
Commentationes Mathematicae Universitatis Carolinae

Mohammed S. Abdo; Ahmed G. Ibrahim; Satish K. Panchal
Noncompact perturbation of nonconvex noncompact sweeping process with
delay

Commentationes Mathematicae Universitatis Carolinae, Vol. 61 (2020), No. 2, 165–186

Persistent URL: http://dml.cz/dmlcz/148287

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/148287
http://dml.cz


Comment.Math.Univ.Carolin. 61,2 (2020) 165–186 165

Noncompact perturbation of nonconvex

noncompact sweeping process with delay

Mohammed S. Abdo, Ahmed G. Ibrahim, Satish K. Panchal

Abstract. We prove an existence theorem of solutions for a nonconvex sweeping
process with nonconvex noncompact perturbation in Hilbert space. We do not
assume that the values of the orient field are compact.

Keywords: nonconvex sweeping process; functional differential inclusion; uni-
formly ̺-prox-regular set

Classification: 34A60, 34B15, 47H10

1. Introduction

The aim of the paper is to prove the existence of a solution of the following

nonconvex noncompact sweeping process with delay

(1)















u′(t) ∈ −NP
C(t,u(t))(u(t)) + F (t, τ(t)u) a.e. for t ∈ [0, T ];

u(t) = ϕ(t) for t ∈ [−r, 0];

u(t) ∈ C(t, u(t)) for t ∈ [0, T ],

where C is a set-valued mapping with ̺-prox-regular closed (not necessarily com-

pact) values in a Hilbert space H , NP
C(t,u(t))(u(t)) is the proximal normal cone

of C(t, u(t)) at the point u(t), F is a set-valued mapping with nonconvex and

noncompact values in H and ϕ is a given continuous function.

In the setting when the values of C are assumed to be convex or the complement

of the interior of a convex set, the problem has been considered by several authors,

see [6], [10], [14], [13], [15], [16], and the references therein.

Recently, using important properties of uniformly ̺-prox-regular sets developed

in [5], [2], [18], the existence of solutions of the sweeping process with convex or

nonconvex perturbation is established, see for example [1], [9], [12]. There are also

papers by J.F. Edmond and L. Thibault in Mathematical programming and by

M. Sene and L. Thibault in Set-valued and variational analysis with single-valued

Lipschitz perturbation. Remark that, in all the cited papers, the compactness

assumption on the perturbation is widely used.
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In recent papers, M. Atialioubrahim in [2] established the existence of solution

for (1) when the values of C are nonconvex and compact in Hilbert space H , while

in Theorem 3.1 in [4] M. Bounkhel and C. Castaing established the existence of

solution for (1) when F = 0 and the values of C are convex (not necessarilly

compact) and satisfies a compactness condition involving a measure of non com-

pactness.

In this paper, our main purpose is to obtain the existence of solution of (1) in

the case when the values of C are closed uniformly ̺-prox-regular (noncompact),

but a condition involving the Kuratowski/Hausdorf measure of noncompactness

is used in Theorem 3.1, and also the perturbation F are nonconvex, noncompact,

integrably bounded, measurable with respect to the first argument and Lipschitz

continuous with respect to the second argument.

2. Preliminaries

Let H be a real separable Hilbert space with the norm ‖·‖ and the scalar

inner product 〈·, ·〉. For I a segment in R, we denote by C(I,H) the Banach

space of continuous functions from I to H equipped with the norm ‖y‖∞ :=

sup{‖y(t)‖ : t ∈ I}. For r a positive number, we put Cr = C([−r, 0], H) and for

any t ∈ [0, T ], T > 0, we define the operator τ(t) : C([−r, T ], H) −→ Cr with

(τ(t)g)(s) = g(t+ s) for all s ∈ [−r, 0].

For x ∈ H and a > 0, let B(0, a) := {y ∈ H : ‖y‖ < a} be the open ball

centered at 0 with radius a and B(0, a) be the closure of B(0, a), B(0, 1) be the

open unit ball centered at 0. For x ∈ H and for nonempty subsets A,B of H , we

denote d(x,B) = inf{‖y − x‖ : y ∈ B}, e(A,B) = sup{d(x,B) : x ∈ A} the excess

of the set A over the set B and h(A,B) = max{e(A,B), e(B,A)} the Hausdorff

distance between the set A and B. For measurability purpose, H (or Ω ⊂ H) is

endowed with the σ-algebra B(H) (or B(Ω), respectively) of Borel subsets for the

strong topology and the segment I is endowed with Lebesgue measure and the

σ-algebra of Lebesgue measurable subsets. A set-valued mapping is said to be

measurable if its graph is measurable. For more details on measurability theory,

we refer the reader to book [7] of C. Castaing and M. Valadier.

We need first to recall some notations and definitions that will be used in the

paper.

Let V : H −→ R∪{∞} be a lower semicontinuous function and x be any point

where V is finite. The proximal subdifferential ∂PV (x) of V at x is the set of all

y ∈ H for which there exist δ, σ > 0 such that for all x′ ∈ x+ δ B

〈y, x′ − x〉 ≤ V (x′)− V (x) + σ‖x′ − x‖2.
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Let S be a nonempty closed subset of H and x be a point in S. We recall,

see [8], that the proximal normal cone of S at x is defined by NP
S (x) := ∂PΨS(x),

where ΨS denotes the indicator function of S, i.e.

ΨS(x) =

{

0 if x ∈ S,

∞ otherwise.

