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1. Introduction, definition and results

Let f be an entire function and M(r, f) the maximum modulus function of f .

Also we denote by T (r, f) the Nevanlinna characteristic function of f . Then

σ(f) = lim sup
r→∞

log logM(r, f)

log r
= lim sup

r→∞

logT (r, f)

log r

and

µ(f) = lim inf
r→∞

log logM(r, f)

log r
= lim inf

r→∞

logT (r, f)

log r

are respectively called the order and lower order of f .

Also

σ2(f) = lim sup
r→∞

log log logM(r, f)

log r
= lim sup

r→∞

log logT (r, f)

log r

and

µ2(f) = lim inf
r→∞

log log logM(r, f)

log r
= lim inf

r→∞

log logT (r, f)

log r

are respectively called the hyper-order and lower hyper-order of f.
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A conjecture of Brück (see [2]) on the value sharing of an entire function with its

derivative gives rise to a stream of research on the growth of entire solutions of some

differential equations.

Let f be an entire function. We consider a differential polynomial of the form

(1.1) L(f) = f (p) + ap−1f
(p−1) + . . .+ a1f

(1) + a0f,

where p is a positive integer and a0, a1, . . . , ap−1 are complex numbers.

In 2008, Li and Yi (see [6]) proved the following result on the growth of an entire

solution of a linear differential equation.

Theorem A ([6]). Let A = A(z) be a nonconstant polynomial and let a (6= 0,∞)

be a complex number. If f is a nonconstant solution of the differential equation

L(f)− a = (f − a)eA,

where L(f) is defined by (1.1), then one of the following two cases will occur:

(i) If µ(f) > 1, then µ(f) = ∞ and µ2(f) = σ2(f) = degA.

(ii) If µ(f) 6 1, then µ(f) = 1 and A = az + b, where a (6= 0) and b are complex

numbers and a0, a1, . . . , ap−1 are not all zero.

In 2009, Li and Yi (see [7]) extended Theorem A and proved the following result.

Theorem B ([7]). If f is a transcendental entire solution of the differential

equation

L(f)− α1 = (f − α2)e
A,

where L(f) is defined by (1.1), A = A(z) is a nonconstant polynomial, α1 and α2 are

entire functions such that σ(αj) < 1 for j = 1, 2, then the conclusion of Theorem A

holds.

In 2013, Bouabdelli and Beläıdi (see [1]) also extended Theorem A and Theorem B

and proved the following result.

Theorem C ([1]). Let A = A(z) be a nonconstant polynomial and let α1, α2 be

entire functions with σ(αj) < 1 for j = 1, 2. If f is a nonconstant solution of the

differential equation

(L(f))l − α1 = (f l − α2)e
A,

where L(f) is defined by (1.1) and l (> 1) is an integer, then the conclusion of

Theorem A holds.
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We note that Theorem C uses a special type of nonlinear homogeneous differential

polynomial (L(f))l. So one may naturally ask: what will happen if (L(f))l is replaced

by a general homogeneous differential polynomial?

In the paper we consider this problem and improve Theorem A, Theorem B and

Theorem C. We now require the following well known definition.

Definition 1.1. Let f be an entire function and let a1, a2, . . . , ap be polynomials.

An expression form

(1.2) P (f) =

p
∑

j=1

Pj(f),

is called a homogeneous differential polynomial of degree γP =
mj
∑

k=0

njk for j =

1, 2, . . . , p, where

Pj(f) = aj(f)
nj0 (f (1))nj1 . . . (f (mj))njmj

is called a differential monomial.

The number ΓP = max{Γj : 1 6 j 6 p} is called the weight of P (f), where

Γj =
mj
∑

k=0

(k + 1)njk is called the weight of Pj(f) for j = 1, 2, . . . , p.

Let P (f) be given by (1.2). We divide the set of coefficients C = {a1, a2, . . . , ap}

of P (f) into two subsets as follows: Let A = {aj : aj ∈ C such that Γj = ΓP } and

B = C \A.

