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UNIVERSAL RATES FOR ESTIMATING THE RESIDUAL
WAITING TIME IN AN INTERMITTENT WAY

Gusztáv Morvai and Benjamin Weiss

A simple renewal process is a stochastic process {Xn} taking values in {0, 1} where the
lengths of the runs of 1’s between successive zeros are independent and identically distributed.
After observing X0, X1, . . . Xn one would like to estimate the time remaining until the next
occurrence of a zero, and the problem of universal estimators is to do so without prior knowledge
of the distribution of the process. We give some universal estimates with rates for the expected
time to renewal as well as for the conditional distribution of the time to renewal.
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Classification: 60G25, 60K05

1. INTRODUCTION

A simple renewal process is a stochastic process {Xn} taking values in {0, 1} where
the lengths of the runs of 1’s between successive zeros are independent. These processes
arise in the study of Markov chains since the successive visits to a fixed state form
such a renewal process, cf. [4]. There are applications in which the failure times of
some system which is renewed after each failure form such a renewal process and so the
problem naturally arises of estimating when will the next failure occur cf. Ex. 12.13 in
[5]. This may be formalized in the following way, we define σn to be the residual waiting
to the next occurrence of a zero after observing {X0, X1, . . . Xn}, and we wish to estimate
σn. If the distribution of the process is known then the best least square estimator for
σn would be θn, its conditional expectation given the observations {X0, X1, . . . Xn}. We
plan to give here a universal estimator, i. e., one in which we learn enough about the
process in order to give a function of these observations which will almost surely in the
limit of large n be as good as θn.

Prior works on estimating the parameters of an unknown renewal processes have
treated rather different problems. The often quoted paper of Vardi [24] treats the prob-
lem of finding a maximum likelihood estimate (MLE) of the discrete lifetime distribution
on the basis of data collected from independent identically distributed stationary renewal
processes. The key point is that the data is being collected from the outputs of distinct
independent sources, whereas we are trying to predict the next event in a single sample
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of a renewal process in the spirit of sequential estimation. (For the idea of sequential
estimation see e. g. Ryabko [20], Algoet [1], Györfi and Ottucsák [6] and Nobel [17]).
The same applies to more recent papers on estimating the lifetime distribution such as
Peña, Strawderman and Hollander [18] and Denby and Vardi [3].

Before stating our results we recall the basic framework. The basic parameters of
these renewal processes are the {pk}∞k=0, the conditional probability that a run of k 1’s
follows a given 0 event. In order that the probability of X0 = 0 be nonzero it is necessary
that µ =

∑∞
k=0 kpk < ∞ and then P (X0 = 0) = 1/(1 + µ) is positive. (This relation

between the mean of the conditional renewal distribution and the stationary probability
of the renewal event is well known in ergodic theory as Kac’s formula for the expected
return time to a set, and in probability theory cf. [4] Ch. XIII and [21] Sec. I.2.c.) If the
process distribution is known, then after observing X0, X1, . . . , Xn one may calculate
the expected value of the residual waiting time to the occurrence of the next zero as

µL =

∑∞
k=L(k − L)pk∑∞

k=L pk

if there is at least one zero among the values of X0, X1, . . . , Xn and the last zero occurs
at moment Xn−L = 0. We denote this L by τ(X0, X1, . . . , Xn).

Similarly, we define τ = τ(X0
−∞) as that t ≥ 0 such that X−t = 0 and Xi = 1 for all

−t < i ≤ 0. It is clear from the stationarity that P (τ = L) is proportional to
∑∞
k=L pk

and thus for the finiteness of the expectation of the residual waiting time we have to
demand that

∑∞
k=0 k

2pk <∞. The moment conditions that we shall impose are just a
bit more - namely 2 + ε with ε > 0.

In our work [13] we took up the problem of how well can we do when all that we know
is that the binary process {Xn} is, in fact, a renewal process. Our purpose in this note
is to give a simpler scheme which utilizes the observed data in a more efficient way. In
addition, we are able to provide a universal rate of decay to zero of the deviation of our
scheme from the optimal estimate which uses complete knowledge about the process.

The fact, that we are trying to estimate the time to next occurrence of zero rather
than Xn+1, takes us out of the framework of most previous investigations [9, 10, 11, 12].
In earlier works such as [7] attention is restricted to those renewal processes which arise
from Markov chains with a finite number of states. In that case the probabilities pk decay
exponentially and one can use this information in trying to find not only the distribution
but even the hidden Markov chain itself. Since we are considering the general case where
the number of hidden states might be infinite this exponential decay no longer holds in
general and the problem becomes much more difficult.

