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KYBERNETIKA — VOLUME 56 (2020), NUMBER 3, PAGES 410-431

ESTIMATING THE CONDITIONAL EXPECTATIONS
FOR CONTINUOUS TIME STATIONARY PROCESSES

GuszTAv MORVAI AND BENJAMIN WEISS

One of the basic estimation problems for continuous time stationary processes X, is that
of estimating E{X;3|Xs : s € [0,t]} based on the observation of the single block {X, : s €
[0,¢]} when the actual distribution of the process is not known. We will give fairly optimal
universal estimates of this type that correspond to the optimal results in the case of discrete
time processes.

Keywords: nonparametric estimation, continuous time stationary processes

Classification: 60G10,60G25, 62G05

1. INTRODUCTION

Tom Cover formulated a number of problems in the Proceedings of the First Interna-
tional IEEE-USSR Information Workshop [6] that have generated a substantial liter-
ature. He posed two questions concerning estimation of discrete time stationary and
ergodic binary processes without any further prior knowledge of the distribution. In his
first question he asked if there exists a universal estimator E, solely depending on the
observations (Xo, X1, Xa, ..., X,) such that for all discrete time stationary and ergodic
binary processes

lim |E,(Xo, X1, Xo, ..., Xn) — E(Xn41]Xo0, X1, Xo,...,X,)| =0 almost surely. (1)
n— oo

This problem is called the 'forward’ problem and the estimator a 'forward’ estimator
because the estimator E, may make use of the data segment of ever increasing length
(Xo, X1, Xo,...,X,,) and tries to estimate an ever moving target E(X,+1|Xo, X1, Xo,
.., X,) where n tends to +o0o, in the positive "forward’ direction. (As for an application,
one may consider a river and let zero denote the event that there will not be flood and let
one denote the event that there will be flood. In this case E(X,+1|Xo, X1, Xo,..., X,)
is the probability that there will be flood in year (n + 1) given the past observations of
the behaviour of the river from year zero to year n.)
In his second question, Cover asked if there exists a universal estimator E_, solely
depending on the observations (X_,, ..., X o, X_1, X) such that for all discrete time
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stationary and ergodic binary processes

lim B n(X_p.. ., X_9,X_1,X0) = E(X1|...,X_5,X_1,Xo) almost surely. (2)
This problem is called the ’backward’ problem and the estimator a 'backward’ estimator
because the estimator F_,, may make use of the data segment of ever increasing length
(X_p..., X o, X 1,Xp) and tries to estimate a fixed target E(X1|...,X_2, X_1,Xp)
where we collect more and more data from the past, in the negative 'backward’ direc-
tion. (As for an application, one may consider the special case where the infinite past
(..., X_2,X_1,X0) determines the exact value of X;. In this case E(X;|..., X o, X 1,
X)) is either zero or one and the goal is to reconstruct the exact value of X; from the
past observations. This problem is called the reconstruction problem.)

Notice that while F(X,4+1|Xo, X1, X2,...,X,) does not converge almost surely in
general, E(X1|X_,, ..., X _o,X_1,X0) does. Namely,

nh—>néo E(X1|X_n . ,)(_27 X_l, Xo) = E(Xl‘ . ,X_g, )(_17 Xo) almost surely. (3)

It turned out that the answers to the 'forward’ and the ’backward’ problems are far
from being the same. Ornstein [20] gave a rather complicated algorithm for the back-
ward estimation problem whereas Bailey [4] provided a proof for the nonexistence of
a universal algorithm guaranteeing almost sure convergence in the forward estimation
problem . To do this, Bailey in [4], assuming the existence of a universal algorithm,
used Ornstein’s technique of cutting and stacking [20] for the construction of a ”coun-
terexample” process for which the algorithm fails to converge (see Shields [25] for more
details on this method).

The problem came to life again in the late eighties with the work of Ryabko [21I]. He
used a simpler technique, namely - relabelling a countable state Markov chain, in order
to prove the nonexistence of a universal estimator for the forward estimation problem
(1) (cf. also Gyorfi, Morvai and Yakowitz [L1]).

One approach in an attempt to obtain positive results for the problem of forward
estimation in the face of Bailey’s theorem modifies the almost sure convergence to al-
most sure convergence of Cesaro averages. The forward problem for Cesaro averages
is this. Does there exist a universal estimator F,, solely depending on the observa-
tions (Xo, X1, Xo,...,X,,) such that for all discrete time stationary and ergodic binary
processes

