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Abstract. Let R be a noncommutative prime ring of characteristic different from 2, with
its two-sided Martindale quotient ring Q, C the extended centroid of R and a ∈ R. Suppose
that δ is a nonzero σ-derivation of R such that a[δ(xn), xn]k = 0 for all x ∈ R, where σ is
an automorphism of R, n and k are fixed positive integers. Then a = 0.
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1. Introduction

Throughout this paper, unless specially stated, R always denotes an associative

prime ring of characteristic different from 2, with extended centroid C and two-

sided Martindale quotient ring Q. The definitions, the axiomatic formulations and

the properties of these objects can be found in Beidar et al. [3]. For x, y ∈ R,

set [x, y]0 = x, [x, y]1 = [x, y] = xy − yx and [x, y]k = [[x, y]k−1, y] for k > 1.

Notice that an Engel condition is a polynomial [x, y]k =
k
∑

i=0

(−1)i
(

k

i

)

yixyk−i for all

noncommutative indeterminates x, y. The ring R satisfies an Engel condition if there

exists a positive integer k such that [x, y]k = 0 for all x, y ∈ R. For a subset S of R,

a mapping f : S → R is said to be commuting or centralizing on S if [f(x), x] = 0 or

[f(x), x] ∈ Z(R), respectively, for all x ∈ S. An additive mapping d : R → R is called

a derivation of R if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. Also an additive

mapping g : R → R is called a generalized derivation of R if g(xy) = g(x)y+xd(y) for

all x, y ∈ R, where d is a derivation from R into itself. Basic examples of generalized

derivations are the usual derivations on R and left R-module mappings from R to

itself. An important example is a map of the form g(x) = ax+ xb for some a, b ∈ R,
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and this generalized derivation is called an inner generalized derivation. Let R be an

associative ring and σ an automorphism of R. By a skew derivation on R we mean an

additive map δ : R → R such that δ(xy) = δ(x)y+σ(x)δ(y) for all x, y ∈ R, and σ is

called an associated automorphism of δ. For brevity, skew derivations are generally

called σ-derivations. Let 1R denote the identity automorphism of R. Clearly, the

map σ − 1R is the simplest example of skew derivations and 1R-derivations are just

ordinary derivations. Another significant example is a map of the form δ(x) =

ax+σ(x)b for some a, b ∈ R; such skew derivations are called inner skew derivations.

The study of derivations on prime rings goes back to 1957 by Posner, see [23].

A variety of results have been motivated by this work [2], [5], [6]. A well known

theorem of Posner (see [23]) states that if R is a prime ring and d a nonzero derivation

of R such that [d(x), x] ∈ Z(R) for all x ∈ R, then R must be commutative. Many

authors have studied the relationship between the structure of a prime ring R and

an additive map f : R → R which satisfies the Engel condition [f(x), x]k = 0 for

k > 1. In [19], Lanski generalized Posner’s result to one-sided ideals as follows:

Let R be a prime ring derivation d, I a left ideal of R and k, n two positive integers.

Suppose [d(rk), rk]n = 0 for all r ∈ I. Then either d = 0 or R is commutative. In [1],

Albas et al. generalized this result to generalized derivations as follows: Let R be

a noncommutative prime ring and I a nonzero left ideal of R. Let G be a generalized

derivation of R such that [G(rk), rk]n = 0 for all r ∈ I, where k, n are fixed positive

integers. Then there exists c ∈ U : Utumi quotient ring, such that G(x) = xc and

I(c − α) = 0 for suitable α ∈ C. In particular, we have that G(x) = αx for all

x ∈ I. Moreover, in [13], De Filippis proved: Let R be a prime ring of characteristic

different from 2, d a nonzero derivation of R, L a non-central Lie ideal of R, a ∈ R.

If a[d(u), u] = 0 for any u ∈ L then a = 0. In [10], Chuang, Chou and Liu proved:

Let R be a noncommutative prime ring and a ∈ R, let δ be a σ-derivation of R

such that a[δ(x), x]k = 0 for all x ∈ R, where k is a fixed positive integer. Then

a = 0 or δ = 0 except when R =M2(GF (2)). Also in [24] Shiue obtained: Let R be

a prime ring, L a noncentral Lie ideal of R and a ∈ R. Suppose that d is a nonzero

derivation of R is such that a[d(u), u]k = 0 for all u ∈ L, where k is a fixed positive

integer. Then a = 0 except when charR = 2 and dimC RC = 4. Also, Shiue extended

De Filippis’s result to one-sided ideals as follows:

Theorem A ([25], Theorem 1). Let R be a noncommutative prime ring with

nonzero left ideal λ. Suppose that D is a nonzero derivation of R and 0 6= a ∈ R is

such that a[D(uk), uk]n = 0 for all u ∈ λ, where k and n are fixed positive integers.