For the estimator itself it is most natural to use the empirical distribution observed
in the data segment X0, X1, . . . , Xn. However if there were an insufficient number of
occurrences of 1-blocks of length at least τ(X0, X1, . . . , Xn) then we do not expect the
empirical distribution to be close to the true distribution. In particular, if no block of
that length has occurred yet, clearly no intelligent estimate can be given cf. Theorem
4.1 in [16]. For this reason we will estimate only along stopping times λ1, λ2, . . . and
our main positive result is that there is a sequence of universally defined stopping times
λn with density one, estimators hn(X0, X1, . . . , Xλn), and a sequence rn that converges
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to zero, so that eventually almost surely:

|µτ(X0,X1,...Xλn )
− hn(X0, X1, . . . , Xλn)| < rn.

We denote by ql(X0, X1, . . . Xn) the conditional probability P (σn = l|X0, X1, . . .
. . . , Xn). We will also define universal estimators p̂l(X0, X1, . . . , Xλn), so that eventually
almost surely:

∞∑
l=0

|p̂l(X0, X1, . . . , Xλn)− ql(X0, X1, . . . Xλn)| < rn.

These results will require a suitable higher moment condition on the {pk} distribution.
The estimators themselves are simply the averages of what we observe in a piece of the
data segment Xκn , . . . , Xλn where κn is chosen so that there is a large fixed number of
occurrences of the relevant pattern. The reason for these stopping times λn is that we
want to estimate only at those times when we feel that we have enough data.

For further reading on the topics see [14], [15] and [16]. For some limitations on
universal stopping time estimators with universal convergence rates see Takahashi [23].

2. RESULTS

It is easiest to formally define a renewal process in terms of an underlying Markov chain.
Consider a Markov chain on the state space {0, 1, 2, . . . } with transition probabilities
pi,i−1 = 1 for all i ≥ 1 and p0,i = pi a probability distribution π on {0, 1, 2 . . . }, cf.
[5] Ex. 12.13. This chain is positive recurrent exactly when

∑∞
i=0 ip0,i = µ < ∞ and

the unique stationary probability assigns mass 1
1+µ to the state 0, cf. [4] Ch. XIII and

[21] Sec. I.2.c. Collapsing all states i ≥ 1 to 1 gives rise to the classical binary renewal
process. Even though our primary interest is in one sided processes, stationarity implies
that there exists a two sided process with the same statistics and we will use the two
sided version whenever it is convenient to do so.

For conciseness sake, we will denote Xj
i = (Xi, . . . , Xj) and also use this notation for

i = −∞ and j = ∞. Our interest is in the waiting time to renewal (the state 0) given
some previous observations, in particular, given Xn

0 . Recall that if the data segment
Xn

0 doesn’t contain a zero the expected time to the first occurrence of a zero may be
infinite; this depends on the finiteness of the second moment of π. If a zero occurs then
the expected time depends on the location of the zero and so we introduce the notation:

τ(Xn
−∞) = min{t ≥ 0 : Xn−t = 0}.

Note that this is well defined with probability one. If a zero occurs in Xn
0 then τ(Xn

−∞)
depends only on Xn

0 and so we will also write for τ(Xn
−∞), τ(Xn

0 ) with the understanding
that this is defined only if a zero occurs in Xn

0 .
Define σn as the length of runs of 1’s starting at position n. Formally put

σn = max{0 ≤ l : Xj = 1 for n < j ≤ n+ l}.

Now for the classical binary renewal process {Xn} define θn as the conditional expecta-
tion of the residual waiting time to renewal. given what we have seen at Xn

0 . Formally,
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put
θn = E(σn|Xn

0 ).

(Note that θn =
∑∞
k=0 kpk+τ(Xn0 )/

∑∞
l=τ(Xn0 ) pl as soon as there is at least one zero in

Xn
0 and θn minimizes the conditional mean square error. ) Our goal is to estimate both

θn and the distribution of the time to renewal given Xn
0 but without prior knowledge of

the distribution function of the process.

It will be useful to know when the renewal event occurs at the first time. Define the
auxiliary stopping time ψ as the position of the first zero, that is,

ψ = min{t ≥ 0 : Xt = 0}.

Since we are interested in pointwise results and it was proved in [16] that no estimate
can be given for all n which is pointwise consistent in a universal manner, we will give
estimates only for carefully selected time instances. We will estimate only for those time
instances when we feel we have enough data. Now we define these carefully selected
stopping times.

Let 0 < γ < 1 and β > 1 be arbitrary. Define the stopping times λn as λ0 = ψ and
for n ≥ 1,

λn = min{ t > λn−1 :
(
∃ψ < i ≤ t1/β : τ(Xi

0) = τ(Xt
0)
)

and∣∣∣{t1/β < j < bt1/βcβ : τ(Xj
0) = τ(Xt

0)
}∣∣∣ ≥ bt1/βcβ(1−γ) }.