N

]\;gnoo % nzl |E’I’L(XO7X1; X27 cee 7Xn> - E(Xn+1‘X07X17X27 LR X’I’L)' =0 (4-)
almost surely? (Notice that now one is allowed to make a certain error infinitely many
times but not too often so that the errors vanish in the time (Cesaro) average.) This
was solved already by Bailey in his thesis [4] who constructed such universal estimator.
(Cf. Algoet [2, B] and Weiss [27] also.) (As for an application, one may consider a
certain stock at the stock market and let zero denote the event that the price of the
stock goes down and let one denote the event that the price goes up. In this case
E(X,+1|Xo, X1, Xo,...,X,) is the probability that the price of the stock will go up on
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day (n + 1) given the past observations of the behaviour of the stock. The goal is to
estimate this probability well in Cesaro average so that most of the time the predictionn
will be correct. One may use this prediction to sell when with higher probability the
price will go down and buy when the price will go up according to our estimator. )

In case of the backward estimation problem , several authors first have extended
the results from discrete time binary processes to discrete time bounded real valued
processes using quantization to reduce to the finite valued case see for example Algoet
[1], Morvai [16], Morvai Yakowitz and Gyorfi [I7] and later to discrete time real-valued
unbounded processes, cf. Gyorfi et.al. [10] and Algoet [3].

In case of the forward estimation in Cesaro averages problem , several authors
extended the results from discrete time binary processes to discrete time real-valued
bounded processes, for example Algoet [T, B], Morvai [I6], Morvai Yakowitz and Gyorfi
[I7). Even though, some authors using the method of weighted averages of so called
‘experts’ obtained results for discrete time real-valued unbounded processes, for example
Gyorfi and Ottucsak [12] (cf. Gyorfi et. al. [I3] also) the moment conditions were not
optimal. We have given some fairly definitive results for forward estimation in Cesaro
averages in [I8].

Since if E (| Xo|log™ (|Xo|)) < oo then martingale convergence in , Doob’s inequal-
ity and Breiman’s generalized ergodic theorem (cf. [2]) yield

N

lim — Z |E(X 1| X0, X1y, Xy — E(Xpga| ., X1, X0, X1,...,X0)| =0

N—oco N o
almost surely and so the Cesaro average problem for discrete time real valued stationary
and ergodic processes in is equivalent to the following formulation of the prob-
lem. Does there exist a umverbal estimator E, solely depending on the observations
(Xo, X1, Xa,...,X,,) such that for all discrete time stationary and ergodic real valued
processes with E (| Xo|log™ (| Xo])) < oo,

lim —Z|E (X0, X1, s Xn) — E(Xpy1] ..., X1, X0, X1,..., X)) =0 (5)

N—oo N
n=1

almost surely? Note that the estimator E, depends only on (Xo, X1,...,X,) but the
quantity we are trying to estimate E(X,41]...,X_1, X0, X1,...,X,) depends partly on
values (..., X_o, X_1) which the estimator will never observe.

In this paper we take up the corresponding questions of and for continuous
time processes. This is of interest because there are many natural phenomena modelled
by continuous time processes such as Brownian motion, Poisson point processes and
more general continuous time renewal processes, Markov processes in continuous time
etc. The backward problem we will consider for a stationary processes {X;} is that
of estimating Xp given the past {X; : ¢ € (—00, 0]} based on observing finite sections
of the past when the distribution of the process is unknown. We shall do this for any
fixed value of 8 > 0. We will also deal with the problem of forward estimation, that is
estimating the conditional expectation of X745 given {X, : t € (—oc0,T]}. Here as in the
case of discrete time case we will need to evaluate our guesses using Cesaro averaging.
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As for an application, one may consider a device measuring the water level of a river,
in continuous time. Our task is then that based on the observations, to give estimation
for the water level, let’s say, a week ahead.

The only prior works for universal estimation in this setting are due to Scarpellini
[22, 23], 24] who based his result for the continuous time backward problem on the original
universal scheme for discrete time backward estimator due to Ornstein [20]. Scarpellini
[24] considered continuous time real-valued bounded stationary and ergodic processes
and obtained results for the backward estimation problem under severe restrictions.
Using the more recent schemes pioneered by Morvai [I6] ( cf. also Algoet [3] and Morvai
et al. [I7]) we will generalize his results in several ways, in particular for unbounded
processes (with some integrability restrictions) and get optimal results for the forward
estimation in Cesaro averages problem as well.

In the next section we will formulate more precisely our main results.The following
section contains the proofs of these results, while several auxiliary facts which are needed
for the proofs are relegated to an appendix.

Finally, we would like to thank the referees for several useful remarks which improved
our exposition.

2. RESULTS

Before giving the main results we shall describe the processes we shall deal with. The
simplest framework for discussing stationary processes with a continuous time parameter
is to assume that we have a probability space (€2, ®, P) and a one parameter family of
measure preserving invertible transformation Ty : @ — Q ( —oo < t < o0) which are
jointly measurable as a map from Q x IR — € and has the group property that T;T =
Ti+s (see Ch. XIin Doob [§] and Ch. IIT in Neveu [I9] ). In this situation any real valued
measurable function f : & — IR defines a stochastic process X;(w) = f(Tiw). These
processes are separable which means that for any dense subset S C IR and any interval
I, the o-field generated by {X; : t € I'} equals the o-field generated by {X; : t € S(I}
(cf. e.g. Proposition II1.4.3 on p.89 in Neveu [I9]). Note that we will not assume that
the flow T} is ergodic.