We denote by a = a(z) a polynomial of the subset A that has the maximum degree

among the members of A. If there are more than one aj ’s in A with maximum degree

we denote by a = a(z) any one of those. Further, let χj = (deg aj − deg a)/(ΓP − Γj)

if aj ∈ B and χj = 0 if aj ∈ A.

We now state the main result of the paper.

Theorem 1.1. Let f , α1, α2 be three entire functions such that f
n 6≡ α2 and

σ(αj) < 1 for j = 1, 2. Suppose that P (f) is given by (1.2) and A = A(z) is a

nonconstant polynomial such that f satisfies the differential equation

(1.3) P (f)− α1 = (fn − α2)e
A,

where n = γP .

(i) If µ(f) > 1 + max
16j6p

{χj , 0}, then µ(f) = ∞ and µ2(f) = σ2(f) = degA.

(ii) If µ(f) 6 1, then µ(f) = 1 and A = az + b, where a (6= 0) and b are two finite

complex numbers and at least two of a1, a2, . . . , ap are not identically zero.
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The following example shows that Theorem 1.1 does not admit the case µ(f) =

1 + max
16j6p

{χj, 0}, but the case 1 < µ(f) < 1 + max
16j6p

{χj, 0} is unanswered and so

remains as an open problem. However, if all the coefficients aj ’s are constants, then

max
16j6p

{χj, 0} = 0 and so the case 1 < µ(f) < 1 + max
16j6p

{χj , 0} does not arise.

E x am p l e 1.1 ([8]). Let f = e−z2/2 + z2, α1 = α2 = z2 and P (f) = 1
3f

(2) +
1
3zf

(1) + 1
3f . Then µ(f) = 2 = 1 + max

16j63
{χj, 0} and P (f)− α1 = 2

3e
z2/2(f − α2).

For standard definitions and notation we refer the reader to [4] and [5].

2. Lemmas

In this section we present some necessary lemmas. Let f(z) =
∞
∑

n=0
anz

n be an

entire function. Then µ(r, f) = max{|an|r
n : n = 0, 1, 2, . . .} is called the maximum

term of f and ν(r, f) = max{n : µ(r, f) = |an|r
n} is called the central index of f .

Lemma 2.1 ([5], page 51). If f is an entire function of order σ(f), then

σ(f) = lim sup
r→∞

log ν(r, f)

log r
.

Lemma 2.2 ([5], page 9). Let A(z) = bnz
n + bn−1z

n−1 + . . . + b0, bn 6= 0 be a

polynomial of degree n with constant coefficients. Then for a given ε > 0 there exists

R > 0 such that for all |z| = r > R we have

(1− ε)|bn|r
n 6 |A(z)| 6 (1 + ε)|bn|r

n.

Lemma 2.3 ([5], page 51). Let f be a transcendental entire function. Then there

exists a set E ⊂ (1,∞) with finite logarithmic measure such that for |z| = r 6∈

[0, 1] ∪ E and |f(z)| = M(r, f) we have

f (j)(z)

f(z)
= (1 + o(1))

(ν(r, f)

z

)j

for j = 1, 2, . . . , k, where k is a positive integer.

Lemma 2.4 ([5], page 36). Let f be a transcendental entire function and let p > 1

be an integer. Then

m
(

r,
f (p)

f

)

= O
(

logT (r, f) + log r
)

possibly outside a set of finite linear measure.

328



Lemma 2.5 ([5], page 5). Let g : (0,∞) → R and h : (0,∞) → R be monotone

increasing functions such that g(r) 6 h(r) outside a set of finite logarithmic measure.

Then for a given α > 1 there exists R > 0 such that g(r) 6 h(rα) for all r > R.

Lemma 2.6 ([5], page 5). Let g : (0,∞) → R and h : (0,∞) → R be monotone

increasing functions such that g(r) 6 h(r) outside a set of finite linear measure.

Then for a given α > 1 there exists R > 0 such that g(r) 6 h(αr) for all r > R.

Lemma 2.7 ([6]). For an entire function f

µ(f) = lim inf
r→∞

log ν(r, f)

log r
and µ2(f) = lim inf

r→∞

log log ν(r, f)

log r
.