Remark 2.1. Note that i ≤ t1/β is the same as i ≤ bt1/βc and t1/β < j is the same as
bt1/βc < j in the above definition since i and j are integers.

Remark 2.2. Note that if λn = t then the pattern τ(Xt
0) occurred at least once in

the first part of the data segment and sufficiently many times in the second part of the
data segment. In the proofs, we will use the values in the first part of the data segment
as conditions and the many values in the second part to have reliable upper bounds
for the conditional probability of the unfavourable events. Note also that as long as
mβ ≤ t < (m+ 1)

β
the requirements for the first and second part of the data segment

in the definition of λn do not change (except the value of τ(Xt
0)). In the proofs, this

will ensure that the upper bounds for the probability of the unfavourable events will
be summable and we will be able to apply the Borel–Cantelli lemma to show that the
unfavourable events can not happen infinitely often. These facts will make it possible
to give reliable estimates at the stopping times λn.

Remark 2.3. Note that λn is not smaller than n and λn tends to infinity.

The next theorem says that by using stopping times we skip a negligible portion of
the time instances.
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Theorem 2.4. Let 0 < γ < 1 and β > 1. Then for the stopping times λn defined
above,

lim
n→∞

λn
n

= 1, (1)

almost surely.

Remark 2.5. Note that in the time segment 1, 2, . . . , λn we have the stopping times
1 ≤ λ1 < λ2 < · · · < λn. Thus the number of time instances which are skipped is
(λn − n). By Theorem 2.4,

0 ≤ λn − n
λn

=

(
1− n

λn

)
→ 0

almost surely which means that the density of time instances which are skipped is zero.

In the data segment b(λn)
1/βc+ 1 ≤ j ≤ db(λn)

1/βc
β
e − 1 there are at least

db(λn)
1/βc

β(1−γ)
e occurrences of the same value of τ as we see at time λn, but may

be more. It will be useful to know the exact position where the db(λn)
1/βc

β(1−γ)
eth

occurrence is since we will not use more than that for our estimate.

Define the auxiliary random variable κn as

κn = min{K :
∣∣∣{b(λn)

1/βc < j ≤ K : τ(Xj
0) = τ(Xλn

0 )
}∣∣∣ = db(λn)

1/βc
β(1−γ)

e}.

Notice that κn is smaller than b(λn)
1/βc

β
since at least db(λn)

1/βc
β(1−γ)

e times τ(Xj
0) =

τ(Xλn
0 ) for b(λn)

1/βc+ 1 ≤ j ≤ db(λn)
1/βc

β
e − 1.

Now we are ready to define our estimate hn(Xλn
0 ) for the conditional expectation of

the residual waiting time θλn at stopping time λn.

For n > 0 define our estimator hn(Xλn
0 ) at time λn as

hn(Xλn
0 ) =

∑κn
i=b(λn)1/βc+1

I{τ(Xi0)=τ(X
λn
0 )}σi

db(λn)
1/βc

β(1−γ)
e

.

(Notice that κn ensures that we take into consideration exactly db(λn)
1/βc

β(1−γ)
e pieces

of occurrences.) The above formula is simply the average of the residual waiting times
that we have already observed in the data segment Xκn

b(λn)1/βc+1
when we were at the

same value of τ as we see at time λn. Note that as long as mβ ≤ λn < (m+ 1)
β

the
estimator hn(Xλn

0 ) is not refreshed. Keeping the same estimate for many values of n
enables us to use weaker moment assumptions since the number of unfavorable events
that we have to consider is reduced.
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Theorem 2.6. Assume
∑∞
k=0 k

α+1pk < ∞ for some α > 1. Let 0 < γ < 1 and δ ≥ 0
be arbitrary. Choose

β > max{ 2 + δα

(1− γ)0.5α
, 1,

2 + δα

(1− γ)(α− 1)
}.

Then for the stopping times λn and the estimator hn(Xλn
0 ), defined above, for arbitrary

ε > 0, ∣∣∣hn(Xλn
0 )− θλn

∣∣∣ ≤ εb(λn)
1/βc

−δ
(2)

and

E

(∣∣∣σλn − hn(Xλn
0 )
∣∣∣2 |Xλn

0

)
− E

(
|σλn − θλn |

2 |Xλn
0

)
≤ ε2b(λn)

1/βc
−2δ

(3)

eventually almost surely.

Remark 2.7. Note that in (3)

E

(∣∣∣σλn − hn(Xλn
0 )
∣∣∣2 |Xλn

0

)
− E

(
|σλn − θλn |

2 |Xλn
0

)
≥ 0

almost surely since θλn minimizes the conditional mean square error. Thus (3) says that

the conditional mean square error for our estimate hn(Xλn
0 ) is ε2b(λn)

1/βc
−2δ

close to
the optimum eventually almost surely.