We follow this formal framework for a stochastic process that we have just explained.
To define the basic backward scheme, we shall use a sequence of finer and finer dis-
cretizations of the time parameters and quantizations of the real random variables
{Xs : s € (—00,0]} that are being observed. (We need discretization and quantiza-
tion because our scheme will depend on pattern matching and we have to ensure to find
a recurrence of the patern.)

We adjust the discrete time scheme in Morvai [16], Morvai, Yakowitz and Gyorfi [17] ,
Algoet [3] and Morvai and Weiss [18] to continuous time in the following way:

Forn =1,2,... let P, = {A,; : i = 1,2,...} be a nested sequence of countable
partitions of the real line by intervals. Let A, (x) denote the cell of the nth partition P,
which contains the point x. Assume that

sup sup sup |y—z/<oo and lim sup sup |y—z|=0. (6)
n=12... zc[R y€An(x) "7 elR yEAL(x)

Let []* denote the quantizer which is measurable with respect to o(P,,) and [z]" €
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Ay (). It is immediate from (6)) that

sup sup |[z]" —z| <oco. and lim sup |[z]* — x| =0. (7)
=12 selR oo R
For example, one may choose P, = {[£, %) : k= 0,F1,F2,...} and [z]" = £ if
£ <z<kf

Let 8 > 0 be arbitrary, but fixed. Let
T =T (8)

Note that 7' is a measure preserving transformation.
Define the sequences A,,—1, 7, and R,,—1 recursively (m = 1,2,...). Put Ay = 0,
Ry =0 and let 7; be the time between the occurrence of the pattern

[Xo]!

at time 0 and the last occurrence of the same pattern at times ..., —23, —3. Formally
let

1 =min{t € {3,283,38,...}: [X_¢' = [Xo]'}.

Note that since [Xo]' takes values from a countable set and since T in is measure
preserving transformation we have 0 < 8 < 7 < oo almost surely. Put

)\1 :T1+)\0:7'1 +O:T1.
Note that 0 = A\g < Mg+ 8 = 8 < A1 < oo almost surely. Define the first estimate R; as
Ry =X _+ 15

Note that —7; + 8 < 0 and Ry depends only on {X; : s € [-A1,0]}. Now let 5 be the
time between the occurrence of the pattern

(X2 (X oagamy22]® - [X g2 ), [X0)?)

at time 0 and the last occurrence of the same pattern at times ..., —28, —3. Formally
let

> =min{t € {8,28,38,...} : [X_js/02—4)> = [X_jp/22]* for j =0,1,..., MTEQ}.

Note that since ([X_x,]%, [X_x,45/22)%, ..., [X_g/22)?, [X0]?) takes values from a count-

able set and since 7' in @D is measure preserving transformation we have 0 < 8 < 75 < 00
almost surely. Put
Ao = To + A1

Note that \; < A1 + 6 < Ay < co. Define the second estimate Ry as

— X_7'1+B + X—T2+5
5 .

R
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Note that Ry depends only on {X; : s € [-A2,0]}. Now in general let 7, be the time
between the occurrence of the pattern

(X onn I X pyam ™ [ X gyam] ™, [Xo]™)

at time 0 and the last occurrence of the same pattern at times ..., —23, —3. Formally
let

T = min{t € {8,28,38,... } : [X_jp/0m )™ = [X_jg/om]™ for j =0,1,..., 2220},

Note that since ([X_x,,_,]™, [X_x,._,+8/27]" -+, [X_g/am]™, [Xo]™) takes values from
a countable set and since 7' in @) is measure preserving transformation we have 0 <
B < T < 00 almost surely. Put

)\m = Tm + )\mfl.

Note that A, T oo since 7, > 3 > 0. Define the mth estimate R,, as

1 m
R,, = *ZXf‘rfrB' (9)
m <
7j=1
Note that R,, depends only on {X; : s € [-A,,0]}. To obtain a fixed sample size ¢ > 0
version, let k; be the maximum of integers £ = 0,1,2,... for which A\ < t. Formally,
fort>0

ke = max{k: \p <t k=0,1,2,...}.
Since A\g = 0 and A\, T oo the above formula is well defined. Note that

ke =k aslong as Ay <t < Mgyt (10)
and
Rt = Z kl{)\kgt<)\k+1}' (11)
k=0
For t > 0 put
R_;=R,.,. (12)

Note that Ry = Ry = 0 and R_; depends only on {X, : s € [—t,0]}. Note also that

R_,=R,, as long as A\, <t < At (13)
and
R o0
R, = Z Rilin <t<xeir}- (14)
k=0

Note that since )\ takes values from {0, 3,28,38,...}, for any I =0,1,2,...,

R,=R 5 aslongasif<t<(+1)8 (15)
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and
R, = ZR lus<i<@riypy = ZI{l,B<t<(l+1)B} Z Ry, <iB<rpin}- (16)
=0 =0 k=0