Recall now, that for a given ̺ ∈ (0,∞], a subset S is uniformly ̺-prox-regular,

see [17], (or equivalently ̺-proximally smooth, see [8]) if and only if every nonzero

proximal normal to S can be realized by a ̺-ball. This means that for all x ∈ S

and all ζ ∈ NP
S (x)\{0}, one has

〈 ζ

‖ζ‖
, x− x

〉

≤
1

2̺
‖x− x‖2

for all x ∈ S. We make the convention 1/̺ = 0 for ̺ = ∞. Recall that for ̺ = ∞

the uniform ̺-prox-regularity of S is equivalent to the convexity of S.

The following propositions summarize some important consequences of uniform

prox-regularity needed in the sequel.

Proposition 2.1 ([17]). The following assertions hold.

(1) ∂PdS(x) = NP
S (x) ∩ B.

(2) Let ̺ ∈ ]0,∞]. If S is uniformly ̺-prox-regular, then for all x ∈ H

with dS(x) < ̺ one has projS(x) 6= ∅ and ∂PdS(x) = ∂CdS(x), see

L. Thibault in [18]. So, in such a case, the subdifferential ∂dS(x) :=

∂PdS(x) = ∂CdS(x) is a closed convex set in H .

(3) If S is uniformly ̺-prox-regular, then for all xi ∈ S and all vi ∈ NP
S (xi)

with ‖vi‖ ≤ ̺, i = 1, 2, one has

〈v1 − v2, x1 − x2〉 ≥ −‖x1 − x2‖
2.

As a consequence of (3), we get that for uniformly ̺-prox-regular sets,

the proximal and Clarke normal cones at all points x ∈ S coincide, i.e.,

NP
S (x) = NC

S (x). In such a case, we put NS(x) := NP
S (x) = NC

S (x).

Proposition 2.2 ([5]). Let ̺ ∈ ]0,∞] and Ω be an open subset in H and let

C : Ω −→ 2H be a Hausdorff-continuous set-valued mapping. Assume that C

has uniformly ̺-prox-regular values. Then, the set-valued mapping given by

(z, x) −→ ∂dC(z)(x) from Ω × H (endowed with the strong topology) to H

(endowed with the weak topology) is upper semicontinuous, which is equiva-

lent to the upper semicontinuity of the function (z, x) −→ σ(∂dC(z)(x), p) for

any p ∈ H . Here σ(S, p) denotes the support function associated with S, i.e.,

σ(S, p) = sup{〈s, p〉 : s ∈ S}.
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Lemma 2.3 ([19]). Let Ω be a nonempty set in H . Assume that F : [a, b] ×

Ω −→ 2H is a set-valued mapping with nonempty closed values satisfying:

◦ for every x ∈ Ω, F (., x) is measurable on [a, b];

◦ for every t ∈ [a, b], F (t, .) is (Hausdorff) continuous on Ω.

Then for any measurable function x : [a, b] −→ Ω, the set-valued mapping F (., x)

is measurable on [a, b].

Lemma 2.4 ([19]). Let G : [a, b] −→ 2H be a measurable set-valued mapping and

h : [a, b] −→ H a measurable function. Then for any positive measurable function

r : [a, b] −→ R
+, there exists a measurable selection g of G such that for almost

all t ∈ [a, b]

‖g(t)− h(t)‖ ≤ d(h(t), G(t)) + r(t).

3. Main result

In this section, we prove our main result.

Theorem 3.1. Let H be a separable Hilbert space, b > 0, I = [0, b], C : I ×

H −→ 2H be a set-valued mapping with nonempty closed values and F : I×

Cr −→ 2H be a set-valued mapping with nonempty closed values. Assume that

the following hypotheses hold:

(C1) for each t ∈ I, C(t, .) is ̺-prox-regular for some fixed ̺ ∈ ]0,∞[ ;

(C2) there are positive constant λ and an absolutely continuous function v :

I −→ R such that

|dC(t1,x1)(u1)− dC(t2,x2)(u2)| ≤ |v(t1)− v(t2)|+ ‖x1 − x2‖+ λ‖u1 − u2‖

for all u1, u2, x1, x2 ∈ H and t1, t2 ∈ I;

(C3) for any t ∈ I, and any bounded set M in H with γ(M) > 0, κ > 0 one

has

γ(C(t,M) ∩ κB) < γ(M),

where γ = α or γ = β is either the Kuratowski or the Housdorff measure of

noncompactness;

(F1) for each ψ ∈ Cr , t −→ F (t, ψ) is a measurable;

(F2) there is a function m ∈ L1(I,R+) such that for all t ∈ I, and for all

ψ1, ψ2 ∈ Cr

h(F (t, ψ1), F (t, ψ2)) ≤ m(t)(‖ψ1 − ψ2‖∞);

(F3) there exist two functions g, p ∈ L1(I,R+) such that for all t ∈ I and for

all ψ ∈ Cr

‖F (t, ψ)‖ ≤ g(t) + p(t)‖ψ‖∞.
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Then, for any ϕ ∈ Cr with ϕ(0) ∈ C(0, ϕ(0)), there exist T ∈ ]0, b[ and a contin-

uous function u : [−r, T ] −→ H that is absolutely continuous on [0, T ] and such

that u is a solution of (1) and satisfies

‖u′(t)‖ ≤ 2g(t) + 2p(t)(‖ϕ‖∞ + r) + |v′(t)| for almost all t ∈ [0, T ].

Proof: Let T1 > 0 be such that

(2)

∫ T1

0

(2g(t) + 2p(t)(‖ϕ‖∞ + r) + |v′(t)|) dt < inf
{̺

2
,
r

2

}

.