Remark 2.8. Note that with the choice of δ = 0, (2) and (3) state that for arbitrary
ε > 0, ∣∣∣hn(Xλn

0 )− θλn
∣∣∣ ≤ ε

and

E

(∣∣∣σλn − hn(Xλn
0 )
∣∣∣2 |Xλn

0

)
− E

(
|σλn − θλn |

2 |Xλn
0

)
≤ ε2

eventually almost surely. Thus we still have pointwise convergence, namely,∣∣∣hn(Xλn
0 )− θλn

∣∣∣→ 0

and

E

(∣∣∣σλn − hn(Xλn
0 )
∣∣∣2 |Xλn

0

)
− E

(
|σλn − θλn |

2 |Xλn
0

)
→ 0

almost surely.

Remark 2.9. The reason for our use of the stopping times λn is that they enable us to
guarantee that eventually we are doing “almost” as well as the best predictor with an
explicit bound on this “almost”.
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Remark 2.10. Note that for 1 < α < 2, the condition on β reduces to

β >
2 + δα

(1− γ)(α− 1)

and for 2 ≤ α,

β > max{1, 2 + δα

(1− γ)0.5α
}.

Remark 2.11. Note that the choice of β depends on α. Thus we have to know α in
advance in order to choose a suitable β which is not an advantage.

Remark 2.12. Note that λn depends on α through the choice of β. Thus hn(Xλn
0 )

depends on α through λn. We have to know α in advance in order to choose a suitable
β for λn, which is not an advantage.

Remark 2.13. For an unpractical scheme (where the estimate is not refreshed for ex-
ponentially long time) which however does not make use of prior knowledge of α see
[13].

Remark 2.14. If instead of almost sure convergence one considers convergence in prob-
ability then one can estimate for all time instances in a non intermittent way, cf. [16].

In a similar fashion we can define the average of the number of times that the residual
waiting time assumed a fixed value. Namely, define p̂l(X

λn
0 ) for each l as

p̂l(X
λn
0 ) =

∑κn
i=b(λn)1/βc+1

I{τ(Xi0)=τ(Xλn0 ),σi=l}

db(λn)
1/βc

β(1−γ)
e

.

Note that p̂l(X
λn
0 ) is a probability distribution on the nonnegative integers.

Theorem 2.15. Assume
∑∞
k=0 k

α+1pk < ∞ for some α > 1. Let 0 < γ < 1/3 be
arbitrary. Choose

β > max{ 2

(1− γ)(α− 1)
,

4

1− 3γ
}.

Then for the stopping times λn and the estimator p̂l(X
λn
0 ) defined above, for arbitrary

0 < ε < 1,
∞∑
l=0

∣∣∣∣∣p̂l(Xλn
0 )−

pl+τ(Xλn0 )∑∞
i=τ(Xλn0 ) pi

∣∣∣∣∣ ≤ ε

b(λn)
(1/β)c

(4)

eventually almost surely.

Remark 2.16. Note that p̂l(X
λn
0 ) depends on α through λn via the choice of β. For

an unpractical scheme (where the estimate is not refreshed for exponentially long time)
which however does not make use of prior knowledge of α see [13].
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Remark 2.17. Note that the conditions in Theorem 2.4 are weaker than the ones in
Theorem 2.15 or in Theorem 2.6. Note that the conditions in Theorem 2.15 are stronger
than the conditions in Theorem 2.6 with the choice of δ = 0. This is due to the fact
that the results in Theorem 2.6 (with the choice of δ = 0, cf. Remark 2.8) are used in
the proof of Theorem 2.15 and that for the total variation in (4) we need a different
technique for upperbounding the probability of the unfavourable event because of the
summation.

3. PROOF OF THEOREM 2.4.

Since if a block of 1’s has positive probability it will appear with that frequency which
is eventually greater than

bt1/βc+ dbt1/βcβ(1−γ)e
bt1/βcβ

(which tends to zero). The proof of Theorem 2.4 is complete. �

4. PROOF OF THEOREM 2.6.

Let 1 ≤ k ≤ m be fixed. Define j
(k,m)
0 = m and for i ≥ 0 let j

(k,m)
i+1 denote the (i+ 1)th

occurrence of τ(Xk
−∞) (reading forward, starting at position m), that is,

j
(k,m)
i+1 = min

{
t > j

(k,m)
i : τ(Xt

−∞) = τ(Xk
−∞)

}
. (5)

Now for i ≥ 1 define

Z
(k,m)
i = σ

j
(k,m)
i

.