Then D = ad(b) for some b ∈ Q such that λb = 0 and ab = 0.

Recently, in [7] Chou and Liu proved:
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Theorem B ([7], Theorem 1.1). Let R be a prime ring, L a noncentral Lie

ideal of R and a ∈ R. Suppose that δ is a nonzero σ-derivation of R such that

a[δ(x), x]k = 0 for all x ∈ L, where σ is an automorphism of R and k is a fixed positive

integer. Then a = 0 except when char(R) = 2 and R ⊆ M2(F ), the 2 × 2 matrix

ring over a field F .

The main purpose of this article is to extend Theorem B to the case of power-

commuting as follows:

Theorem 1.1. Let R be a noncommutative prime ring of characteristic different

from 2, with its two-sided Martindale quotient ring Q, C the extended centroid of R

and a ∈ R. Suppose that δ is a nonzero σ-derivation of R such that a[δ(xn), xn]k = 0

for all x ∈ R, where σ is an automorphism of R, n and k are fixed positive integers.

Then a = 0.

Let σ be an automorphism of R. For c ∈ R, the map δ : x ∈ R 7→ σ(x)c−cx defines

a σ-derivation. A σ-derivation δ of R is called X-inner if its extension to Q is inner,

that is, there exists c ∈ Q such that δ(x) = σ(x)c− cx for all x ∈ Q. Otherwise, δ is

called X-outer. Analogously, an automorphism σ of R is called X-inner if there

exists a unit q ∈ Q such that σ(x) = qxq−1 for all x ∈ Q. Otherwise, σ is called

X-outer. An automorphism σ of Q is called Frobenius (see [9]) if, in the case of

charR = 0, σ(λ) = λ for all λ ∈ C and if, in the case of charR = p > 2, σ(λ) = λp
n

for all λ ∈ C, where n is a fixed integer, positive, zero or negative. We need some

well-known facts and a remark which will be used in the sequel.

Remark 1.2. Let R be a prime ring, then the following statements hold:

(1) Every generalized derivation of R can be uniquely extended to Q, see [21],

Theorem 3.

(2) Any automorphism of R can be uniquely extended to Q, see [8], Fact 2.

(3) Every generalized skew derivation of R can be uniquely extended to Q, see [4],

Lemma 2.

Fact 1.3 ([9], Theorem 1). Let R be a prime ring and I a two-sided ideal of R.

Then I, R and Q satisfy the same generalized polynomial identities with automor-

phisms.

Fact 1.4 ([11], Theorem 1). Let R be a prime ring with anX-outer σ-derivation δ.

Then any generalized polynomial identity of R in the form Φ(xi, δ(xi)) = 0 yields

the generalized polynomial identitiy Φ(xi, yi) = 0 of R, where xi, yi are distinct

indeterminates.

Fact 1.5 ([11], Theorem 1). Let R be a prime ring with an X-outer automor-

phism σ. Suppose that δ is an X-outer σ-derivation of R. Then any generalized
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polynomial identity of R in the form Φ(xi, σ(xi), δ(xi)) = 0 yields the generalized

polynomial identity Φ(xi, yi, zi) = 0 of R, where xi, yi and zi are distinct indetermi-

nates.

Fact 1.6 ([9], Theorem 2). Let R be a prime ring with an automorphism σ. Sup-

pose that σ is not a Frobenius automorphism of R. Then any generalized polynomial

identity of R in the form Φ(xi, σ(xi)) = 0 yields the generalized polynomial identity

Φ(xi, yi) = 0 of R, where xi, yi are distinct indeterminates.

Fact 1.7 ([17], page 140). Let R be a prime GPI-ring with an automorphism σ

and extended centroid C. Suppose that σ(α) = α for all α ∈ C. Then σ is an

X-inner automorphism.

2. Results

Let VF be a right vector space over a field F . We denote by End(V ) the ring of

endomorphisms on V and by End(VF ) the ring of F -linear transformations on VF .

An additive map T ∈ End(VF ) is called a semilinear transformation if for some

automorphism τ of F , T (vα) = T (v)τ(α) for all v ∈ V and α ∈ F , see [16], page 44.

The following lemma is proved in a way similar to the proof of Lemma 2.1 in [7]

but to keep the integrity we prove this.