The idea of such T1 has been used in [11]. For ε > 0 set

(3)

η(ε) = sup

{

ζ ∈]0, ε] :

∣

∣

∣

∣

∫ t2

t1

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds

∣

∣

∣

∣

< ε,

and ‖ϕ(t1)− ϕ(t2)‖ < ε if |t1 − t2| < ζ

}

.

Put

T = min
{

T1,
1

2
η
(ε

2

)

, b
}

,

and

µ = ‖ϕ(0)‖+

T
∫

0

(2g(β) + 2p(β)(‖ϕ‖∞ + r) + |v′(β)|) dβ.

Let n be a fixed natural number. Consider a sequence of subdivisions (Pn)n≥1

of [0, T ]:

Pn = {0 = tn0 < tn1 < · · · < tni < · · · < tn2n = T },

where tni = iT/2n, 0 < i < 2n.

In order to make it easier for the reader we will divide the proof in the following

steps:

Step 1: For all z ∈ L1([0, T ], H), there exist a sequence (xni ) of H , 0 ≤ i ≤ 2n,

with xn0 = ϕ(0), a continuous function un : [−r, T ] −→ H , and fn ∈ L1([0, T ], H)
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such that for all i = 0, 1, . . . , 2n − 1, the following properties are satisfied:

(4)



















































































































































(i) un(t) = ϕ(t) for t ∈ [−r, 0];

(ii) fn(0) ∈ F (t, τ(0)ϕ) and fn(t) ∈ F (t, τ(tni )un)

for t ∈ (tni , t
n
i+1];

(iii) un(t
n
i+1) = xni+1 ∈ projC(tn

i+1
,xn

i
)

(

xni +
tni+1
∫

tn
i

fn(s) ds

)

;

(iv) ‖un(t)‖ ≤ µ for t ∈ [tni , t
n
i+1];

(v) ‖un(t)− un(s)‖ ≤
t
∫

s

(2g(β) + 2p(β)(‖ϕ‖∞ + r)

+ |v′(β)|) dβ for tni ≤ s < t ≤ tni+1;

(vi) ‖fn(0)− z(0)‖ ≤ d(z(0), F (0, τ(0)ϕ) + 1
n2 ,

‖fn(t)− z(t)‖ ≤ d(z(t), F (t, τ(tni )un)) +
1
n2 , and

‖fn(t)‖ ≤ g(t) + p(t)(‖ϕ‖∞ + r) for t ∈ (tni , t
n
i+1];

(vii) u′n(t)− fn(t) ∈ −NC(tn
i+1

,un(tni ))
(un(t

n
i+1))

for a.e. t ∈ (tni , t
n
i+1];

(viii) ‖u′n(t)− fn(t)‖ ≤ |e′(t)| = g(t) + p(t)(‖ϕ‖∞ + r) + |v′(t)|

for a.e. t ∈ (tni , t
n
i+1],

where e : [0, T ] −→ R
+ is defined by

(5) e(t) :=

t
∫

0

(g(s) + p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds for all t ∈ [0, T ].

Set un(s) = ϕ(s) for all s ∈ [−r, 0]. Put xn0 = ϕ(0) ∈ C(tn0 , ϕ(0)).

In view of Lemma 2.4, there exists a function fn
0 ∈ L1([0, tn1 ]), H) such that

fn
0 (t) ∈ F (t, τ(0)un) and

‖fn
0 (t)− z(t)‖ ≤ d(z(t), F (t, τ(0)un)) +

1

n2
for all t ∈ [0, tn1 ].

Note that, by condition (F3) for any t ∈ [0, tn1 ], we have

(6)

‖fn
0 (t)‖ ≤ g(t) + p(t)‖τ(0)un‖∞

= g(t) + p(t) sup
s∈[−r,0]

‖τ(0)un(s)‖ = g(t) + p(t) sup
s∈[−r,0]

‖un(s)‖

= g(t) + p(t) sup
s∈[−r,0]

‖ϕ(s)‖ = g(t) + p(t)‖ϕ‖∞.
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Then, thanks to the condition (C2) and (6), we have

dC(tn
1
,xn

0
)

(

xn0 +

tn1
∫

tn
0

fn
0 (s) ds

)

≤ dC(tn
0
,xn

0
)

(

xn0 +

tn1
∫

tn
0

fn
0 (s) ds

)

(7)

+

∣

∣

∣

∣

dC(tn
1
,xn

0
)

(

xn0 +

tn1
∫

tn
0

fn
0 (s) ds

)

− dC(tn
0
,xn

0
)

(

xn0 +

tn1
∫

tn
0

fn
0 (s) ds

)
∣

∣

∣

∣

≤

tn1
∫

tn
0

‖fn
0 (s)‖ ds+ |v(tn1 )− v(tn0 )|

≤

tn1
∫

tn
0

(g(s) + p(s)‖ϕ‖∞ + |v′(s)|) ds.(8)

This inequality with (2) gives

dC(tn
1
,xn

0
)

(

xn0 +

tn1
∫

tn
0

fn
0 (s) ds

)

≤
̺

2
.

As C has uniformly ̺-prox-regular values, by Proposition 3.2.1, we have

projC(tn
1
,xn

0
)

(

xn0 +

tn1
∫

tn
0

fn
0 (s) ds

)

6= ∅.

Then thanks to that, one can choose a point xn1 such that

(9) xn1 ∈ projC(tn
1
,xn

0
)

(

xn0 +

tn1
∫

tn
0

fn
0 (s) ds

)

.