The outline of the proof is this. First we will consider the bad events, that is, where
for some 1 ≤ k ≤ m the difference between the average∑d(mβ)1−γe
i=1 Z

(k,m)
i /d(mβ)

1−γe and its conditional expectation is greater than εm−δ.
(The events are indexed by m.) We will give an upper bound for the probability of
these events. We will show then that these upper bounds are summable in m. Then
using the Borel–Cantelli lemma we will conclude that these events can not happen in-
finitely often. Finally we will show that this implies (2).

Clearly {Z(k,m)
i }∞i=1 are conditionally independent and identically distributed given

the event EkL where

EkL = {τ(Xk
−∞) = L}. (6)

Notice that E(Z
(k,m)
i |EkL) =

∑∞
h=0 hph+L/

∑∞
h=L ph.

We will divide the proof into two cases. In the first case we assume that 1 < α ≤ 2.
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Apply Markov inequality to get that

P

∣∣∣∣∣∣
∑d(mβ)1−γe
i=1 Z

(k,m)
i

d(mβ)
1−γe

−
∑∞
h=0 hph+L∑∞
h=L ph

∣∣∣∣∣∣ > εm−δ|EkL


= P

∣∣∣∣∣∣
∑d(mβ)1−γe
i=1 Z

(k,m)
i

d(mβ)
1−γe

−
∑∞
h=0 hph+L∑∞
h=L ph

∣∣∣∣∣∣
α

>
εα

mδα
|EkL



≤
E

(∣∣∣∑d(mβ)1−γei=1

(
Z

(k,m)
i −

∑∞
h=0 hph+L∑∞
h=L ph

)∣∣∣α|EkL)
εαm−δαd(mβ)

(1−γ)eα
.

Now applying Lemma 6.1 in the Appendix (Theorem 2 of von Bahr and Esseen in [2])
to upperbound the αth conditional moments of sums of conditionally independent and
identically distributed random variables with zero conditional means (here we use that
1 < α ≤ 2) we get that

E

(∣∣∣∑d(mβ)1−γei=1

(
Z

(k,m)
i −

∑∞
h=0 hph+L∑∞
h=L ph

)∣∣∣α|EkL)
εαm−δαd(mβ)

(1−γ)eα

is less than or equal to

2E
(∣∣∣Z(k,m)

1 −
∑∞
h=0 hph+L∑∞
h=L ph

∣∣∣α |EkL)
εαm−δαd(mβ)

(1−γ)e(α−1)
.

Since α > 1 we can apply Jensen’s inequality in order to get that

2E
(∣∣∣Z(k,m)

1 −
∑∞
h=0 hph+L∑∞
h=L ph

∣∣∣α |EkL)
εαm−δαd(mβ)

(1−γ)e(α−1)
≤

2
(
E
(∣∣∣Z(k,m)

1

∣∣∣α |EkL)+
∣∣∣∑∞h=0 hph+L∑∞

h=L ph

∣∣∣α)
εαm−δα(mβ)

(1−γ)(α−1)

≤
2
(
E
((
Z

(k,m)
1

)α
|EkL
)

+
∑∞
h=0 h

αph+L∑∞
h=L ph

)
εαm−δα(mβ)

(1−γ)(α−1) .

Since the conditional αth moment of the random variable Z
(k,m)
1 can be calculated as

E
((
Z

(k,m)
1

)α
|EkL
)

=
∑∞
h=0 h

αph+L/
∑∞
h=L ph we get that

2
(
E
((
Z

(k,m)
1

)α
|EkL
)

+
∑∞
h=0 h

αph+L∑∞
h=L ph

)
εαm−δα(mβ)

(1−γ)(α−1) =
4

εαm−δα(mβ)
(1−γ)(α−1)

∑∞
h=0 h

αph+L∑∞
h=L ph

.

Combining all these we get that the conditional probability

P

∣∣∣∣∣∣
∑d(mβ)1−γe
i=1 Z

(k,m)
i

d(mβ)
1−γe

−
∑∞
h=0 hph+L∑∞
h=L ph

∣∣∣∣∣∣ > εm−δ|EkL


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is less than or equal to

4

εαm−δα(mβ)
(1−γ)(α−1)

∑∞
h=0 h

αph+L∑∞
h=L ph

.