Note that R_; is not a continuous function of ¢ € [0,00) (except if it is the constant
zero) but it is right semi continuous in ¢ € [0,00) (or in other words, R; is left semi
continuous in t € (—00,0] ). Now R_;(w) is jointly measurable in w and t. Indeed, for
a Borel measurable set A C IR,

{(w,t) : R_y(w )eA}

= ZRk I{)\k(w Y<t<Api1(w)} € A}

U U U {w + A(w) =m, Agg1(w) = n, Ri(w) € A} x [mB,np)

k=0m=0n=m+1
which is a measurable set.

To get a scheme for forward estimation we follow Bailey [4] and shift this backward
scheme to give estimations for the future. For ¢t > 0 consider the estimator

Rt(W) = R_t(TtW) (17)

which is defined in terms of { X : s € [0,¢]} in the same way as R_4(w) was defined in
terms of {X; : s € [-t,0]}. Now R, ( ) is jointly measurable in (w,t). Indeed,

Ri(w) = R_y(Tyw)
= Z s(Tw) fig<i<(+1)8)
N A
= 1 (T I .
NE&Z&R 18(Tiw)up<ic+1)p)

Now for a fixed [ € {0,1,2,...},

R_p(Tw) =Y Ri(Tow) I (n<ipans o} (Tow)
k=0

is jointly measurable in (w,t). Thus for a fixed N € {0,1,2,...},
N

> BT us<icqn s
=0

is jointly measurable in (w,t). Now the limit of measurable functions
N

lim ZR ] Ttw)l{l5<t<(l+1) B8}

N—o0

is also jointly measurable in (w, t).
The estimator R; may be viewed as an on-line predictor of X;g.
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Theorem. Let {X;:t € R} be a real-valued stationary continuous time process. Let
B > 0 be arbitrary. Assume that

E (| Xo|) < oo.

Then R
tlim R_, = E(X3|X;: s € (—00,0]) almost surely. (18)

If in addition
E (|Xollog™ (| Xol)) < o0

then .
1 A
tlim ?/ ‘Ru — BE(Xy48|Xs:s€ (—oqu])‘ du =0 almost surely (19)
— 00 0
and
1 ("4
N qu‘ E(Xuip| Xyt s € (—o0yu)) — Xupsl|du=0  (20)
>t Jo

almost surely. If in addition for some 1 < p < o0,
E(|XoP) < 00
then

1
lim —
t—oo t

1 t
lim f/
t—oo t 0

almost surely.

¢
. P
/ ‘Ru — E(Xy48]|Xs s € (—oo,u])| du =0 almost surely (21)
0

and

~ p
Ry = Xurs| = |E(XurplXs i s € (—00,u]) = Xuysl’[du=0  (22)

Note that generalizes the result of Scarpellini (cf. Scarpellini [24]) in that we
have dropped the assumption that the process is bounded and that the time instant £
is special. (Scarpellini [24]) assumed that T is an ergodic transformation. We do not
need such assumption for our results.)

Note that and state that R, is an asymptotically consistent estimator of
the conditional expectation E(X,48|Xs : s € (—oo,u]) in time (Cesaro) average almost
surely.

Note that and state that R, is asymptotically as good estimator for X, {3 as
the conditional expectation E(X,4+5/Xs : s € (—o0,u]), in time (Cesaro) average almost
surely. This is particularly important for p = 2 where the conditional expectation
mimimizes the least square error.

As for a possible application consider a device measuring the temperature in contin-
uous time. The goal is to give an estimate for the temperature e.g. a month ahead
based only on the measurements. According to and our estimate will be as
good in time average as the conditional expectation itself which uses prior knowledge of
the process distribution.
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3. PROOF OF THE THEOREM

Let
K= sup sup |[z]" —z|
n=12,... ,cIR,

By (@), K < oo. We will follow Algoet [3] to prove (I8). For m = 1,2,... define the
forward going version of 7, as

Tm — min{t S {5,25,357 e } . [X,jﬁ/gnurt]m = [X,jﬁ/zm]m
y >\7n—1 "
for j :071,...7%.}.