Note that, xn1 ∈ C(tn1 , x
n
0 ) and by (8) we get

(10)

∥

∥

∥

∥

xn1 −

(

xn0 +

tn1
∫

tn
0

fn
0 (s) ds

)
∥

∥

∥

∥

= dC(tn
1
,xn

0
)

(

xn0 +

tn1
∫

tn
0

fn
0 (s) ds

)

≤

tn1
∫

tn
0

(g(s) + p(s)‖ϕ‖∞ + |v′(s)|) ds.



172 M.S. Abdo, A.G. Ibrahim, S.K. Panchal

This inequality gives

(11)

∥

∥

∥

∥

xn1 −

(

xn0 +

tn1
∫

tn
0

fn
0 (s) ds

)∥

∥

∥

∥

= e(tn1 )− e(tn0 ).

Remark that, by (6) and (10), we have

(12)

‖xn1‖ ≤

∥

∥

∥

∥

xn1 −

(

xn0 +

tn1
∫

tn
0

fn
0 (s) ds

)∥

∥

∥

∥

+ ‖xn0‖+

tn1
∫

tn
0

‖fn
0 (s)‖ ds

≤

tn1
∫

tn
0

(g(s) + p(s)‖ϕ‖∞ + |v′(s)|) ds+ ‖ϕ(0)‖

+

tn1
∫

tn
0

(g(s) + p(s)‖ϕ‖∞) ds

≤ ‖ϕ(0)‖+

tn1
∫

tn
0

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds.

Note that, xn1 ∈ µB.

Next, for all t ∈ [tn0 , t
n
1 ], we set fn(t) = fn

0 (t) and

(13) un(t) := xn0 +
e(t)− e(tn0 )

e(tn1 )− e(tn0 )

(

xn1 − xn0 −

∫ tn1

tn
0

fn(s) ds

)

+

∫ t

tn
0

fn(s) ds.

Obviously, fn and un satisfy (i), (ii), (iii) and (vi) of (4) for i = 0. Let us claim

that (v) is satisfied for i = 0. So let t, s ∈ [tn0 , t
n
1 ], s < t, from (5), (6), (11) and

(13) one has

‖un(t)− un(s)‖ ≤
e(t)− e(s)

e(tn1 )− e(tn0 )

∥

∥

∥

∥

xn1 − xn0 −

tn1
∫

tn
0

fn(s) ds

∥

∥

∥

∥

+

t
∫

s

‖fn(β)‖ dβ

≤ |e(t)− e(s)|+

t
∫

s

(g(β) + p(β)‖ϕ‖∞) dβ
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(14)

≤

t
∫

s

(g(β) + p(β)(‖ϕ‖∞ + r) + |v′(β)|) dβ

+

t
∫

s

(g(β) + p(β)(‖ϕ‖∞ + r)) dβ

=

t
∫

s

(2g(β) + 2p(β)(‖ϕ‖∞ + r) + |v′(β)|) dβ.

This shows that (v) is satisfied for i = 0.

Observe that from (14) for all t ∈ [tn0 , t
n
1 ]

(15)

‖un(t)− ϕ(0)‖ = ‖un(t)− un(t
n
0 )‖

≤ ‖un(t)− un(t
n
1 )‖+ ‖un(t

n
1 )− un(t

n
0 )‖

≤

tn1
∫

t

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds

+

tn1
∫

tn
0

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds

≤

T
∫

tn
0

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds.

This inequality leads to un(t) ∈ µB for all t ∈ [tn0 , t
n
1 ]. So, (iv) is satisfied for

i = 0.

Consequently, (15) with (2) for all t ∈ [tn0 , t
n
1 ] gives us

(16) ‖un(t)− ϕ(0)‖ ≤
r

2
.

Remark that from (13) for t ∈ ]tn0 , t
n
1 [ we get

(17) u′n(t) =
e′(t)

e(tn1 )− e(tn0 )

(

xn1 − xn0 −

∫ tn1

tn
0

fn(s) ds

)

+ fn(t).

This equality with (5) and (11) gives us

‖u′n(t)− fn(t)‖ ≤ |e′(t)| = g(t) + p(t)(‖ϕ‖∞ + r) + |v′(t)|
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for almost all t ∈ ]tn0 , t
n
1 [. Moreover, from (9) we have

xn1 − xn0 −

∫ tn1

tn
0

fn(s) ds ∈ −NC(tn
1
,xn

0
) (x

n
1 ).

This relation with (17) gives us

u′n(t)− fn(t) ∈ −NC(tn
1
,un(tn0 ))

(un(t
n
1 )) for a.e. t ∈ [tn0 , t

n
1 ].

Then (vii) and (viii) are satisfied for i = 0.

In order to define un and fn on t ∈ (tn1 , t
n
2 ], we note that, in view of Lemma 3.2.4,

there exists a function fn
1 ∈ L1((tn1 , t

n
2 ], H) such that fn

1 (t) ∈ F (t, τ(tn1 )un) and

‖fn
1 (t)− z(t)‖ ≤ d(z(t), F (t, τ(tn1 )un)) +

1

n2
for all t ∈ (tn1 , t

n
2 ].

Consequently, by condition (F3) for any t ∈ (tn1 , t
n
2 ] we get

(18)

‖fn
1 (t)‖ ≤ g(t) + p(t)‖τ(tn1 )un‖∞ = g(t) + p(t) sup

s∈[−r,0]

‖τ(tn1 )un(s)‖

= g(t) + p(t) sup
s∈[−r,0]

‖un(t
n
1 + s)‖

≤ g(t) + p(t)
(

sup
s∈[−r,0]

‖un(t
n
1 + s)− ϕ(0)‖+ ‖ϕ‖∞

)

.