Multiply both sides of the inequality by the probability of the condition P (EkL) =
(
∑∞
h=L ph)/(1 +

∑∞
h=0 hph) (note that by Kac’s theorem P (Xk−L = 0) = 1/(1 +∑∞

h=0 hph) cf. [4] Ch. XIII and [21] Sec. I.2.c ) and sum over L. It is easy to see

that
∑∞
L=0

∑∞
h=0 h

αph+L∑∞
h=L ph

∑∞
h=L ph

1+
∑∞
h=0 hph

≤
∑∞
h=0 h

α+1ph
1+
∑∞
h=0 hph

and we get that the probability of

the event ∣∣∣∣∣∣
∑d(mβ)1−γe
i=1 Z

(k,m)
i

d(mβ)
1−γe

−
∑∞
h=0 hph+τ(Xk−∞)∑∞
h=τ(Xk−∞) ph

∣∣∣∣∣∣ > εm−δ

is less than or equal to

4

εαm−δα(mβ)
(1−γ)(α−1)

∑∞
h=0 h

α+1ph
1 +

∑∞
h=0 hph

and in turn the probability of the unfavourable event

max
1≤k≤m

∣∣∣∣∣∣
∑d(mβ)1−γe
i=1 Z

(k,m)
i

d(mβ)
1−γe

−
∑∞
h=0 hph+τ(Xk−∞)∑∞
h=τ(Xk−∞) ph

∣∣∣∣∣∣ > εm−δ

is less than or equal to

4ε−αm(1+δα−β(1−γ)(α−1))
∑∞
h=0 h

α+1ph
1 +

∑∞
h=0 hph

which is summable since β is greater than 2+δα
(1−γ)(α−1) .

For α > 2 apply Markov inequality and Lemma 6.2 in the Appendix (Theorem 2.10
of Petrov [19]) to get that the conditional probability of the unfavourable event

P

∣∣∣∣∣∣
∑d(mβ)1−γe
i=1 Z

(k,m)
i

d(mβ)
1−γe

−
∑∞
h=0 hph+L∑∞
h=L ph

∣∣∣∣∣∣ > εm−δ|EkL


is less than or equal to

2C(α)

εαm−δαmβ(1−γ)α/2

∑∞
h=0 h

αph+L∑∞
h=L ph

where C(α) depends only on α. Integrating both sides, just as in the previous case
above, we get that the probability of the event∣∣∣∣∣∣

∑d(mβ)1−γe
i=1 Z

(k,m)
i

d(mβ)
1−γe

−
∑∞
h=0 hph+τ(Xk−∞)∑∞
h=τ(Xk−∞) ph

∣∣∣∣∣∣ > εm−δ
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is less than or equal to

2C(α)

εαm−δαmβ(1−γ)α/2

∑∞
h=0 h

α+1ph
1 +

∑∞
h=0 hph

and in turn the probability that the random variable

max
1≤k≤m

∣∣∣∣∣∣
∑d(mβ)1−γe
i=1 Z

(k,m)
i

d(mβ)
1−γe

−
∑∞
h=0 hph+τ(Xk−∞)∑∞
h=τ(Xk−∞) ph

∣∣∣∣∣∣
is greater than εm−δ is less than or equal to

2C(α)ε−αm(1+δα−β(1−γ)0.5α)
∑∞
h=0 h

α+1ph
1 +

∑∞
h=0 hph

which is summable since β is greater than 2+δα
(1−γ)0.5α . Applying the Borel–Cantelli lemma

in both cases one gets that

max
1≤k≤m

∣∣∣∣∣∣
∑d(mβ)1−γe
i=1 Z

(k,m)
i

d(mβ)
1−γe

−
∑∞
h=0 hph+τ(Xk−∞)∑∞
h=τ(Xk−∞) ph

∣∣∣∣∣∣ ≤ ε

mδ

eventually almost surely.

Observe that for k ≥ ψ, τ(Xk
−∞) = τ(Xk

0 ). Now for suitable ψ < k ≤ b(λn)
1/βc and

m = b(λn)
1/βc:

hn(Xλn
0 ) =

∑d(mβ)1−γe
i=1 Z

(k,m)
i

d(mβ)
1−γe

and

θλn =

∑∞
h=0 hph+τ(Xk−∞)∑∞
h=τ(Xk−∞) ph

.

Since λn ↑ ∞ we get that ∣∣∣hn(Xλn
0 )− θλn

∣∣∣ ≤ εb(λn)
1/βc

−δ

eventually almost surely which gives (2). The first part of Theorem 2.6 is complete.
Finally we prove (3). Since

E

(∣∣∣σλn − hn(Xλn
0 )
∣∣∣2 |Xλn

0

)
− E

(
|σλn − θλn |

2 |Xλn
0

)
=
(
hn(Xλn

0 )− θλn
)2

apply (2) to get (3). The proof of Theorem 2.6 is complete. �
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5. PROOF OF THEOREM 2.15.