Let 7 be a nonnegative integer and b; € {[z]™ : =z € R} for j = 0,1,..
stationarity, it follows that for arbitrary C' C IR

.,r. By

rB m ) m Am—
P({Am-1 = g [Xjpam]™ = b1 j = 0,1,...,2 "% Wn{X_, .s€C}
m . m>\m 1
= ZP{)\m 1= 2m [ —J/B/Qm] :bjij:O,l, . 2 }
Q{Tm =I6,X_, 15€C})
5 m . m)\m 1
= ZP T 15({\m1 = zmv[X_jﬁ/gm] =b;:j=0,1,...,2 3 el
=1
m{Tm =18,X_+,+5 €C}))
m . m>\m71
= ZP{)\m 1= Qm,[ _]ﬁ/27n] :bj2]20717...,2 ﬁ }
ﬁ{7—m = lﬁ,X,B € C})
Tﬁ m . m)\mfl
= P({)\mflzﬁ,[X_j,g/Qm] :bjI]:0,17...,2 }O{X5€C}),
which in turn implies that
m . m)\mfl
P(Xf‘,—m+5 €C|[X_],3/2m] i :0,1,...,2 ﬁ )
: m Am—
= P(Xp€O|X_jpam™:j=0,1,...,2 5 omoly, (23)
(Cf. Morvai [16] , Morvai et al. [I7] , Algoet [3] and Morvai and Weiss [18] .) Thus for
m =1,2,... the random variables X_, .3 and X3 are identically distributed. Now we

go back to the definition of the Ry in @ and decompose the quantity we are trying to
estimate into several pieces. We will use the decomposition and argument in Algoet [3]

to prove (18).

Ry = (Xorts = Xrs P I sy )

1<j<k

el
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1 ,
+ 2 D (Xl Ty, b1z
1<5<k
, 4 N
_E([Xffﬁﬁ]”{\[x,rw]j|§j}|[X_15/2j]] :1=0,1,...,27 ]/3 ))
< A
+ 7 Z (X —rs 8l Iix_, a1 X g2l :l:0,1,...,23371)
1<j</€
, , i
*E([Xﬁ]jf{\[xﬁ]a‘\gj}\[Xfm/zj]Jil:0,1,---,2j Jﬁ )
- A
+ = Z XB I{lxﬁ]j|<]}|[ lﬁ/gj]j:l:(),l,...,ijTl)
1<j<k:
= &+ e+ 0k + Gk
By (23), and since E(|Xg| + K) < 0o we get that
D PUX sl > 5) =Y P([XsV] > ) Z (1 X[+ K > j) < oo
=1 =1 =1
and by the Borel-Cantelli lemma,
I{I[X—Tjw]jléj} =1 eventually almost surely. (24)

By and ,

lim |X_r, 45— [Xor 48P Tix_,, 4 p1i1<iy| = i | X—rjt5 = [Xoryrpl | = 0

]—}OO

almost surely. Thus
|€kx| — 0 almost surely. (25)

Toward mastering 7, one observes that {X_, |3} are identically distributed by
and by Proposition [£.1]in the Appendix

n X sV X ahi<s
V=3 (X 5¥15)
i=1 J

. . S Nilq
B(X—r 48l Tipx oy o1t X apyal’ 1 1= 0,15, 27 55%)

J

is a martingale with
sup E(|Vy|) < o0

1<n

By Doob’s convergence theorem V,, converges almost surely. Then by Kronecker’s lemma
(cf. Shiryayev [26] p. 365),

n

.1 '
lim — Z([X—Tj-l-ﬁ]jl{‘[X—Tj‘*'ﬁ]jlSj}

n—oo N
j=1
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. , Ny
= BE(Xmasl Ty, oy 1< X oipyail 1 1=0,1,0, 2 jﬂ ) =0
almost surely and we have proven that
N — 0 almost surely. (26)

(Alternatively, one could use Theorem 2.15 and the results in the proof of Theorem 2.19
in Hall and Heyde [14] as in Algoet [3] to prove ).
Now we will deal with 0. By we get that

0 = 0 almost surely. (27)

Now we deal with the last term (. Since

/\jﬁ_l}Ta{X_l,@/gm:m:l,2,...,l:0,1,...,},

o{[X 125} :1=0,1,...,2

[X/B]jl{l[xﬁ]j\ﬁj} — X3 almost surely,
sup (X5 Iijixap1iy | < 1Xsl + K,
iz
and
E(|X/3‘ + K) < o0,
by Corollary 1 pp.237-238 in Chow and Teicher [7] (Lemma 3 in Algoet [3]) we get

. ; ; Aj—1
Jim B([XsP Tpeapispl X-grz 1 1=0,1,...,27=57)
= E(Xg|X_ip/2m :m=1,2,...,1=0,1,...,) almost surely.

Thus
G — BE(Xp|X_ig/om :m=1,2,...,1=0,1,...,) almost surely.

The set
{=1B/27 :j=1,2,...,1=0,1,...,}

is a dense subset of the interval (—oo, 0] and this implies that the sigma-algebra generated
by the random variables

{X_igjom :m=1,2,...,1=0,1,...,}
coincides up to null sets with the sigma-algebra generated by the random variables
{Xs 15 € (—00,0[}
(cf. e.g. Proposition 111.4.3 on p. 89 in Neveu [19]) and this yields

E(Xg|X ipjom :m=1,2,...,1=0,1,...,) = E(Xg| X, : s € (—00,0])
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almost surely and in turn

Ck — E(Xp|Xs : s € (—00,0]) almost surely. (28)
By , , and we get
klim Ry = E(X3|X;: s € (—00,0]) almost surely. (29)
— 00

Now and together imply .