Now, we have to estimate ‖un(t
n
1 + s) − ϕ(0)‖ for each s ∈ [−r, 0]. We have

two cases

(1) If −tn1 ≤ s ≤ 0, then tn1 + s ∈ [0, tn1 ]. Thus, by (16) we get

(19) ‖un(t
n
1 + s)− ϕ(0)‖ ≤

r

2
.

(2) If −r ≤ s ≤ −tn1 , then t
n
1 + s ∈ [tn1 − r, 0] ⊂ [−r, 0]. Therefore, by the fact

that |tn1 + s| ≤ T < η(r/2) and (3), we have

(20) ‖un(t
n
1 + s)− ϕ(0)‖ = ‖ϕ(tn1 + s)− ϕ(0)‖ ≤

r

2
.

Then, by (18), (19) and (20) for all t ∈ (tn1 , t
n
2 ] one obtains

(21) ‖fn
1 (t)‖ ≤ g(t) + p(t)(‖ϕ‖∞ + r).
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By condition (C2), (10) and (21), we get

dC(tn
2
,xn

1
)

(

xn1 +

tn2
∫

tn
1

fn
1 (s) ds

)

≤ dC(tn
1
,xn

0
)

(

xn1 +

tn2
∫

tn
1

fn
1 (s) ds

)

+ |v(tn2 )− v(tn1 )|+ ‖xn1 − xn0 ‖(22)

≤

tn2
∫

tn
1

(‖fn
1 (s)‖ + |v′(s)|) ds +

∥

∥

∥

∥

xn1 − xn0 −

tn0
∫

tn
1

fn
0 (s) ds

∥

∥

∥

∥

+

tn1
∫

tn
0

‖fn
0 (s)‖ ds

≤

tn2
∫

tn
1

(g(s) + p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds

+

tn1
∫

tn
0

(g(s) + p(s)‖ϕ‖∞ + |v′(s)|) ds+

tn1
∫

tn
0

(g(s) + p(s)‖ϕ‖∞) ds

≤

tn2
∫

tn
1

(g(s) + p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds

+

tn1
∫

tn
0

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds.(23)

This inequality with (2) gives us

dC(tn
2
,xn

1
)

(

xn1 +

tn2
∫

tn
1

fn
1 (s) ds

)

≤

T
∫

0

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds ≤
̺

2
.

As C has uniformly ̺-prox-regular values, by Proposition 3.2.1, we have

projC(tn
2
,xn

1
)

(

xn1 +

tn2
∫

tn
1

fn
1 (s) ds

)

6= ∅.
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Then thanks to that, one can choose a point xn2 such that

(24) xn2 ∈ projC(tn
2
,xn

1
)

(

xn1 +

tn2
∫

tn
1

fn
1 (s) ds

)

.

Note that, xn2 ∈ C(tn2 , x
n
1 ) and

∥

∥

∥

∥

xn2 −

(

xn1 +

tn2
∫

tn
1

fn
1 (s) ds

)∥

∥

∥

∥

= dC(tn
2
,xn

1
)

(

xn1 +

tn2
∫

tn
1

fn
1 (s) ds

)

.

This equality with (5) and (23) yields

(25)

∥

∥

∥

∥

xn2 − xn1 −

tn2
∫

tn
1

fn
1 (s) ds

∥

∥

∥

∥

≤

tn2
∫

tn
1

(g(s) + p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds

= e(tn2 )− e(tn1 ).

Remark that, by (12), (21) and (25), we have

‖xn2‖ ≤

∥

∥

∥

∥

xn2 − xn1 −

tn2
∫

tn
1

fn
1 (s) ds

∥

∥

∥

∥

+ ‖xn1‖+

tn2
∫

tn
1

‖fn
1 (s)‖ ds

≤ e(tn2 )− e(tn1 ) + ‖ϕ(0)‖+

tn1
∫

tn
0

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds

+

tn2
∫

tn
1

(g(s) + p(s)‖ϕ‖∞ + r) ds

≤

tn2
∫

tn
1

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds+ ‖ϕ(0)‖

+

tn1
∫

tn
0

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds

= ‖ϕ(0)‖+

tn2
∫

tn
0

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds.
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It follows that xn2 ∈ µB.

Next, set for t ∈ (tn1 , t
n
2 ], fn(t) = fn

1 (t) and

(26) un(t) = xn1 +
e(t)− e(tn1 )

e(tn2 )− e(tn1 )

(

xn2 − xn1 −

∫ tn2

tn
1

fn(s) ds

)

+

∫ t

tn
1

fn(s) ds.

Obviously, fn and un satisfy (i), (ii), (iii) and (vi) of (4) for i = 1. Let us prove

that (v) is satisfied for i = 1. So let t, s ∈ (tn1 , t
n
2 ], s < t, by (5), (21), (25) and

(26) one has

(27)

‖un(t)− un(s)‖ ≤
e(t)− e(s)

e(tn2 )− e(tn1 )

∥

∥

∥

∥

xn2 − xn1 −

∫ tn2

tn
1

fn(s) ds

∥

∥

∥

∥

+

t
∫

s

‖fn(β)‖ dβ

≤ |e(t)− e(s)|+

t
∫

s

(g(β) + p(β)(‖ϕ‖∞ + r) dβ

≤

t
∫

s

(g(β) + p(β)(‖ϕ‖∞ + r) + |v′(β)|) dβ

+

t
∫

s

(g(β) + p(β)(‖ϕ‖∞ + r)) dβ

=

t
∫

s

(2g(β) + 2p(β)(‖ϕ‖∞ + r) + |v′(β)|) dβ.