Lemma 2.1. Let R be a dense subring of End(VF ) containing nonzero linear

transformations of finite rank, where dimVF > 3, and let δ be a nonzero σ-derivation

of R, where σ is an automorphism of R. If a ∈ R and a[δ(xn), xn]k = 0 for all x ∈ R,

where n and k are fixed positive integers, then a = 0.

P r o o f. By [16], page 79, there exists an invertible semilinear transformation

T ∈ End(V ) such that σ(x) = TxT−1 for all x ∈ R. That is, there is an automor-

phism τ of F such that T (vα) = (Tv)τ(α) for all v ∈ V and α ∈ F and there exists

S ∈ End(V ) such that δ(x) = σ(x)S − Sx for all x ∈ R by [12], Theorem 2.8. Hence

we have δ(x) = TxT−1S − Sx and by the hypothesis, we have

(2.1) 0 = a[δ(xn), xn]k = a[TxnT−1S − Sxn, xn]k

= a

k
∑

i=0

(−1)i
(

k

i

)

(xn)i(TxnT−1S − Sxn)(xn)k−i

for all x ∈ R. We claim that there exists v0 ∈ V such that v0 and T
−1Sv0 are

F -independent. If not then v and T−1Sv are F -dependent for all v ∈ V . That is

for every v ∈ V there exists λv ∈ F such that T−1Sv = vλv. Moreover, by [10],
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Lemma 1, there exists λ ∈ F such that T−1Sv = vλ for all v ∈ V . Then we

conclude that δ(x)v = (TxT−1S − Sx)v = T (xT−1Sv) − Sxv = T ((xv)λ) − Sxv =

T (T−1Sxv) − Sxv = 0 for all x ∈ R and v ∈ V . So this implies that δ = 0,

a contradiction. Now we obtain that v0 and T
−1Sv0 are F -independent for some

v0 ∈ V , as claimed. Observe that for x ∈ R and for any v0 ∈ V , by (2.1) we have

(2.2) 0 = a

k
∑

i=0

(−1)i
(

k

i

)

(xn)i(TxnT−1S − Sxn)(xn)k−iv0.

Now, we divide the proof into several cases.

Case 1 : Sv0 /∈ v0F + (T−1Sv0)F . Then there exists w ∈ V such that v0, T
−1Sv0

and w are F -independent and Sv0 = v0α+ (T−1Sv0)β +wγ, where α, β, γ ∈ F and

γ 6= 0.

Choose u ∈ V such that

u = 0 if dimVF = 3,

and

u /∈ (v0)F + (T−1Sv0)F + wF if dim VF > 4.

By the density of R, there exists x ∈ R such that

(2.3) xv0 = 0, xT−1Sv0 = T−1Sv0, xw = w, xu = 0.

So by (2.2) we may obtain

(2.4) 0 = (−1)ka((T−1Sv0)β + wγ).

Note that Sv0 = v0(α− γ)+ (T−1Sv0)β+(w+ v0)γ. Replacing w by w+ v0 in (2.3)

and (2.4), we have

(2.5) 0 = (−1)ka((T−1Sv0)β + wγ + v0γ).

Since γ 6= 0 it follows from (2.4) and (2.5) that

(2.6) av0 = 0.

On the other hand, Sv0 = (v0)α+(T−1Sv0)β+(w+u)γ−uγ. Similarly, replacing w

by w + u in (2.3) and (2.4) we get

(2.7) 0 = (−1)ka(T−1Sv0β + wγ + uγ).
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By (2.4) and (2.7), we conclude that

(2.8) au = 0 for every u /∈ v0F + (T−1Sv0)F + wF.

Choose u0 ∈ V such that u0 /∈ v0F + (T−1Sv0)F + wF if dimVF > 4. Then

u0 + T−1Sv0 /∈ v0F + (T−1Sv0)F + wF and u0 + w /∈ v0F + (T−1Sv0)F + wF .

Hence (2.8) yields that au0 = a(u0 + T−1Sv0) = a(u0 + w) = 0. This implies

aT−1Sv0 = aw = 0. Recall that av0 = 0 by (2.6). Consequently, a = 0, as desired.

So we may assume that dimVF = 3. In this case, {v0, T
−1Sv0, w} is a basis of V

over F .

Suppose first that β = 0. In this situation, Sv0 = v0α+wγ, γ 6= 0, and using (2.4)

we conclude that aw = 0.