Now assume that
E (|Xo[log™ (| Xol)) < o0

We go back to the definition of the Ry in @ and give a different decomposition.

1 .
Re = + Z (X-rj+8 — [X—ry46))
1<j<k
; ; A
DS (Xwﬂ — B((X—ryssP X g/l :1=0,1,...,2 ;j))
1<]<k
. A
+ = Z (X —ry 8P [X _ip sl 2 1 :0,1,...,2H71)
1<J<k
, Dy
7E(X—Tj+ﬂ|[Xflﬁ/21]] :1=0,1,...,2 ]ﬁl))
Aj—
+ - Z X—T]+6|X lﬁ/QJ} l_Oala"'a2]jTl)
1<]<k
j j i1
—E(XﬁHX_l@/Qj] :l:O,l,...,Z ﬂ ))
Ao
+ - Z (X5|[X _15/2i) :z:o,1,...,2ﬂj71)
1<_]<k
= Ap+ By +Cy+ Dy + Ey.
By 7 we get
|Ak| + |Ck| < 2K < oo almost surely. (30)
Now we will deal with Dy. Using we get that
Dy, =0 almost surely. (31)

Toward mastering Bk, one observes that {X_, y5} are identically distributed by
and by Proposition [£.1]in the Appendix

n ; ; ; A
U, — Z [X—Tj-‘rﬁ]J - E([X—Tj-i-ﬁ]j”Xle/Qj]J = 07 13 BERE) 2JTI)
" J

Jj=1

is a martingale with
E(sup |Uy,]) < o0

1<n
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and since for any sequence of real numbers {a;},

n
D a
i=1

(cf. Lemma 7 in Elton [9]), we get

1
sup —
1<n N

Qg
1

n
< 2| sup

)

E(sup|Byg|) < 2E(sup |U,|) < oo.
1<k 1<n

Furthermore, by Doob’s inequality,

E(sup |Ex|) < E(sup B(| Xp||[ X152} :1=0,1,...,2
1<k 1<

By (0), @1), (2) and

E(suka|) <E <sup|Ak| T 1Bal 4 |Col + Dl + |Ek) < .
1<k 1<k

By (13),

sup |R_j5|= sup |Ri|= sup |Ri| almost surely.
1=0,1,2,... k=0,1,2,... k=1,2,...

Now and together yield

For ¢t € [0,00) let fi(w): Q x [0,00) = IR be

flw) = Rt~ B(X5|X, : s € (—00,0])]

> IR — BE(Xp| X, : s € (—00,0)| Tup<ic41)s)-
=0

(32)

Now fi(w) is nonnegative and jointly measurable in ¢ and w, cf. (14). For a fixed w,

fi(w) is right semi continuous in ¢, cf. . By it is then immediate that

llim |R_15 — B(X3|X,:5€ (—00,0])] =0 almost surely.
— 00
By (36)

E ( sup  |R_yp — BE(Xp|Xs:s¢€ (—oo,()])|>
1=0,1,2,...

< E <l sup _|R—15l> + E(E(|Xp||Xs : s € (—00,0]))

yLydye

(37)
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1=0,1,2,...

= E( sup |R—w|>+E(|Xﬁ)
< oo.

Now apply Proposition in the Appendix to conclude that

1
lim -
t—oo ¢

/t fu(Tyw)du =0
0

almost surely. Thus

1M
tlir?oi/o ‘RU—E(XU+5|XS.SG (—oo,u])‘du
1t
= tliHJOZ ; (’R_u—E(X[ﬂXs:sE(—oo,O])’(Tuw)> du

=0
almost surely and the proof of is complete. Similarly,

|1 = X | = |B(X51X, 25 € (—o0,0]) = Xg|

= > ‘|R—zﬂ — Xp| — |E(Xp|Xs : s € (—00,0]) — Xﬁ|’ Tup<i<+1)8}

=0

and by

Jim (|R_w — Xg| — [B(X5|X,s ¢ s € (—00,0]) — X5|‘ —0
— 00

almost surely and by

423

E < sup [|Ris — Xa| — |E(Xs] X, : 5 € (—00,0]) —XBD

1=0,1,2,...

< E( sup |R—w|>+3E(|XﬂI)
1=0,1,2,...

< o0
and Proposition [I.3]in the Appendix gives
t

lim —
t—oo L 0

almost surely and the proof of is complete.

Now we assume that for some 1 < p < 0o, E(|Xp|P) < 0o, and we prove (21)).

Observe that by and

|Rk|p: |Ak—|—Bk+0k+Dk—|—Ek|p < 3P [(QK)p+|Bk|p+‘Ek|p].

