)

)
|dqs

+
∫ t2

t1

|(t2 − qs)(α−1)|
Γq(α) |f

(
s, u(s)

)
|dqs

≤ p̃∗
∫ t1

0

|(t2 − qs)(α−1) − (t1 − qs)(α−1)|
Γq(α) dqs

+ p̃∗

∫ t2

t1

|(t2 − qs)(α−1)|
Γq(α) dqs .

As t1 → t2, the right-hand side of the above inequality tends to zero.

Step 4. N(BR) is equiconvergent.
Let t ∈ R+ and u ∈ BR. Then we have

|(Nu)(t)| ≤ |u0|+
∫ t

0

(t− qs)(α−1)

Γq(α) |f(s, u(s))|dqs

≤ |u0|+
∫ t

0

(t− qs)(α−1)

Γq(α) p(s)dqs

≤ |u0|+ (Iαq p)(t).

Since (Iαq p)(t)→ 0, as t→ +∞, we get

|(Nu)(t)| → |u0|, as t→ +∞ .

Hence,
|(Nu)(t)− (Nu)(+∞)| → 0 , as t→ +∞ .

As a consequence of Steps 1 to 4, together with the Lemma 3.2, we can conclude
that N : BR → BR is continuous and compact. From an application of Schauder’s
theorem (Theorem 3.3), we deduce that N has a fixed point u which is a solution
of the problem (1)–(2) on R+.

Step 5. The uniform local attractivity of solutions.
Let us assume that u1 is a solution of problem (1)–(2) with the conditions of this
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theorem. Taking u ∈ B(u1, 2p∗), we have
|(Nu)(t)− u1(t)| = |(Nu)(t)− (Nu1)(t)|

≤
∫ t

0

(t− qs)(α−1)

Γq(α) |f(s, u(s))− f(s, u1(s))|dqs

≤ 2
∫ t

0

(t− qs)(α−1)

Γq(α) p(s)dqs

≤ 2p∗ .
Thus, we get

‖N(u)− u1‖BC ≤ 2p∗ .
Hence, we obtain that N is a continuous function such that

N(B(u1, 2p∗)) ⊂ B(u1, 2p∗) .
Moreover, if u is a solution of problem (1)–(2), then

|u(t)− u1(t)| = |(Nu)(t)− (Nu1)(t)|

≤
∫ t

0

(t− qs)(α−1)

Γq(α) |f(s, u(s))− f(s, u1(s))| ds

≤ 2(Iαq p)(t) .
Thus

|u(t)− u1(t)| ≤ 2(Iαq p)(t)→ 0 as t→∞ .

Consequently, all solutions of problem (1)–(2) are uniformly locally attractive. �

4. Existence results in Fréchet spaces

Let X := C(R+, E) be the Fréchet space of all continuous functions v from R+
into a Banach space (E, ‖ · ‖), equipped with the family of seminorms

‖v‖n = sup
t∈[0,n]

‖v(t)‖ ; n ∈ N∗ := N \ {0} ,

and the distance

d(u, v) =
∞∑
n=1

2−n ‖u− v‖n
1 + ‖u− v‖n

; u, v ∈ X .

Definition 4.1. A nonempty subset B ⊂ X is said to be bounded if
sup
v∈B
‖v‖n <∞ ; for n ∈ N∗ .

We recall the following definition of the notion of a sequence of measures of
noncompactness [17, 18].

Definition 4.2. Let MF be the family of all nonempty and bounded subsets of a
Fréchet space F . A family of functions {µn}n∈N where µn : MF → [0,∞) is said to
be a family of measures of noncompactness in the real Fréchet space F if it satisfies
the following conditions for all B,B1, B2 ∈MF :
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(a) {µn}n∈N is full, that is: µn(B) = 0 for n ∈ N if and only if B is precompact,
(b) µn(B1) ≤ µn(B2) for B1 ⊂ B2 and n ∈ N,
(c) µn(ConvB) = µn(B) for n ∈ N,
(d) If {Bi}i=1,··· is a sequence of closed sets from MF such that Bi+1 ⊂ Bi;
i = 1, . . . and if lim

i→∞
µn(Bi) = 0, for each n ∈ N, then the intersection set

B∞ := ∩∞i=1Bi is nonempty.

Example 4.3 ([17, 26]). For B ∈MX , x ∈ B, n ∈ N and ε > 0, let us denote by
ωn(x, ε) the modulus of continuity of the function x on the interval [0, n]; that is,

ωn(x, ε) = sup{‖x(t)− x(s)‖ : t, s ∈ [0, n], |t− s| ≤ ε} .