Subcase 1.1 : Tv0 = v0α
∗ +(T−1Sv0)β

∗ +wγ∗, where α∗, β∗, γ∗ ∈ F with β∗ 6= 0.

Let S′ = S+T . Then S′v0 = v0(α+α
∗)+(T−1Sv0)β

∗+w(γ+γ∗) = v0(α + α∗ − β∗)+

(T−1S′v0)β
∗ + w(γ + γ∗) , T−1S′v0 = v0 + T−1Sv0 and δ(x) = TxT−1S − Sx =

TxT−1S − Sx+ Tx− Tx = TxT−1S′ − S′x.

Clearly, {v0, T
−1S′v0, w} is a basis of V over F . Replacing S by S

′ in (2.3)

and (2.4), we obtain

(2.9) 0 = a(−1)k(T−1S′v0β
∗ + w(γ + γ∗)).

Recall that av0 = 0 by (2.6) and aw = 0. From (2.9) we conclude that aT−1S′v0 = 0.

Consequently, a = 0, as desired.

Subcase 1.2 : Tv0 = v0α
∗+wγ∗, where α∗, γ∗ ∈ F . Recall that {v0, T

−1Sv0, w} is

a basis of V over F and Sv0 = v0α+wγ, where α, γ ∈ F and γ 6= 0. By the density

of R, there exists x ∈ R such that

(2.10) xv0 = 0, xT−1Sv0 = T−1Sv0, xw = T−1Sv0.

Then xnT−1Sv0 = T−1Sv0. In view of (2.2) we obtain that

0 = a(−1)k(xn)kTxnT−1Sv0 = a(−1)k(xn)kSv0.

So we have

(2.11) 0 = a(−1)kT−1Sv0γ.

So the last relation implies that aT−1Sv0 = 0 since γ 6= 0. Recall that av0 = 0

by (2.6) and aw = 0. Consequently, we obtain that a = 0, as desired.
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Suppose next that β 6= 0. In this case Sv0 = v0α+(T−1Sv0)β+wγ, β 6= 0, γ 6= 0.

Let Tv0 = v0α
∗ + (T−1Sv0)β

∗ + wγ∗, where α∗, β∗, γ∗ ∈ F . From (2.4) and (2.6),

we conclude that

(2.12) a(−1)k((T−1Sv0)β + wγ) = 0 and av0 = 0.

Subcase 1.3 : (T−1Sv0)β + wγ and (T−1Sv0)β
∗ + wγ∗ are F -independent. In

this case β∗ and γ∗ are not both zero. Given d ∈ D, let rd : V → V be the map

defined by rd(v) = vd for v ∈ V . First we assume that γ∗ 6= 0. Recall that

Sv0 = v0α + (T−1Sv0)β + wγ and Tv0 = v0α
∗ + T−1Sv0β

∗ + wγ∗, where β 6= 0,

γ 6= 0, γ∗ 6= 0. Thus we have

v0α = Sv0 − (T−1Sv0)β − wγ,(2.13)

v0α
∗ = Tv0 − (T−1Sv0)β

∗ − wγ∗.(2.14)

Now right multiplying (2.14) with (γ∗)−1γ, we have v0α
∗(γ∗)−1γ = Tv0(γ

∗)−1γ −

(T−1Sv0)β
∗(γ∗)−1γ − wγ and if we write (γ∗)−1γ = d, we get

(2.15) v0α
∗d = Tv0d− (T−1Sv0)β

∗d− wγ.

Using (2.13) and (2.15), we have v0(α− α∗d) = Sv0 − (Tv0)d− (T−1Sv0)(β − β∗d),

thus

(2.16) Sv0 − (Tv0)d = v0(α− α∗d) + T−1Sv0β
′, where β′ = β − β∗d.

On the other hand, we assume that β∗ 6= 0. Now right multiplying (2.14) with

(β∗)−1β, and writing d′ = (β∗)−1β, we have

(2.17) v0α
∗d′ = Tv0d

′ − T−1Sv0β − wγ∗d′.

Using (2.13) and (2.17), we have

(2.18) Sv0 − (Tv0)d
′ = v0(α− α∗d′) + wγ′, where γ′ = γ − γ∗d′.

Let S−rdT = S′. Then by (2.16) and (2.18) we have S′v0 = v0(α−α
∗d)+T−1Sv0β

′

or S′v0 = v0(α − α∗d) + wγ′. Note that σ(x)T = Tx and rdx = xrd for all x ∈ R.