IRy — Xj| — |E(X5]Xs : 5 € (—00,0]) —Xﬁ\‘du —0

(38)
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By Proposition [£.2] in the Appendix

E(sup | By[?) < o (39)
1<k

and by Doob’s inequality, (cf. Theorem 1 on p. 464, §3 Ch. VII in Shiryayev [26]),

E(sup |E|?) < oo. (40)
1<k
By (38), and (40)),
E (sup |Rk|p> < 00. (41)
1<k

Now and together imply

E( sup R15|p> < 0. (42)

1=0,1,2,...

|R_ — B(Xg| X, : 5 € (=00, 0D =Y |R15 — E(Xp| X, : 5 € (—00,0))[PIup<icaing
=0

and by
llim |R_15 — BE(X3|{X,:s € (—00,0]})[P =0 almost surely
— 00

and by

E < sup [R5 — E(Xp|X,:s€ (—oo,O])|p)
1=0,1,2,...

2”E< sup |Rl5|p>
1=0,1,2,...

+ PE(|E(Xp|X, : s € (—o0,0)7)

2”E< sup |R_15|p>
1=0,1,2,...

+ 27E([X5[")

< o0

IN

IN

and by Proposition in the Appendix one gets . Similarly,

1R = Xl = |E(X5|X, 1 5 € (~00,0]) = X"

= Z ‘\R,m = XplP — |[E(Xp|Xs 1 s € (—00,0]) — Xﬂ|p’ Tg<i<(41)8)
1=0
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and by

llim ‘\]%_lg — X3|P — |E(X3]| X, : s € (—00,0]) — Xg|P| =0 almost surely
— 00

and by

E (l sup || Rig — Xl — [B(Xs|X, 1 5 € (00,0]) - XW\)
=0,1,2,...

< 92PF < sup R_lﬁp> +3(2P)E (| X5/")
1=0,1,2,...

< ©oQ.

Now apply Proposition in the Appendix to prove . The proof of the Theorem is
complete. O

4. APPENDIX

The next result is a generalization of a result due to Elton, cf. Theorems 2 and 4 in
Elton [9].

Proposition 4.1. (Cf. Elton [9], Hall and Heyde [14], Algoet [3] and Morvai and Weiss
[18]) For n=0,1,2,... let X,, be random variables identically distributed with

E(]Xo]) < o0

and let G, be an increasing sequence of g-algebras. For n = 1,2,... let g, be a real
valued functions such that

and g, (X,) is measurable with respect to G,,. Then

" (X t<ir — E(gi(X 1o (xa1<is |G
. Sung( Mg i<y = Blo:(X) g xoi<ipldim) |y _ (43)
lsn o !
If in addition
E(|Xo|log™ (| Xo)) < o0
then
5 Sung( )~ Blg:(X)IGi-0) |\ _ (44)
lsnlimy ’

Proof. Write
Y, = gn(Xn)v

Yy =Yalpy,1<n
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and
Y?i/ = YTLI{|Yn\>n}~

By Davis’ inequality (valid for all martingale differences cf. e.g. Shiryayev [26] p. 470),

we get

n
Y/ - E(Y/|Gi—1)
E | su L !
( 2

i=1

IN

1

IN
Sy

Now
E(Y] - EY/I6:1))?) = E((Y))?)+E(B(Y/9:i-1)%)
— 2E(Y/E(Y/!|Gi-1))
(Y])?) — E(E(Y/|Gi-1)?)
(¥7)?)

Define

K := sup sup |g,(z)—z| < c0.
n=1,2,... ,cIR,

But since |Y; — X;| < K we get
E((Y))?) = B (Vi) Iyv<iy) < B (1K) + K)* I x,<iv k)

and the X;’s are identically distributed therefore

=1
ZﬁE ((1X:] + K)2 I x, 1 <iv i}

i=1
1 2
= ZﬁE((|Xo|+K) Iixo|<itK})
i=1
< Z B (41X I x <it k)
i=1
= 4K?
+ Z i2
i=1
where 4K2 pya 22 is finite. Now

m"—‘

oo 1 oo
ZE (| X0l I{ xo|<i+ k) Z

=1
(X0l Ixo1<n) + Y 5 B (X0 Lic ol i xy)
=1
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IA

IN

IN

IN

=1
ZEZE (IXo0/* It 1<1x01<53)

=1 7j=1

=1

Z ZEE (|X0‘ I{7<|X0|<1+K}>
=1

— 1
Z?E (|X0‘ I{z<|X0|<1+K})

=1

o ) 1 0 1
Do E (Xl hicxozn) [+ D0 &
i=1 j:i+1]

=1
Z = FE (|X0\ Iiic|Xo|<itKY})

Z (E (|X0|21{i—1<|X0|§i}) (22 +/ Z2dz>>

— 1
Z?E (|X0‘ I{Z<|X0|<1+K})

Xo
(l | | Xol g 1<X0|<Z})>

|X0| 1Xol”; )
{i<|Xo|<i+K}

[M]8
oy
pj /—\

(IXoHfim1<ix01<i}))

o0
ZE (K +1)°Iicxo|<it k)

427
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< 2B(|Xo|) + (K 4+ 1)°K < 0.