Further, let us put

ωn(B, ε) = sup{ωn(x, ε) : x ∈ B} ,
ωn0 (B) = lim

ε→0+
ωn(B, ε) ,

and

µn(B) = ωn0 (B) + sup
t∈[0,n]

µ
(
B(t)

)
,

where µ is the Kuratowski measure of noncompactness on the space X.
The family of mappings {µn}n∈N where µn : MX → [0,∞), satisfies the condi-

tions (a)–(d) from Definition 4.2.

Lemma 4.4 ([14]). If Y is a bounded subset of a Banach space F, then for each
ε > 0, there is a sequence {yk}∞k=1 ⊂ Y such that

µ(Y ) ≤ 2µ({yk}∞k=1) + ε ,

where µ is the Kuratowski measure of noncompactness on F .

Lemma 4.5 ([25]). Let E be a Banach space, and {uk}∞k=0 ⊂ L1([0, n], E) be a
uniformly integrable sequence, then µ({uk}∞k=1) is measurable, and

µ
({∫ t

0
uk(s)ds

}∞
k=1

)
≤ 2

∫ t

0
µ({uk(s)}∞k=1) ds , for each t ∈ [0, n] ,

where µ is the Kuratowski measure of noncompactness on E.

Definition 4.6. Let Ω be a nonempty subset of a Fréchet space F , and let
A : Ω → F be a continuous operator which transforms bounded subsets of onto
bounded ones. One says that A satisfies the Darbo condition with constants {kn}n∈N
with respect to a family of measures of noncompactness {µn}n∈N, if

µn
(
A(B)

)
≤ knµn(B)

for each bounded set B ⊂ Ω and n ∈ N.
If kn < 1; n ∈ N then A is called a contraction with respect to {µn}n∈N.

In the sequel we will make use of the following generalization of the classical
Darbo fixed point theorem for Fréchet spaces.



CAPUTO FRACTIONAL q-DIFFERENCE EQUATIONS 215

Theorem 4.7 ([17, 18]). Let Ω be a nonempty, bounded, closed, and convex subset
of a Fréchet space F and let V : Ω→ Ω be a continuous mapping. Suppose that V
is a contraction with respect to a family of measures of noncompactness {µn}n∈N.
Then V has at least one fixed point in the set Ω.

Definition 4.8. Let u0 ∈ E, and f : R+ ×E → E be a continuous function. By a
solution of the problem (1)–(2) we mean a continuous function u ∈ X that satisfies
the equation (1) on R+ and the initial condition (2).

The following hypotheses will be used in the sequel.
(H01) The function t 7→ f(t, u) is measurable on I for each u ∈ E, and the

function u 7→ f(t, u) is continuous on E for a.e. t ∈ R+,
(H02) There exists a continuous function p : I → R+ such that

‖f(t, u)‖ ≤ p(t)(1 + ‖u‖) ; for a.e. t ∈ I , and each u ∈ E ,
(H03) For each bounded and measurable set B ⊂ E, and for each t ∈ R+, we

have
µ
(
f(t, B)

)
≤ p(t)µ(B) ,

where µ is a measure of noncompactness on the Banach space E.
For n ∈ N∗, let

p∗n = sup
t∈[0,n]

p(t) ,

and consider the family of measure noncompactness X as in Example 4.3.

Theorem 4.9. Assume that hypotheses (H01)−−(H03) hold.
If

(9) 4nαp∗n
Γq(1 + α) < 1 ;

for each n ∈ N∗, then the problem (1)–(2) has at least one solution in X.

Proof. Consider the operator N : X → X defined by (5). Clearly, the fixed points
of the operator N are solution of the problem (1)–(2).

For any n ∈ N∗, we set

Rn ≥
‖u0‖Γq(1 + α) + p∗nn

α

Γq(1 + α)− p∗nnα
,

and we consider the ball
BRn := B(0, Rn) = {w ∈ X : ‖w‖n ≤ Rn} .

For any n ∈ N∗, and each u ∈ BRn and t ∈ [0, n] we have

‖(Nu)(t)‖ ≤ ‖u0‖+
∫ t

0

(t− qs)(α−1)

Γq(α) ‖f(s, u(s))‖dqs

≤ ‖u0‖+
∫ t

0

(t− qs)(α−1)

Γq(α) p(s)(1 + ‖u(s)‖)dqs

≤ ‖u0‖+ p∗n(1 +Rn)
∫ t

0

(t− qs)(α−1)

Γq(α) dqs
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≤ ‖u0‖+ nαp∗n
Γq(1 + α) (1 +Rn)

≤ Rn .