Thus δ(x) = σ(x)S − Sx = σ(x)S − Sx + σ(x)rdT − σ(x)rdT = σ(x)(S − rdT ) +

σ(x)Td−Sx = σ(x)(S−rdT )+Txd−Sx = σ(x)(S−rdT )−(S−rdT )x = σ(x)S′−S′x.

Clearly v0, T
−1S′v0, w are F -independent. Replacing S by S

′ in (2.2), (2.3) and (2.4)

we obtain that xv0 = 0, xT−1S′v0 = T−1S′v0, xw = w and (−1)ka(xn)kS′v0 = 0.
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This implies that

(2.19) either aT−1Sv0β
′ = 0, where γ∗ 6= 0 or awγ′ = 0, where β∗ 6= 0.

In view of (2.12) and (2.19), we get av0 = aT−1Sv0 = aw = 0. Consequently, a = 0,

as desired.

Subcase 1.4 : (T−1Sv0)β
∗ + wγ∗ = ((T−1Sv0)β + wγ)l for some l ∈ F . Recall

that Sv0 = v0α + (T−1Sv0)β + wγ and Tv0 = v0α
∗ + (T−1Sv0)β

∗ + wγ∗, β 6= 0,

γ 6= 0. So Sv0 = v0α+w′ and Tv0 = v0α
∗ +(T−1Sv0)β

∗ +wγ∗ = v0α
∗ +w′l, where

w′ = (T−1Sv0)β+wγ. Clearly {v0, T
−1Sv0, w

′} is a basis of V over F . Replacing w

by w′ in (2.3) and (2.4), we obtain aw′ = 0. On the other hand, replacing w by w′

in (2.10) and (2.11) and using aw′ = 0, we obtain aT−1Sv0 = 0. Using these facts

and (2.12) we get av0 = aT−1Sv0 = aw′ = 0. Consequently, a = 0, as desired.

Case 2 : Sv0 ∈ v0F + (T−1Sv0)F . First we may assume that Tv0 /∈ v0F +

(T−1Sv0)F . Let S + T = S′, then S′v0 /∈ v0F + (T−1S′v0)F . If not, we have

Tv0 ∈ v0F + T−1Sv0F , a contradiction. Thus S
′v0 /∈ v0F + T−1S′v0F . Recall that

for all x ∈ R, δ(x) = TxT−1S′ − S′x. Replacing S by S′, by Case 1 we are done.

Hence we may assume that Tv0 ∈ v0F +(T−1Sv0)F . So there exist α, α
∗, β, β∗ ∈ F

such that

(2.20) Sv0 = v0α+ T−1Sv0β and Tv0 = v0α
∗ + T−1Sv0β

∗.

Let S′ = S + T , then S′v0 = Sv0 + Tv0 = v0(α + α∗) + T−1Sv0(β + β∗) and for

all x ∈ R, δ(x) = TxT−1S′ − S′x. Clearly β and β∗ are not both zero since Sv0

and Tv0 are F -independent. Replace S by S
′ if β = 0. So we may assume that

β 6= 0. By (2.3), there exists x ∈ R such that xv0 = 0, xT−1Sv0 = T−1Sv0,

xw = w and using (2.2), we get 0 = a(−1)k(xn)kTxnT−1Sv0 = a(−1)k(xn)kSv0 =

a(−1)k(xn)k(v0α+ (T−1Sv0)β). This implies that aT
−1Sv0 = 0. We claim that

(2.21) if Tv0 /∈ v0F then a = 0.

Let w ∈ V and w /∈ v0F + (T−1Sv0)F . Then {v0, T
−1Sv0, w} are F -independent.

So we can take Tw = v0α
∗∗ + (T−1Sv0)β

∗∗ + wγ∗∗ + uη, where α∗∗, β∗∗, γ∗∗, η ∈ F

and u ∈ V are such that u = 0 if dimVF = 3 and u /∈ v0F + (T−1Sv0)F + wF if

dimVF > 4.

Case 2.1 : Now we assume that β∗∗ = 0. Then Tw = v0α
∗∗ + wγ∗∗ + uη. If

γ∗∗ = 0, then η 6= 0 since {Tv0, Tw, Sv0} are F -independent. Suppose first that

γ∗∗ 6= 0. Consider x ∈ R such that xv0 = 0, xT−1Sv0 = w, xw = w and xu = 0.