Lemma 2.8 ([3]). For an entire function f

σ2(f) = lim sup
r→∞

log log ν(r, f)

log r
.

3. Proof of Theorem 1.1

P r o o f. First we verify that an entire function f that satisfies (1.3) with fn 6≡ α2

must be transcendental. On the contrary we suppose that f is a polynomial and

satisfies (1.3). Then P (f) and fn are also polynomials. So we have 1 6 degA =

σ(eA) = σ((P (f)− α1)/(f
n − α2)) 6 max{σ(α1), σ(α2)} < 1, a contradiction.

Now by Lemma 2.3 there exists E ⊂ [1,∞) with finite logarithmic measure such

that for |z| = r 6∈ E ∪ [0, 1] and |f(z)| = M(r, f) we have

(3.1)
f (j)(z)

f(z)
=

(ν(r, f)

z

)j

(1 + o(1)),

for j = 1, 2, . . . u, where u = max{mj : 1 6 j 6 p}.

Now for all z with |z| = r 6∈ E ∪ [0, 1] and |f(z)| = M(r, f) we get by (3.1)

(3.2)
Pj(f)

fn
= aj

(ν(r, f)

z

)Γj−n

(1 + o(1)),

where Γj = ΓPj
for j = 1, 2, . . . p.

Therefore from (3.2) we get for all z with |z| = r 6∈ E ∪ [0, 1] and |f(z)| = M(r, f)

(3.3)
P (f)

fn
=

p
∑

j=1

aj

(ν(r, f)

z

)Γj−n

(1 + o(1)).
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We now consider the following cases.

Case I. Let µ(f) > 1 + max
16j6p

{χj , 0}. In this case we see that σ(αj) < µ(f) for

j = 1, 2. Hence there exists r0 (> 0) such that M(r, αj) <
1
2M(r, f) for all r > r0

and j = 1, 2.

Since M(r, f) > 1 for all sufficiently large values of r, we get

(3.4)
M(r, αj)

M(r, fn)
=

M(r, αj)

(M(r, f))n
<

1

2

for all sufficiently large values of r and j = 1, 2. Also we note that (3.4) is obvious

if αj is constant for some j ∈ {1, 2}.

Let Γ1 = Γ2 = . . . = Γt = Γt+1 = ΓP = Γ and Γj < Γ for j = t+ 2, t+ 3, . . . , p. If

any two or more of a1, a2, . . . , at, at+1 have the same degree, then in view of (3.3) we

can add them to obtain a term like b(ν(r, f)/z)Γ−n(1+o(1)), where b is a polynomial

with degree not exceeding that of aj’s having the same degree. So without loss of

generality we suppose that the degrees of no two polynomials of a1, a2, . . . , at, at+1

are the same. Also, by rearranging the terms if necessary, we suppose that deg at+1 >

deg at > deg aj for j = 1, 2, . . . , t− 1. Then from (3.3) we get for all sufficiently large

|z| = r 6∈ E ∪ [0, 1] and |f(z)| = M(r, f)

(3.5)
P (f)

fn
= at

(

1 +

t−1
∑

j=1

aj
at

)

(ν(r, f)

z

)Γ−n

(1 + o(1))

+

p
∑

j=t+1

aj

(ν(r, f)

z

)Γj−n

(1 + o(1)) = F1(z) + F2(z), say.

Since deg aj < deg at for j = 1, 2, . . . , t−1, by Lemma 2.2 we have aj(z)/at(z) → 0

as z → ∞ for j = 1, 2, . . . , t − 1. So for sufficiently large |z| = r 6∈ E ∪ [0, 1] and

|f(z)| = M(r, f)

(3.6) F1(z) = at(z)
(ν(r, f)

z

)Γ−n

(1 + o(1)).

We now show that for sufficiently large |z| = r 6∈ E ∪ [0, 1] and |f(z)| = M(r, f)

(3.7) F2(z) = at+1(z)
(ν(r, f)

z

)Γ−n

(1 + o(1)).