Combining all these we get . (cf. Theorem 2.19 in Hall and Heyde [14] also).
Now we assume that F(]Xo|log™ (| Xo|)) < oo.

EY, — E(Y,/|Gn-1)| 2E1Y,)|
2E (K + |XnDI{x, | 5n—K})

= 2B ((K + |XoDI{xo|>n-K})

<
<

since X,,” are identically distributed. Now

(Z Y~ B(Y] \gn 1>|>

IA
[\}
M8
S|

E((K + | Xo)I{|xo|>n—K})

3
Il
-

I
[\
M8
S|

E ((K + | Xo|) {1 xo |+ K >n}) -

3
I
A

Since E((|Xo| + K)log™* (|Xo| + K) < oo, Lemma 2 in Elton [J] implies that

oo

1
> e ((1Xol + E) I xo |+ K>n}) < 00

n=1

and so

n Y//_E(Yi//lgi 1

Now by and we get . The proof of Proposition is complete. 0

Proposition 4.2. (Proposition 2 in Morvai and Weiss [I8]) Let ¢, be a martingale
difference sequence. If, for some 1 < p < oo,

sup E(|¢n|P) < o0
1<n

1

then

n

LS,

E <sup —
1<n |10 =
= i=1

Now we adapt the method of proofs in Maker [I5], Breiman [5] and Algoet [2] to our
needs.

> < 00. (46)

Proposition 4.3. (Cf. Maker [15], Breiman [5] and Algoet [2]) Let (2,®,P) be a
probability space with a family of measure preserving invertible transformations T,
—00 < t < oo with the group property (75T = Tsyr) such that T : Q x [0,00) = R
is jointly measurable in (w,t). For I = 0,1,2,... let h; be measurable real valued
functions such that h; is nonnegative, E(sup,_q 1o, i) < 0o and lim; o, h; = 0 almost
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surely. For a given fixed 8 > 0 let fi(w) : @ x [0,00) — IR be such that fi(w) =
Z?io hl(w)l{lﬁ§t<(1+1)5}. Then

1
lim —
t—oo

t
/ fu(Tyw)du =0 almost surely. (47)
0

Proof. We follow Algoet’s proof for the discrete time case (Theorem 12 in [2]) and
adapt to our needs in the continuous time. First note that

o N
fi(Tiw) = ZZ; hi(Tew) Lup<i<qenypy = Jm ; hi(Tuw) Lup<i<e)py

is jointly measurable in (w,t) since it is a pointwise limit of sums of measurable functions
(Cf. Maker [15]) . For k =0,1,2,... define

Gi(w) = l_ks;:fl hi(w).

Note that G}, is nonnegative, monotone decreasing and E(Gy) < oo. Furthermore, by
the Fubini-Tonelli theorem and stationarity

t t t t
E/ fu(Tyw) du = / Ef, (T w)du = Ef,du< / EGydu =tEGy < 00
0 0 0 0

and thus the integrals exist. Now

1 (G+1)8
Grm), A

1 /(j+1)ﬁ i ( )
= — hi(Tuww) I {18<u<+1)8y du
G+1B Jo =0

1 (j+1)8 _J
= m/o Zhl(Tuw)I{lﬂSu<(l+1)ﬁ}du

1=0
1 J (3+1)8

= W;/O h(Tuw) L 1p<u<+1)py du
1 J (I+1)p

— W;/lﬁ hi(Tyw) du
1 k +1)B 1 J +1)p

= G008 g/zﬁ hy(Tuw) du + G+, 2=, /lﬁ hy(Tuw) du
1 k418 1 J (+1ng

< Giop ;/m Go(Tuw) du+ =33 l:kz;/w G (T,w) du
1 koopa+ns 1 I U+

< WUB;/W Go(Tyw) du + (14'1)5;/15 Gr(Tyw) du
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(k+1)B (J+1)[3
G +1ﬁ/ Gy (Tuw)du—i— B/ ww) du

where Z is the sigma algebra of the invariant sets. (Cf. Maker [15], Breiman [5] and

Algoet [2]) Since Gy, is nonnegative monotone decreasing and E(Gp) < oo we get that
E(Gg|T) — 0 almost surely. Thus

J+1)B
W/o fu(Tyw)du — 0

almost surely. Now for j8 <t < (5 4+ 1)8,

1 G+1)B
0< - /fu wydu< 11 +16/ Fu(Tuw) du
Jj U
and the right hand side tends to zero almost surely which yields (47)). This completes
the proof of Proposition O
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