Then we have 0 = (−1)ka(xn)k(v0α
∗∗ + wγ∗∗ + uη) and using xv0 = 0, xu = 0 and

γ∗∗ 6= 0 in the last relation, we get aw = 0. On the other hand, if γ∗∗ = 0 then

594



η 6= 0. Let x ∈ R such that xv0 = 0, xT−1Sv0 = w, xw = w, xu = w. In this case

we have 0 = (−1)ka(xn)kTxnT−1Sv0 = (−1)ka(xn)kTw = (−1)ka(xn)k(v0α
∗∗+uη)

and using xv0 = 0 and η 6= 0, this implies aw = 0.

Case 2.2 : β∗∗ 6= 0. Let d ∈ F be such that β∗∗ + βτ(d) = 0 and let w′ = w +

(T−1Sv0)d. Then {v0, T
−1Sv0, w

′} are F -independent and Tw′ = v0(α
∗∗ + ατ(d))+

wγ∗∗ + uη. In Case 2.1, when Tw = v0α
∗∗ + wγ∗∗ + uη, we have concluded that

aw = 0. Now we have Tw′ = v0(α
∗∗ +ατ(d))+wγ∗∗ + uη so by the same process as

in Case 2.1, we get aw′ = 0. Since aT−1Sv0 = 0, we obtain aw = 0. We see that if

either β∗∗ = 0 or β∗∗ 6= 0, then we conclude that aw = 0 for all w /∈ v0F+(T−1Sv0)F .

Particularly a(v0 + w) = 0 and a(T−1Sv0 + w) = 0 for all w /∈ v0F + (T−1Sv0)F .

This implies av0 = aT−1Sv0 = aw = 0 for all w /∈ v0F + T−1Sv0F . Consequently,

a = 0, as desired.

Assume on the contrary that a 6= 0. By Case 1 and (2.21) we conclude that for

every v ∈ V , v and T−1Sv are F -dependent or Tv ∈ vF . So we assume that for

every v ∈ V , we have

(2.22) Sv ∈ (Tv)F or Tv ∈ vF.

In particular, the relation (2.20) reduces to Tv0 = v0α
∗.

Let w ∈ V and w /∈ v0F+T−1Sv0F . Note that {Tv0, Sv0, Tw} are F -independent.

Suppose Tw /∈ wF . Then T (wλ) /∈ (wλ)F for all 0 6= λ ∈ F . By (2.22), we obtain

that S(wλ) ∈ (T (wλ))γ for some γ ∈ F . If S(wλ+v0) = T (wλ+v0)η for some η ∈ F

then we conclude that Tw(τ(λ)(γ−η))−(Sv0)−(Tv0)η = 0 implying {Sv0, Tw, T v0}

are F -dependent, a contradiction. Hence by (2.22), we have T (wλ+v0) ∈ (wλ+v0)F .

That is, for all 0 6= λ ∈ F , T (wλ+ v0) = (wλ + v0)µλ, where µλ ∈ F depends on λ.

Using Tv0 = v0α
∗, we obtain

(2.23) Twτ(λ) = wλµλ + v0(µλ − α∗).

Clearly, from T (w+ v0) = (w+ v0)µ1, it follows that Tw = wµ1 + v0(µ1 −α∗). Due

to this and (2.23) we obtain w(µ1τ(λ) − λµλ) + v0((µ1 − α∗)τ(λ) − µλ + α∗) = 0.

This implies

(2.24) µ1τ(λ) − λµλ = 0

and

(2.25) (µ1 − α∗)τ(λ) − µλ + α∗ = 0

for all 0 6= λ ∈ F .
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Left multiplying (2.25) with λ, we have λ(µ1 − α∗)τ(λ) − λµλ + λα∗ = 0 and

using (2.24), we have

(2.26) λ(µ1 − α∗)τ(λ) − µ1τ(λ) + λα∗ = 0 ∀λ ∈ F.

Replacing λ in (2.26) by λ+ β, we get

(2.27) β(µ1 − α∗)τ(λ) + λ(µ1 − α∗)τ(β) = 0 ∀λ, β ∈ F.

Assume that τ(λ) 6= λ for some 0 6= λ ∈ F . Replacing λ by λ2 in (2.27), we obtain

(2.28) β(µ1 − α∗)τ(λ)τ(λ) + λ2(µ1 − α∗)τ(β) = 0.

Left multiplying (2.27) with λ, we have

(2.29) λβ(µ1 − α∗)τ(λ) + λ2(µ1 − α∗)τ(β) = 0.

Using (2.28) and (2.29), we get

(2.30) λβ(µ1 − α∗)τ(λ) − β(µ1 − α∗)τ(λ)τ(λ) = 0.