Let dj = deg aj for j = 1, 2, . . . , p. Since µ = µ(f) > 1 + (dj − dt+1)/(Γ− Γj) for

j = t+ 2, t+ 3, . . . , p, we can choose an ε such that

0 < ε < min
t+26j6p

(Γ− Γj)(µ− 1) + dt+1 − dj
2(Γ− Γj)

.
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Since µ(f) > 1+ (dj − dt+1)/(Γ− Γj) + ε for t+2 6 j 6 p, we get by Lemma 2.7

for all sufficiently large values of r

(3.8) ν(r, f) > r1+(dj−dt+1)/(Γ−Γj)+ε,

for j = t+ 2, t+ 3, . . . , p.

So by Lemma 2.2 and (3.8) we get for all sufficiently large values of r and j =

t+ 2, t+ 3, . . . , p

|aj(z)/at+1(z)z
Γ−Γj(ν(r, f))Γj−n|

(ν(r, f))Γ−n
6 M1r

dj−dt+1+Γ−Γj (ν(r, f))−(Γ−Γj)

< M1r
dj−dt+1+Γ−Γj−Γ+Γj−dj+dt+1−ε(Γ−Γj)

= M1r
−ε(Γ−Γj) → 0 as |z| = r → ∞,

where M1 > 0 is a suitable constant.

Hence

(3.9)
aj(z)

at+1(z)
zΓ−Γj (ν(r, f))Γj−n = o(ν(r, f)Γ−n)

as r → ∞.

So for sufficiently large |z| = r 6∈ E ∪ [0, 1] with |f(z)| = M(r, f) we get by (3.9)

F2(z) =
at+1(z)

zΓ−n

(

(ν(r, f))Γ−n +

p
∑

j=t+2

aj(z)

at+1(z)
zΓ−Γj(ν(r, f))Γj−n

)

(1 + o(1))

= at+1(z)
(ν(r, f)

z

)Γ−n

(1 + o(1)).

Now by (3.5) and (3.6) and Lemma 2.2 we get for sufficiently large |z| = r 6∈

E ∪ [0, 1] and |f(z)| = M(r, f)

(3.10)
P (f)

fn
= (at(z) + at+1(z))

(ν(r, f)

z

)Γ−n

(1 + o(1))

= at+1(z)
(ν(r, f)

z

)Γ−n

(1 + o(1)).

Now from (3.10) and Lemma 2.2 we get for sufficiently large |z| = r 6∈ E ∪ [0, 1]

and |f(z)| = M(r, f)

∣

∣

∣

P (f)

fn

∣

∣

∣
=

∣

∣

∣
at+1(z)

(ν(r, f)

z

)Γ−n

(1 + o(1))
∣

∣

∣
6 4|βt+1|

(ν(r, f)

r

)Γ−n

rdeg at+1 ,(3.11)

∣

∣

∣

P (f)

fn

∣

∣

∣
=

∣

∣

∣
at+1(z)

(ν(r, f)

z

)Γ−n

(1 + o(1))
∣

∣

∣
>

1

4
|βt+1|

(ν(r, f)

r

)Γ−n

rdeg at+1 ,(3.12)

where βt+1 is the leading coefficient of at+1(z).
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Since µ = µ(f) > 1, we have for all large values of r, ν(r, f) > r1+ε0 , where

0 < 2ε0 < µ− 1. Therefore for all large values of r we get

(3.13)
(ν(r, f)

r

)Γ−n

rdeg at+1 > rε0(Γ−n)+dt+1 .

Now from (3.4) and (3.11) we get for sufficiently large |z| = r 6∈ E ∪ [0, 1] and

|f(z)| = M(r, f)

(3.14)
∣

∣

∣

P (f)− α1

fn − α2

∣

∣

∣
6

|P (f)f−n|+ |α1f
−n|

1− |α2f−n|

6
4|βt+1|(ν(r, f)r

−1)Γ−nrdt+1 + 1
2

1− 1
2

= M2

(ν(r, f)

r

)Γ−n

rdt+1 ,

where M2 > 0 is a constant.