Thus

(10) ‖N(u)‖n ≤ Rn .

This proves that N transforms the ball BRn into itself. We shall show that the
operator N : BRn → BRn satisfies all the assumptions of Theorem 4.7. The proof
will be given in several steps.

Step 1. N : BRn → BRn is continuous.
Let {uk}k∈N be a sequence such that uk → u in BRn . Then, for each t ∈ [0, n], we
have

‖(Nuk)(t)− (Nu)(t)‖ ≤
∫ t

0

(t− qs)(α−1)

Γq(α) ‖f(s, uk(s))− f(s, u(s))‖dqs .

Since uk → u as k → ∞, the Lebesgue dominated convergence theorem implies
that

‖N(uk)−N(u)‖n → 0 as k →∞ .

Step 2. N(BRn) is bounded.
Since N(BRn) ⊂ BRn and BRn is bounded, then N(BRn) is bounded.

Step 3. For each bounded and equicontinuous subset D of BRn , µn(N(D)) ≤
`nµn(D).
From Lemmas 4.4 and 4.5, for any D ⊂ BRn and any ε > 0, there exists a sequence
{uk}∞k=0 ⊂ D, such that for all t ∈ [0, n], we have

µ
(
(ND)(t)

)
= µ

({
u0 +

∫ t

0

(t− qs)(α−1)

Γq(α) f(s, u(s))dqs; u ∈ D
})

≤ 2µ
({∫ t

0

(t− qs)(α−1)

Γq(α) f(s, uk(s))dqs
}∞
k=1

)
+ ε

≤ 4
∫ t

0

(t− qs)(α−1)

Γq(α) µ({f(s, uk(s))}∞k=0)dqs+ ε

≤ 4
∫ t

0

(t− qs)(α−1)

Γq(α) p(s)µ({uk(s)}∞k=1)dqs+ ε

≤ 4nαp∗n
Γq(1 + α)µn(D) + ε .

Since ε > 0 is arbitrary, then

µ
(
(ND)(t)

)
≤ 4nαp∗n

Γq(1 + α)µn(D) .
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Thus

µn
(
N(D)

)
≤ 4nαp∗n

Γq(1 + α)µn(D) .

As a consequence of Steps 1 to 3 and inequality (9) together with Theorem 4.7,
we can conclude that N has at least one fixed point in BRn which is a solution of
problem (1)–(2). �

5. Existence of bounded solutions

In this section, we are concerned with the existence of bounded solutions of our
problem

(11)
{

(cDα
q u)(t) = f(t, u(t)) ; t ∈ R+ ,

u(0) = u0 ∈ R , u is bounded on R+ ,

Definition 5.1. By a bounded solution of the problem (11) we mean a measurable
and bounded function u on R+ such that u(0) = u0, and u satisfies the fractional
q-difference equation (cDα

q u)(t) = f
(
t, u(t)

)
on R+.

The following hypotheses will be used in the sequel.
(H11) The function t 7→ f(t, u) is measurable on In := [0, n]; n ∈ N for each
u ∈ R, and the function u 7→ f(t, u) is continuous for a.e. t ∈ In,

(H12) There exists a continuous function pn : In → R+ such that
|f(t, u)| ≤ pn(t) , for a.e. t ∈ In , and each u ∈ R .

Set
p∗n = sup

t∈In
pn(t) .

Theorem 5.2. Assume that the hypotheses (H11) and (H12) hold. Then the problem
(11) has at least one bounded solution defined on R+.

Proof. The proof will be given in two parts. Fix n ∈ N and consider the problem

(12)
{

(CDα
q u)(t) = f

(
t, u(t)

)
; t ∈ In ,

u(0) = u0 .

Part 1. We begin by showing that (12) has a solution un ∈ C(In) with

‖un‖∞ ≤ Rn := nαp∗n
Γq(1 + α) .

Consider the operator N : C(In)→ C(In) defined by (5) Clearly, the fixed points
of the operator N are solution of the problem (12).
For any u ∈ C(In), and each t ∈ In we have

|(Nu)(t)| ≤ |u0|+
∫ t

0

(t− qs)(α−1)

Γq(α) |f(s, u(s))|dqs

≤ |u0|+
∫ t

0

(t− qs)(α−1)

Γq(α) pn(s)dqs
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≤ |u0|+ p∗n

∫ t

0

(t− qs)(α−1)

Γq(α) dqs

≤ nαp∗n
Γq(1 + α) .