Similarly; replacing β in (2.27) by β2 and using a process similar to the above, we

have

(2.31) βλ(µ1 − α∗)− λ(µ1 − α∗)τ(β) = 0.

Since τ(λ) 6= 0, by (2.27) and (2.30) we obtain

(2.32) β(µ1 − α∗) + (µ1 − α∗)τ(β) = 0.

And using (2.27) and (2.31) together, we get

(2.33) (µ1 − α∗)τ(λ) + λ(µ1 − α∗) = 0.

By the relations (2.27), (2.32) and (2.33), we have τ(λ) = λ or µ1 = α∗ for all

0 6= λ ∈ F . By assumption, we get µ1 = α∗ and moreover, by (2.25), we have

α∗ = µλ = µ1 for all 0 6= λ ∈ F . Thus Tw = wα∗, a contradiction.

So we conclude that

(2.34) Tw ∈ wF for every w ∈ V with w /∈ v0F + T−1Sv0F.

Choose w ∈ V such that w /∈ v0F + T−1Sv0F . Clearly w + v0, w + T−1Sv0 /∈

v0F + T−1Sv0F . By (2.34), Tw = wµ, T (w + v0) = (w + v0)ξ, T (w + T−1Sv0) =

(w + T−1Sv0)ε for some µ, ξ, ε ∈ F . By the F -independence of v0, T
−1Sv0, w and

by (2.20), we get ε = µ = ξ = α∗. This implies Tv = vα∗ for all v ∈ V . So

σ(x) = TxT−1 = x for all x ∈ R. In this case by Theorem A, δ = 0, a contradiction.

�
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Lemma 2.2. Let R be a dense subring of End(VF ), containing nonzero linear

transformations of finite rank, where dimVF = 2, and let δ be a nonzero σ-derivation

of R, where σ is an automorphism of R. If a ∈ R and a[δ(xn), xn]k = 0 for all x ∈ R,

where n and k are fixed positive integers, then a = 0.

P r o o f. In view of the proof of Lemma 2.1, there exist c ∈ End(V ) and an

invertible semilinear transformation q ∈ End(V ) such that σ(x) = qxq−1 and δ(x) =

cx − σ(x)c = cx − qxq−1c for all x ∈ R. So we have a[cxn − qxnq−1c, xn]k = 0 for

all x ∈ R. Since dimVF = 2 we have a[cxn − qxnq−1c, xn]k = 0 for all x ∈M2(F ).

By [18], Theorem 4.23 there exists e = e2 ∈M2(F ) such that Ra = Re.

If e = 0, then a = 0, as desired.

If e = 1 then we have Ra = R and for all x ∈ R

(2.35) [δ(xn), xn]k = 0.

By [20], Theorem 1, we get δ = 0, a contradiction.

Let e 6= 0, 1. Then by [18], Proposition 21.20, we have Ra ∼= Re, e = e2 ∈M2(F ).

So we have for all x ∈M2(F ) and e = e2 ∈M2(F )

(2.36) e[cxn − qxnq−1c, xn]k = 0.

Denote p = q−1c =
∑

i,j

eijpij , q =
∑

i,j

eijqij , where qij , pij ∈ F and eij is the usual

matrix unit, with 1 in (i, i)-entry and zero elsewhere. Now, let us make some calcu-

lations:

For e = x = e11 in (2.36) and right multiplying this relation by e22, we have

(2.37) q11p12 = 0.

For e = x = e22 in (2.36) and right multiplying this relation by e11, we get

(2.38) q22p21 = 0.

For e = x = e11 + e21 in (2.36), right multiplying this relation by e22 and us-

ing (2.37), we have

(2.39) q12p12 = 0.

For e = x = e12 + e22 in (2.36), right multiplying this relation by e11 and us-

ing (2.38) we obtain

(2.40) q21p21 = 0.
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If p12 6= 0, then by the relations (2.37) and (2.39), we have q11 = 0 = q12, so

q =
(

0 0

q21 q22

)

, a contradiction to the invertibility of q.