Similarly, from (3.4), (3.12) and (3.13) we get for sufficiently large |z| = r 6∈

E ∪ [0, 1] and |f(z)| = M(r, f)

(3.15)
∣

∣

∣

P (f)− α1

fn − α2

∣

∣

∣
>

|P (f)f−n| − |α1f
−n|

1 + |α2f−n|

>

1
4 |βt+1|(ν(r, f)r

−1)Γ−nrdt+1 − 1
2

1 + 1
2

> M3r
ε0(Γ−n)+dt+1 ,

where M3 > 0 is a constant.

By Lemma 2.2 we get for all sufficiently large |z| = r

(3.16)
1

2
|β|rdegA 6 |A(z)|,

where β is the leading coefficient of A = A(z).

Since A(z) = log (P (f)− α1)/(f
n − α2), we get from (3.14) in view of (3.15) for

sufficiently large |z| = r 6∈ E ∪ [0, 1] and |f(z)| = M(r, f)

(3.17)
∣

∣

∣
A(z)

∣

∣

∣
=

∣

∣

∣
log

P (f)− α1

fn − α2

∣

∣

∣

6

∣

∣

∣
log

∣

∣

∣

P (f)− α1

fn − α2

∣

∣

∣

∣

∣

∣
+ 2π = log

∣

∣

∣

P (f)− α1

fn − α2

∣

∣

∣
+ 2π

6 (Γ− n) log ν(r, f) + (Γ− n+ dt+1) log r + | logM2|+ 2π

6 M4 log ν(r, f),

where M4 > 0 is a constant.
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Now from (3.16) and (3.17) we get for sufficiently large r 6∈ E ∪ [0, 1]

1

2
|β|rdegA 6 M4 log ν(r, f)

and so

degA log r 6 log log ν(r, f) + log
2M4

β
.

Therefore, by Lemma 2.5 for a given ξ > 1, there exists r0 > 0 such that for all

r > r0

degA log r 6 log log ν(rξ, f) + log
2M4

β
.

By Lemma 2.7 this implies degA 6 ξµ2(f). Since ξ > 1 is arbitrary, we get

(3.18) degA 6 µ2(f).

Now for sufficiently large |z| = r 6∈ E∪[0, 1] and |f(z)| = M(r, f) we get from (1.3)

and (3.15)

(3.19) M3

(ν(r, f)

r

)Γ−n

rdt+1 6

∣

∣

∣

P (f)− α1

fn − α2

∣

∣

∣
= |eA(z)| 6 M(r, eA).

First we suppose that dt+1 < Γ−n. Then from (3.19) we get for sufficiently large

r 6∈ E ∪ [0, 1] that

M3(ν(r, f))
Γ−n

6 M(r, eA)rΓ−n−dt+1 .

So by Lemma 2.5 for a given ξ > 1 there exists r0 > 0 such that for all r > r0

M3(ν(r, f))
Γ−n 6 M(rξ, eA)rξ(Γ−n−dt+1).

Hence by Lemma 2.8 we get

σ2(f) 6 ξσ(eA) = ξ degA.

Since ξ > 1 is arbitrary, we have

(3.20) σ2(f) 6 degA.

Next we suppose that Γ−n 6 dt+1. Then from (3.19) we get for sufficiently large

r 6∈ E ∪ [0, 1] that

M3(ν(r, f))
(Γ−n)rdt+1−(Γ−n) 6 M(r, eA).

So by Lemma 2.5 for a given ξ > 1 there exists r0 > 0 such that for all r > r0 we

get

M3(ν(r, f))
(Γ−n)rdt+1−(Γ−n) 6 M(rξ, eA).

Now proceeding as above we obtain (3.20). Combining (3.18) and (3.20) we get

µ2(f) = σ2(f) = degA.