This shows that (v) is true for i = 1.

Next, by (13), (14), (26) and (27) for all t ∈ (tn1 , t
n
2 ]

(28)

‖un(t)− ϕ(0)‖ = ‖un(t)− un(t
n
0 )‖

≤ ‖un(t)− un(t
n
2 )‖+ ‖un(t

n
2 )− un(t

n
1 )‖

+ ‖un(t
n
1 )− un(t

n
0 )‖

≤

tn2
∫

t

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds

+

tn2
∫

tn
1

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds
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+

tn1
∫

tn
0

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds

≤

T
∫

tn
0

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds.

for all t ∈ (tn1 , t
n
2 ]. Then (iv) is satisfied for i = 1.

Also, the inequality (28) with (2) for all t ∈ (tn1 , t
n
2 ] gives us

‖un(t)− ϕ(0)‖ ≤
r

2
.

Moreover, from (26) for t ∈ ]tn1 , t
n
2 [ we get

(29) u′n(t) =
e′(t)

e(tn2 )− e(tn1 )

(

xn2 − xn1 −

∫ tn2

tn
1

fn(s) ds

)

+ fn(t).

This equality with (5) and (25), gives us

‖u′n(t)− fn(t)‖ ≤ |e′(t)|

= g(t) + p(t)(‖ϕ‖∞ + r) + |v′(t)| for a.e. t ∈ ]tn1 , t
n
2 [ .

Also, from (24) we have

xn2 − xn1 −

∫ tn2

tn
1

fn(s) ds ∈ −NC(tn
2
,xn

1
) (x

n
2 ).

This relation with (29) leads to

u′n(t)− fn(t) ∈ −NC(tn
2
,un(tn1 ))

(un(t
n
2 )) for a.e. t ∈ (tn1 , t

n
2 ].

Thus (vii) and (viii) are true for i = 1.

We reiterate this process for constructing sequence (xni ), 0 ≤ i ≤ 2n, with

xn0 = ϕ(0), a continuous function un : [−r, T ] −→ H and fn ∈ L1([0, T ], H) such

that (4) is satisfied.

Now, for each positive integer n we define functions θn, δn : [0, T ] −→ [0, T ]

and by setting

θn(0) = tn1 , δn(0) = 0, θn(t) = tni+1, δn(t) = tni

for all t ∈ (tni , t
n
i+1), i = 0, 1, . . . , 2n − 1. Note that,

(30) lim
n→∞

θn(t) = lim
n→∞

δn(t) = t for all t ∈ [0, T ].
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Next, let t be any fixed point in [0, T ]. Then, there is i, 0 ≤ i ≤ 2n − 1, such

that t ∈ (tni , t
n
i+1]. From (4) (v), we get

(31)

‖un(t)− ϕ(0)‖ = ‖un(t)− un(t
n
0 )‖

≤ ‖un(t)− un(t
n
i+1)‖+ ‖un(t

n
i+1)− un(t

n
i )‖ + . . .

+ ‖un(t
n
1 )− un(t

n
0 )‖

≤

tni+1
∫

t

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds

+

tni+1
∫

tn
i

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds + . . .

+

tn
1

∫

tn
0

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds

≤

T
∫

tn
0

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds.

This inequality gives us

‖un(t)‖ ≤ µ for all t ∈ [0, T ].

Moreover, from (31) with (2) we obtain

‖un(t)− ϕ(0)‖ ≤
r

2
for all t ∈ [0, T ].

Observe that by (4) (ii) and (vi), we get

fn(t) ∈ F (t, τ(δn(t))un),

and

‖fn(t)− z(t)‖ ≤ d(z(t), F (t, τ(δn(t))un)) +
1

n2

for all t ∈ [0, T ]. Also, by (4) (vii) we have for almost every t ∈ [0, T ]

u′n(t)− fn(t) ∈ −NC(θn(t),u(δn(t)))

(

un(θn(t))
)

.

Step 2: The sequence (un), n ≥ 1, is equicontinuous. Let n be a fixed integer

and t, s ∈ [0, T ], s < t. Then, there are i, j such that s ∈ [tni , t
n
i+1] and t ∈

[tnj , t
n
j+1], 0 ≤ i ≤ j ≤ 2n − 1.
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Thus, by (4) (v) we get

(32)

‖un(t)− un(s)‖ = ‖un(t)− un(t
n
j )‖

+ ‖un(t
n
j )− un(t

n
j−1)‖ + · · ·+ ‖un(t

n
i+1)− un(s)‖

≤

t
∫

tn
j

(2g(β) + 2p(β)(‖ϕ‖∞ + r) + |v′(β)|) dβ

+

tnj
∫

tn
j−1

(2g(β) + 2p(β)(‖ϕ‖∞ + r) + |v′(β)|) dβ + . . .

+

tni+1
∫

s

(2g(β) + 2p(β)(‖ϕ‖∞ + r) + |v′(β)|) dβ

=

t
∫

s

(2g(β) + 2p(β)(‖ϕ‖∞ + r) + |v′(β)|) dβ.

This shows that (un) is equicontinuous.

Step 3: The sequence (un) converges uniformly to a continuous function u :

[−r, T ] −→ H , with u(t) = ϕ(t) for t ∈ [−r, 0].

In view of step 2 and Arzelà–Ascoli’s theorem we have to show that the set

A(t) = {un(t) : n ≥ 1} is relatively compact in H for all t ∈ [0, T ]. Let t be a fixed

point in [0, T ]. By construction, for any n ≥ 1 we have

(33) un(θn(t)) ∈ C
(

θn(t), un(δn(t))
)

∩ µB.