Let 0 < η < 1 be arbitrary. The outline of the proof is this. We will decompose the

error
∑∞
l=0

∣∣∣p̂l(Xλn
0 )− pl+τ(Xλn0 )/

∑∞
i=τ(Xλn0 ) pi

∣∣∣ into the sum of two terms An + Bn

where An =
∑dη−1b(λn)(1/β)c

βγ+1e−1
l=0

∣∣∣p̂l(Xλn
0 )− pl+τ(Xλn0 )/

∑∞
i=τ(Xλn0 ) pi

∣∣∣ and Bn is the

rest of the sum. First, using Hoeffding’s inequality we will prove that An is at most

2η/b(λn)
(1/β)c eventually almost surely. Here the reasoning will be similar to the argu-

ment in the proof of Theorem 2.6. For Bn we will use the trivial upper bound, that is,
Bn is less than or equal to the sum∑∞
l=dη−1b(λn)(1/β)c

γβ+1e

(
p̂l(X

λn
0 ) + pl+τ(Xλn0 )/

∑∞
i=τ(Xλn0 ) pi

)
and by using the results

in Theorem 2.6 we will show that the sum is at most 4η/b(λn)
(1/β)c eventually al-

most surely. By choosing η = ε/6 we will conclude that the sum An + Bn is at most

ε/b(λn)
(1/β)c eventually almost surely.

In order to deal with An we define the indicator random variables

Z
(k,m)
i,l = I{

σ
j
(k,m)
i

=l

}

where j
(k,m)
i is the same as in (5). Clearly, for fixed k < m and l, {Z(k,m)

i,l }∞i=1 are con-

ditionally independent and identically distributed given EkL, see (6). Apply Hoeffding’s
inequality to get that

P

∣∣∣∣∣∣
∑dmβ(1−γ)e
i=1 Z

(k,m)
i,l

dmβ(1−γ)e
− pl+L∑∞

h=L ph

∣∣∣∣∣∣ > η2

mβγ+2
|EkL

 ≤ 2e−
η4mβ(1−γ)

2m2βγ+4 .

After integrating both sides with respect to the conditioning we get that

P

∣∣∣∣∣∣
∑dmβ(1−γ)e
i=1 Z

(k,m)
i,l

dmβ(1−γ)e
−

pl+τ(Xk−∞)∑∞
h=τ(Xk−∞) ph

∣∣∣∣∣∣ > η2m−βγ−2

 ≤ 2e−
η4mβ(1−γ)

2m2βγ+4 .

Now the probability that the random variable

dη−1mβγ+1e−1∑
l=0

∣∣∣∣∣∣
∑dmβ(1−γ)e
i=1 Z

(k,m)
i,l

dmβ(1−γ)e
−

pl+τ(Xk−∞)∑∞
h=τ(Xk−∞) ph

∣∣∣∣∣∣
is greater than dη

−1mβγ+1eη2
mβγ+2 can be at most 2dη−1mβγ+1ee−

η4mβ(1−γ)

2m2βγ+4 and in turn the
probability that the random variable

max
1≤k≤m

dη−1mβγ+1e−1∑
l=0

∣∣∣∣∣∣
∑dmβ(1−γ)e
i=1 Z

(k,m)
i,l

dmβ(1−γ)e
−

pl+τ(Xk−∞)∑∞
h=τ(Xk−∞) ph

∣∣∣∣∣∣
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is greater than 2η/m can not be greater than 2mdη−1mβγ+1ee−0.5η4mβ(1−3γ)−4

which is
summable and so by the Borel–Cantelli lemma,

max
1≤k≤m

dη−1mβγ+1e−1∑
l=0

∣∣∣∣∣∣
∑dmβ(1−γ)e
i=1 Z

(k,m)
i,l

dmβ(1−γ)e
−

pl+τ(Xk−∞)∑∞
h=τ(Xk−∞) ph

∣∣∣∣∣∣
is not greater than 2η/m eventually almost surely.

Observe first that after the first appearance of the zero, that is for k ≥ ψ, τ(Xk
−∞) =

τ(Xk
0 ). Now for suitable ψ < k ≤ b(λn)

(1/β)c and m = b(λn)
(1/β)c:

p̂l(X
λn
0 ) =

∑d(mβ)1−γe
i=1 Z

(k,m)
i,l

d(mβ)
1−γe

and
pl+τ(Xλn0 )∑∞
i=τ(Xλn0 ) pi

=
pl+τ(Xk−∞)∑∞
h=τ(Xk−∞) ph

.

Since λn ↑ ∞ we get that

An =

dη−1b(λn)(1/β)c
βγ+1e−1∑

l=0

∣∣∣∣∣p̂l(Xλn
0 )−

pl+τ(Xλn0 )∑∞
i=τ(Xλn0 ) pi

∣∣∣∣∣ ≤ 2η

b(λn)
(1/β)c

(7)

eventually almost surely.
Now we deal with Bn. Note that by the Markov inequality,∑∞

l=dη−1(µL+0.5)bk(1/β)ce pl+L∑∞
l=L pl

≤ ηµL
(µL + 0.5)bk(1/β)c

=
η

bk(1/β)c
(8)

where µL =
∑∞
i=L(i− L)pi/

∑∞
i=L pi.