Thus

(13) ‖N(u)‖∞ ≤ Rn .

This proves that N transforms the ball BRn := B(0, Rn) = {w ∈ C(In) : ‖w‖∞ ≤
Rn} into itself. We shall show that the operator N : BRn → BRn satisfies all the
assumptions of Theorem 3.3. The proof will be given in several steps.

Step 1. N : BRn → BRn is continuous.
Let {uk}k∈N be a sequence such that uk → u in BRn . Then, for each t ∈ In, we
have

|(Nuk)(t)− (Nu)(t)|

≤
∫ t

0

(t− qs)(α−1)

Γq(α) |f(s, uk(s))− f(s, u(s))|dqs .(14)

Since uk → u as k →∞ and (H11), then by the Lebesgue dominated convergence
theorem, equation (14) implies

‖N(uk)−N(u)‖∞ → 0 as k →∞ .

Step 2. N(BRn) is uniformly bounded.
This is clear since N(BRn) ⊂ BRn and BRn is bounded.

Step 3. N(BRn) is equicontinuous.
Let t1, t2 ∈ In, t1 < t2 and let u ∈ BRn . Thus we have

|(Nu)(t2)− (Nu)(t1)|

≤
∫ t1

0

|(t2 − qs)(α−1) − (t1 − qs)(α−1)|
Γq(α) |f(s, u(s))|dqs

+
∫ t2

t1

|(t2 − qs)(α−1)|
Γq(α) |f(s, u(s))|dqs

≤ p∗n

∫ t1

0

|(t2 − qs)(α−1) − (t1 − qs)(α−1)|
Γq(α) dqs

+ p∗n

∫ t2

t1

|(t2 − qs)(α−1)|
Γq(α) dqs .

As t1 −→ t2, the right-hand side of the above inequality tends to zero.

As a consequence of Steps 1 to 3 together with the Arzelá-Ascoli theorem, we
can conclude that N is continuous and compact. From an application of Schauder’s
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theorem (Theorem 3.3), we deduce that N has a fixed point u which is a solution
of the problem (12).

Part 2. The diagonalization process.
Now, we use the following diagonalization process. For k ∈ N let{

wk(t) = unk(t) ; t ∈ [0, nk] ,
wk(t) = unk(nk) ; t ∈ [nk,∞) .

Here {nk}k∈N∗ is a sequence of numbers satisfying

0 < n1 < n2 < . . . nk < . . . ↑ ∞ .

Let S = {wk}∞k=1. Notice that

|wnk(t)| ≤ Rn for t ∈ [0, n1] , k ∈ N .

Also, if k ∈ N and t ∈ [0, n1], we have

wnk(t) = u0 +
∫ t

0

(t− qs)(α−1)

Γq(α) f
(
s, wnk(s)

)
dqs .

Thus, for k ∈ N and t, x ∈ [0, n1], we have

|wnk(t)− wnk(x)| ≤
∫ n1

0

|(t− qs)(α−1) − (x− qs)(α−1)|
Γq(α) |f

(
s, wnk(s)

)
|dqs .

Hence

|wnk(t)− wnk(x)| ≤ p∗1
∫ n1

0

|(t− qs)(α−1) − (x− qs)(α−1)|
Γq(α) dqs .

The Arzelà-Ascoli theorem guarantees that there is a subsequence N∗1 of N and a
function z1 ∈ C([0, n1],R) with unk → z1 as k → ∞ in C([0, n1],R) through N∗1.
Let N1 = N∗1 \ {1}.
Notice that

|wnk(t)| ≤ Rn for t ∈ [0, n2], k ∈ N .

Also, if k ∈ N and t, x ∈ [0, n2], we have

|wnk(t)− wnk(x)| ≤ p∗2
∫ n2

0

|(t− qs)(α−1) − (x− qs)(α−1)|
Γq(α) dqs .

The Arzelà-Ascoli theorem guarantees that there is a subsequence N∗2 of N1 and
a function z2 ∈ C([0, n2],R) with unk → z2 as k → ∞ in C([0, n2],R) through
N∗2. Note that z1 = z2 on [0, n1] since N∗2 ⊂ N1. Let N2 = N∗2 \ {2}. Proceed
inductively to obtain for m = 3, 4, . . . a subsequence N∗m of Nm−1 and a function
zm ∈ C([0, nm],R) with unk → zm as k → ∞ in C([0, nm],R) through N∗m. Let
Nm = N∗m \ {m}.