From condition (C2), (32) and (33), we get

(34)

un(t) ∈ C
(

θn(t), un(δn(t))
)

+ ‖un(θn(t)) − un(t)‖B

⊆ C(t, un(t)) + (|v(θn(t))− v(t)|+ ‖un(δn(t))− un(t)‖)B

+ ‖un(θn(t)) − un(t)‖B

⊆ C(t, un(t)) +

[

θn(t)
∫

t

|v′(s)| ds

+

t
∫

δn(t)

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds

+

∫ θn(t)

t

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds

]

B.
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Now, for any n ≥ 1 let

(35)

Rn =

∫ θn(t)

t

|v′(s)| ds

+

∫ δn(t)

t

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds

+

∫ θn(t)

t

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds.

Therefore, from (4) (iv), (34) and (35) for any n ≥ 1 we get

un(t) ∈ C(t, un(t)) ∩ µB+Rn B.

Assume by contradiction that there is t0 ∈ [0, T ] such thatA(t0) is not relatively

compact in H . So, γ(A(t0)) > 0. Using condition (C3) and the fact that A(t0) is

bounded, we get

γ
(

C(t, A(t0))
)

∩ µB < γ(A(t0)).

Then, there is δ > 0 such that

γ(A(t0))− γ
(

C(t, A(t0))
)

∩ µB > 2δ.

Note that, by (30) then lim
n→∞

Rn(t) = 0. So we can find a natural number n0

such that 2Rn
0
< δ for n ≥ n0.

Fix now n0 ∈ N such that 2Rn < δ for n ≥ n0. Then the properties of γ imply

γ(A(t0)) = γ{un(t0) : n ≥ n0} ≤ γ(C(t, A(t0)) ∩ µB+ γ(Rn
0
B)

< γ(A(t0))− 2δ + 2Rn
0
< γ(A(t0))− 2δ + δ = γ(A(t0))− δ,

which is a contradiction. Therefore, the set A(t) is relatively compact in H

for all t ∈ [0, T ]. Thus, by Arzelà–Ascoli’s theorem, we can select a subsequence

of un, again denoted by un, which converges uniformly to an absolutely continuous

function u on [0, T ]. We extend the definition of u on [−r, T ] by setting u = ϕ on

[−r, 0]. Then (un) converges uniformly to u on [−r, T ].

Step 4: For t ∈ [0, T ], we have u(t) ∈ C(t, u(t)) and

(36) lim
n→∞

h
(

C(θn(t), un(t)), C(t, u(t))
)

= 0.
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Thanks to the condition (C2), (32) and (33) for all t ∈ [0, T ], we have

lim
n→∞

dC(t,u(t))(un(t)) ≤ lim
n→∞

dC(θn(t),un(δn(t)))

(

un(θn(t))
)

+ lim
n→∞

∣

∣dC(t,u(t))(un(t)) − dC(θn(t),un(δn(t)))

(

un(θn(t))
)∣

∣

≤ lim
n→∞

[|v(θn(t))− v(t)| + ‖un(δn(t)) − un(t)‖

+ λ‖un(θn(t)) − un(t)‖]

≤ lim
n→∞

δn(t)
∫

t

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds

+ lim
n→∞

λ

θn(t)
∫

t

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds

= 0.

Using this inequality with the uniform convergence of un to u, and the closed-

ness of the set C(t, u(t)) we conclude that u(t) ∈ C(t, u(t)) for all t ∈ [0, T ].

Note that, the relation (36) is obvious from (C2) and the fact that

lim
n→∞

θn(t) = t and lim
n→∞

un(t) = u(t).

Step 5: For any t ∈ [0, T ], the sequence τ(δn(t)un) converges to τ(t)u in Cr.

Let us denote the modulus continuity of a function ψ defined on an interval

[0, T ] of R by

w(ψ, [0, T ], η) := sup
|s−t|<η

{‖ψ(t)− ψ(s)‖ : s, t ∈ [0, T ]}.

Let ε > 0 and let t, t′ ∈ [0, T ], assume that 0 ≤ t′ − t < η(ε/2). By (3) and

(4) (v), we have

‖un(t)− un(t
′)‖ ≤

t′
∫

t

(2g(s) + 2p(s)(‖ϕ‖∞ + r) + |v′(s)|) ds ≤
ε

2
.

Hence

w
(

un, [0, T ], η
(ε

2

))

= sup
|t−t′|<η(ε/2)

{‖un(t)− un(t
′)‖ : t, t′ ∈ [0, T ]} ≤

ε

2
.

Also for t, t′ ∈ [−r, 0] such that |t′ − t| < η(ε/2), we have by (3)

‖ϕ(t)− ϕ(t′)‖ <
ε

2
.
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Then

w(ϕ, [−r, 0], η(ε)) ≤
ε

2
.

Now, let t ∈ [0, T ]. Since δn(t) −→ t as n −→ ∞, there exists n0 ∈ N such that

for all n ≥ n0, |δn(t)− t| < η(ε/2). Then, for all n ≥ n0

‖τ(δn(t))un − τ(t)u‖∞ = sup
−r≤s≤0

‖un(δn(t) + s)− un(t+ s)‖

= w
(

un, [−r, T ], η
(ε

2

))

≤ w
(

ϕ, [−r, 0], η
(ε

2

))

+ w
(

un, [0, T ], η
(ε

2

))

≤
ε

2
+
ε

2
= ε,

hence ‖τ(δn(t))un − τ(t)u‖∞ converges to 0 as n −→ ∞. Therefore, since the

uniform convergence of un to u on [−r, T ] implies that τ(t)un converges to τ(t)u

uniformly on [−r, 0], we deduce that

(37) lim
n→∞

‖τ(δn(t))un − τ(t)u‖ = 0.