Since degA > 1, it follows that µ(f) = ∞.
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Case II. Let µ(f) 6 1. Then by (1.3) and Lemma 2.4 we get

(3.21) T (r, eA) = m(r, eA) 6 m
(

r,
P (f)

fn

)

+ T
(

r,
α1

fn

)

+ T
(

r,
α2

fn

)

+O(1)

= O(log T (r, f)) +O(T (r, f)) +O(log r) +O(T (r, α1))

+O(T (r, α2)) +O(1)

= O(T (r, f)) +O(T (r, α1)) +O(T (r, α2)),

possibly outside a set of r of finite linear measure.

By Lemma 2.6 we get from (3.21) that for all sufficiently large values of r

(3.22) T (r, eA) 6 M5(T (2r, f) + T (2r, α1) + T (2r, α2)),

where M5 > 0 is a constant.

Since σ(αj) < 1 for j = 1, 2, from (3.22) we get for all sufficiently large values of r

(3.23) T (r, eA) 6 M6(T (2r, f) + (2r)α),

where M6 > 0 is a constant and 0 < α < 1.

Since degA > 1, we see that

(2r)α

T (r, eA)
=

(2r)α

|β|π−1rdegA +O(1)
→ 0 as r → ∞,

where β is the leading coefficient of A.

Hence from (3.23) we get for all sufficiently large values of r

T (r, eA)
(

1−
M6(2r)

α

T (r, eA)

)

6 M6T (2r, f),

which implies

1 6 degA = µ(eA) 6 µ(f) 6 1.

Therefore µ(f) = 1 and A = A(z) is a linear polynomial of the form A(z) = az+b,

where a 6= 0.

We shall now show that at least two of the coefficients a1, a2, . . . , ap are not iden-

tically zero. Let P (f) = a1(f)
n10(f (1))n11 . . . (f (m1))n1m1 . Then from (3.3) we get

for all z with |z| = r 6∈ E ∪ [0, 1] and |f(z)| = M(r, f)

(3.24)
P (f)

fn
= a1(z)

(ν(r, f)

z

)Γ−n

(1 + o(1)),

where ΓP = Γ.
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Since σ(αj) < 1 = µ(f) for j = 1, 2, we see that M(r, αj)/M(r, f) → 0 as r → ∞.

Hence by (3.24) we get for large |z| = r 6∈ E ∪ [0, 1] and |f(z)| = M(r, f)

(3.25) log
∣

∣

∣

P (f)− α1

fn − α2

∣

∣

∣
= log

|P (f)/fn|+ o(1)

1 + o(1)

= log
(

|a1(z)|
(ν(r, f)

r

)Γ−n

(1 + o(1))
)

= log |a1(z)|+ (Γ− n) log
ν(r, f)

r
+ o(1)

= O(log r) + (Γ− n) log ν(r, f).

Now by (1.3) we have

(3.26) A = log
P (f)− α1

fn − α2
= log

∣

∣

∣

P (f)− α1

fn − α2

∣

∣

∣
+ iArg

(P (f)− α1

fn − α2

)

,

where Arg((P (f)− α1)/(f
n − α2)) denotes the principal argument of (P (f)− α1)/

(fn − α2).

Since |Arg((P (f)− α1)/(f
n − α2))| 6 2π, we get from (3.25) and (3.26) and for

large |z| = r 6∈ E ∪ [0, 1] and |f(z)| = M(r, f)

(3.27) |A(z)| 6 M7 log r + (Γ− n) log ν(r, f),

where M7 > 0 is a constant.

Again by Lemma 2.2 we get for all large values of r

(3.28)
|a|

2
r 6 |A(z)|.

From (3.27) and (3.28) we get for large values of r 6∈ E ∪ [0, 1]

(3.29)
|a|

2
r 6 M7 log r + (Γ− n) log ν(r, f).

By Lemma 2.5 for a given ξ > 1 there exists r0 > 0 such that for all r > r0 we get

from (3.29)
|a|

2
r 6 ξM7 log r + (Γ− n) log ν(rξ , f),

which implies

lim
r→∞

r

log r
6

2ξ

|a|
(M7 + (Γ− n)µ(f)) < ∞,

a contradiction. Therefore at least two of a1, a2, . . . , ap are not identically zero. This

proves the theorem. �
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