Now observe that almost surely for sufficiently large n:

µτ(Xλn0 ) + 0.5 ≤ b(λn)
(1/β)c

βγ
. (9)

Indeed, since in the data segment Xb(λn)(1/β)c+1, . . . , Xbb(λn)(1/β)c
βc there are at least

db(λn)
(1/β)c

(1−γ)β
e zeros, we can give an upperbound on the estimate for the conditional

expectation of the residual waiting time as

hn(Xλn
0 ) =

∑κn
i=b(λn)(1/β)c+1

I{τ(Xi0)=τ(X
λn
0 )}σi

db(λn)
(1/β)c

β(1−γ)
e

≤ b(λn)
(1/β)c

β
− db(λn)

(1/β)c
(1−γ)β

e

db(λn)
(1/β)c

(1−γ)β
e

≤ b(λn)
(1/β)c

(γβ)
− 1,

and by Theorem 2.6 (with δ = 0, cf. Remark 2.8 ), |hn(Xλn
0 ) − µτ(Xλn0 )| → 0 almost

surely.
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By (9) and (8),

∞∑
l=dη−1b(λn)(1/β)c

γβ+1e

pl+τ(Xλn0 )∑∞
i=τ(Xλn0 ) pi

≤
∞∑

l=dη−1(µ
τ(X

λn
0 )

+0.5)b(λn)(1/β)ce

pl+τ(Xλn0 )∑∞
i=τ(Xλn0 ) pi

≤ η

b(λn)
(1/β)c

(10)

eventually almost surely.

Now apply (10), in order to give an upperbound on Bn

Bn =

∞∑
l=dη−1b(λn)(1/β)c

γβ+1e

∣∣∣∣∣p̂l(Xλn
0 )−

pl+τ(Xλn0 )∑∞
i=τ(Xλn0 ) pi

∣∣∣∣∣
≤

∞∑
l=dη−1b(λn)(1/β)c

γβ+1e

p̂l(X
λn
0 ) +

∞∑
l=dη−1b(λn)(1/β)c

γβ+1e

pl+τ(Xλn0 )∑∞
i=τ(Xλn0 ) pi

≤ 1−
dη−1b(λn)(1/β)c

γβ+1e−1∑
l=0

p̂l(X
λn
0 ) +

η

b(λn)
(1/β)c

eventually almost surely.

Now apply (7) and (10) in order to further upperbound Bn

Bn ≤ 1−
dη−1b(λn)(1/β)c

γβ+1e−1∑
l=0

p̂l(X
λn
0 ) +

η

b(λn)
(1/β)c

≤ 1−
dη−1b(λn)(1/β)c

γβ+1e−1∑
l=0

pl+τ(Xλn0 )∑∞
i=τ(Xλn0 ) pi

+An +
η

b(λn)
(1/β)c

≤
∞∑

l=dη−1b(λn)(1/β)c
γβ+1e

pl+τ(Xλn0 )∑∞
i=τ(Xλn0 ) pi

+
3η

b(λn)
(1/β)c

≤ 4η

b(λn)
(1/β)c

eventually almost surely. Choose η = ε/6 in order to get the upperbound on the error

An +Bn ≤
ε

b(λn)
(1/β)c

eventually almost surely. The proof of Theorem 2.15 is complete. �
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6. APPENDIX

Lemma 6.1. (Theorem 2 in von Bahr and Esseen [2]) Let X1, X2, . . . , Xn be random
varables satisfying

E(Xm+1|
m∑
i=1

Xi) = 0 for all 1 ≤ m ≤ n− 1.

Let 1 ≤ r ≤ 2. If

E(|Xk|r <∞ for all 1 ≤ k ≤ n

then

E(|
n∑
i=1

Xi|r) ≤ 2

n∑
i=1

E(|Xi|r).

The next lemma is Theorem 2.10 in Petrov [19].

Lemma 6.2. (Theorem 2.10 in Petrov [19]) Let Z1, Z2, . . . , Zn be independent random
variables with zero means and let p ≥ 2. Then

E|
n∑
i=1

Zi|p ≤ C(p)np/2−1
n∑
i=1

E|Zi|p.

where C(p) is a positive constant depending only on p.

As Petrov [19] pointed out, this is an immediate consequence of the Marcinkiewicz-
Zygmund inequality, cf. Marcinkiewicz and Zygmund [8] (p. 498 in Shiryayev [22]).

(Received July 26, 2019)
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