Define a function y as follows. Fix t ∈ [0,∞) and let m ∈ N with t ≤ nm.
Then define u(t) = zm(t). Thus u ∈ C([0,∞),R)), u(0) = u0 and |u(t)| ≤ Rn
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for t ∈ [0,∞).
Again fix t ∈ [0,∞) and let m ∈ N with t ≤ nm. Then for n ∈ Nm we have

unk(t) = u0 +
∫ nm

0

(t− qs)(α−1)

Γq(α) f
(
s, wnk(s)

)
dqs .

Let nk →∞ through Nm to obtain

zm(t) = u0 +
∫ nm

0

(t− qs)(α−1)

Γq(α) f
(
s, zm(s)

)
dqs .

We can use this method for each t ∈ [0, nm] and for each m ∈ N. Thus
(CDα

q u)(t) = f
(
t, u(t)

)
; for t ∈ [0, nm]

for each m ∈ N and the constructed function u is a solution of problem (11).

6. Some examples

Example 1. Consider the following problem of fractional 1
4 -difference equations

(15)
{

(cD
1
2
1
4
u)(t) = f

(
t, u(t)

)
; t ∈ R+ ,

u(0) = 1 ,
where f(t, u) = t

−1
4 sin t

(1+
√
t)(1+|u|) ; t ∈ (0,∞), u ∈ R ,

f(0, u) = 0 ; u ∈ R .
Clearly, the function f is continuous.
The hypothesis (H2) is satisfied withp(t) = t

−1
4 | sin t|
1+
√
t

; t ∈ (0,∞) ,
p(0) = 0 .

All conditions of Theorem 3.5 are satisfied. Hence, the problem (15) has at least
one solution defined on R+, and solutions of this problem are uniformly locally
attractive.

Example 2. Let

l1 =
{
u = (u1, u2, . . . , uk, . . .) :

∞∑
k=1
|uk| <∞

}
be the Banach space with the norm

‖u‖l1 =
∞∑
k=1
|uk| ,

and F := C(R+, l
1) be the Fréchet space of all continuous functions v from R+

into l1, equipped with the family of seminorms
‖v‖n = sup

t∈[0,n]
‖v(t)‖l1 ; n ∈ N∗ .
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Consider the following problem of fractional 1
4−difference equations

(16)
{

(cD
1
2
1
4
uk)(t) = fk

(
t, u(t)

)
; t ∈ R+ ,

uk(0) = 0 ; t ∈ R+, k ∈ N ,
where

fk(t, u) = cn(2−k + uk)t 5
4 sin t

64(1 +
√
t)

; u ∈ l1,

for each t ∈ [0, n]; n ∈ N∗, with

cn = n−
7
4 Γ 1

4

(
3
2

)
; n ∈ N∗ ,

f = (f1, f2, . . . , fk, . . .) , u = (u1, u2, . . . , uk, . . .) .
Since

‖f(t, u)‖l1 =
∞∑
k=1
|fk(s, u)| ≤ t

5
4 cn
64 (1 + ‖u‖l1) ; t ∈ [0, n], n ∈ N∗ ,

then hypothesis (H02) is satisfied with

p(t) = t
5
4 cn
64 ; t ∈ [0, n], n ∈ N∗ .

So, for any n ∈ N∗, we have

p∗n = n
5
4 cn
64 .

The condition (9) is satisfied. Indeed;

4n 1
2 p∗n

Γq(1 + α) = n−
7
4 Γ 1

4

(3
2

)n 5
4

64
4n 1

2

Γ 1
4

( 3
2
) = 1

16 < 1 .

Therefore all conditions of Theorem 4.9 are satisfied. Hence, the problem (16) has
at least one solution defined on R+.

Example 3. Consider the following problem of fractional 1
4 -difference equations

(17)
{

(CD
1
2
1
4
u)(t) = f(t, u(t)) ; t ∈ R+,

u(0) = 2 , u is bounded on R+ ,

where
f(t, u) = et+1

1 + |u| (1 + u) ; t ∈ R+ .

The hypothesis (H12) is satisfied with pn(t) = et+1. So, p∗n = en+1. Simple compu-
tations show that all conditions of Theorem 5.2 are satisfied. It follows that the
problem (17) has at least one bounded solution defined on R+.
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