Step 6: The sequence (fn) converges pointwise to a function f ∈ L1(I,H)

satisfying f(t) ∈ F (t, τ(t)u), t ∈ [0, T ].

Let t ∈ [0, T ] be fixed. In view of (4) (vi) and condition (F2) we obtain for

n ≥ 1

(38)

‖fn+1(t)− fn(t)‖ ≤ d(fn(t), F (t, τ(δn+1(t))un+1)) +
1

(n+ 1)2

≤ h(F (t, τ(δn(t))un), F (t, τ(δn+1(t))un+1)) +
1

(n+ 1)2

≤ m(t)(‖τ(δn(t))un − τ(δn+1(t))un+1‖∞) +
1

(n+ 1)2
.

Thus for any two natural numbers p, q, p < q, it follows that

‖fq(t)− fp(t)‖

≤ ‖fp+1(t)− fp(t)‖ + ‖fp+2(t)− fp(t)‖ + · · ·+ ‖fq(t)− fq−1(t)‖

≤ m(t)
[

‖τ(δp(t))up − τ(δp+1(t))up+1‖∞ + · · ·

+ ‖τ(δq−1(t))uq−1 − τ(δq(t))uq‖∞
]

+
1

p2
+

1

(p+ 1)2
+ · · ·+

1

q2

≤ m(t)
[

‖τ(δp(t))up − τ(δp+1(t))up+1‖∞ + · · ·

+ ‖τ(δq−1(t))uq−1 − τ(δq(t))uq‖∞
]

+
q − p

p2
.
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From (37), we get for t ∈ I,

lim
p,q→∞

‖fq(t)− fp(t)‖ = 0,

which means that the sequence (fn(t)) is Cauchy in H for any t ∈ I, then it

converges pointwise to a function f ∈ L1(I,H). Moreover, by (4) (vi) and condi-

tion (F2) we get

d(f(t), F (t, τ(t)u)) ≤ ‖f(t)− fn(t)‖+ d(fn(t), F (t, τ(t)u))

≤ ‖f(t)− fn(t)‖+ h(F (t, τ(t)u), F (t, τ(δn(t))un))

≤ ‖f(t)− fn(t)‖+m(t)(‖τ(t)u − τ(δn(t))un‖).

Again, by (37), the right hand side of this inequality tends to zero when

n −→ ∞. Hence, f(t) ∈ F (t, τ(t)u), t ∈ [0, T ].

Step 7: For almost all t ∈ [0, T ], u′(t)− f(t) ∈ −NC(t,u(t))(u(t)).

Note that by (4) (vi) and (viii) for almost all t ∈ [0, T ] we have

‖u′n(t)‖ ≤ 2g(t) + 2p(t)(‖ϕ‖∞ + r) + |v′(t)|.

Since H is a reflexive, the sequence (u′n) converges weakly to a function v ∈

L1([0, T ], H). Because

un(t) = un(0) +

∫ t

0

u′n(s) ds

we get v = u′ a.e. So, the sequence (u′n − fn) converges weakly to (u′ − f) in

L1([0, T ], H) and the Mazur’s lemma gives us

u′(t)− f(t) ∈
⋂

n

Co{u′m(t)− fm(t) : m ≥ n} for a.e. t ∈ [0, T ].

Fix any t such that the preceding relation is satisfied and consider x ∈ H . The

last relation above yields

〈u′(t)− f(t), x〉 ≤ inf
n

sup
m≥n

〈u′m(t)− fm(t), x〉.

By (4) (viii), one has

u′n(t)− fn(t) ∈ −NC(θn(t),un(δn(t)))

(

un(θn(t))
)

∩ e′(t)B

for almost all t ∈ [0, T ]. Hence, by Proposition 3.2.1, we get

u′n(t)− fn(t) ∈ −e′(t)∂dC(θn(t),un(δn(t)))

(

un(θn(t))
)

.
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In view of Proposition 3.2.2, for x ∈ H and a.e. t ∈ [0, T ] one obtains

〈u′(t)− f (t), x〉 ≤ lim
n→∞

sup〈u′m(t)− fm(t), x〉

≤ e′(t) lim
n→∞

supσ(x,−∂dC(θn(t),un(δn(t)))

(

un(θn(t))
)

,

≤ e′(t)σ
(

x,−∂dC(t,u(t))(u(t))
)

.

So, the convexity and the closedness of the set ∂dC(t,u(t))(u(t)) ensure

u′n(t)− fn(t) ∈ −e′(t)∂dC(t,u(t))(u(t)) ⊂ −NC(t,u(t))(u(t)).

Finally, by Steps 6 and 7 we have for almost all t ∈ [0, T ]

u′(t) ∈ −NC(t,u(t))(u(t)) + F (t, τ(t)u(t))

and the proof is complete. �

4. Concluding remarks

In this paper, existence problem of solution of the sweeping process in Hilbert

space with nonconvex, noncompact perturbation has been considered. Some suf-

ficient conditions have been obtained. The importance of this work is that the

values of the sweeping process are nonconvex, noncompact, the perturbation is

not necessarily compact, and the space is Hilbert.

An interesting extension of our studies would be to extend Theorem 3.1 to

Banach space setting.
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