Similarly if p21 6= 0, then by the relations (2.38) and (2.40), we have q22 = 0 = q21,

so q =
( q11 q12

0 0

)

, a contradiction. So we have both p12 = 0 = p21. In this case p

must be a diagonal matrix in M2(F ). Let us define ψ(x) = (1 + e12)x(1 − e12) =

x − xe12 + e12x − e12xe12. Since p is a diagonal matrix and the identity in the

hypothesis is invariant under the action of automorphism ψ, ψ(p) is also diagonal. As

ψ(p) = p−pe12+e12p−e12pe12 and p =
∑

s

esspss we have ψ(p)−p = −
∑

s

esspsse12+

e12
∑

s

esspss − e12
∑

s

esspsse12 = −p11e12 + p22e12. We know that the left hand side

of the above relation is diagonal, so we have p22 = p11. In this case p = λI2, where I2
is an identity matrix in M2(F ), which implies δ = 0, a contradiction. �

Theorem 2.3. Let R be a prime ring, n, k > 1 fixed integers, c, q ∈ Q such that q

is invertible. Suppose that a ∈ R and a 6= 0. If a[cxn − qxnq−1c, xn]k = 0 for all

x ∈ R then q−1c ∈ C or q, c ∈ C.

P r o o f. By the hypothesis, we denote for all x ∈ R,

(2.41) φ(x) = a[cxn − qxnq−1c, xn]k = 0.

By assumption we know that R satisfies (2.41). That is, φ(x) is a generalized poly-

nomial identity for R. By Fact 1.3, R and Q satisfy the same generalized polynomial

identity with the automorphism Q also satisfying (2.41). If q−1c ∈ C then there is

nothing to be proved. If q ∈ C, then by (2.41) we get a[[c, xn], xn]k = 0. And by

Theorem A, we have c ∈ C, as desired. So we may assume that both q−1c /∈ C

and q /∈ C. In this case (2.41) is a nontrivial generalized polynomial identity for Q.

By [22], Q is a primitive ring having a nonzero socle with C as the associated division

ring and by [16], page 75, Q is isomorphic to a dense ring of linear transformations

on some vector space V over C. Since R is a noncommutative ring we may assume

that dimC V > 2. By Lemma 2.1 and Lemma 2.2, in case of either dimC V > 3 or

dimC V = 2 we have a = 0, a contradiction. �

Now we are ready for the proof of Theorem 1.1.

P r o o f of Theorem 1.1. Assume that a 6= 0. We will show that this assumption

will lead to a number of contradictions. Assume first that δ is X-inner, that is there

exists c, 0 6= c ∈ Q, such that δ(x) = cx − σ(x)c for all x ∈ R. Hence we have

a[cxn − σ(xn)c, xn]k = 0 for all x ∈ R and also for all x ∈ Q by Fact 1.3. By

Theorem 2.3, we may assume σ is X-outer.

Case 1 : σ is not Frobenius. Since a[cxn−σ(xn)c, xn]k = 0 for all x ∈ Q, by Fact 1.6

we have a[cxn − ync, xn]k = 0 for all x ∈ Q. Let x = y, then a[d(xn), xn]k = 0 for
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all x ∈ Q, where d(x) = [c, x] is a derivation. And by Theorem A, we obtain that

either a = 0 or c ∈ C. By assumption we conclude c ∈ C and a[yn, xn]k = 0 for all

x ∈ Q. Then by the proof of [25], Proposition 3, we obtain that R is commutative,

a contradiction.

Case 2 : σ is Frobenius. We may assume charR = p > 0. Otherwise, if charR = 0

then the Frobenius automorphism σ fixes C and hence must be X-inner by Fact 1.7,

a contradiction. So for all λ ∈ C, σ(λ) = λp
n

for some nonzero fixed integer n. Also

we may assume that n 6= 0. Let F be the algebraic closure of C if C is infinite and set

F = C if C is finite. Clearly, the mapQ ∋ q 7→ q⊗1 ∈ Q⊗CF gives a ring embedding.

So we may assume Q is a subring of Q ⊗C F . By [15], Theorem 3.5, Q ⊗C F is

a prime ring with F as its extended centroid. Since taking pth powers or pth roots is

an automorphism of C, it is also an automorphism of F . So σ can be extended to an

automorphism of Q ⊗C F and remains Frobenius. Moreover, by the same proof as

in [20], page 144. The relation φ(x) = a[cxn−σ(xn)c, xn]k is a nontrivial generalized

polynomial identity with automorphisms of Q⊗C F . By Chuang’s theorem (see [8]),

Q ⊗C F is a primitive ring having nonzero socle with F as its associated division

ring. By [16], page 75, Q⊗C F is isomorphic to a dense subring of End(VF ) for some

vector space V over F and Q⊗C F contains nonzero linear transformations of finite

rank. By Lemmas 2.1 and 2.2, we get a = 0, a contradiction.

Assuming now that δ is X-outer, we have

(2.42) 0 = a

[n−1
∑

i=0

σ(xi)δ(x)xn−i−1, xn
]

k

for all x ∈ R. So by Fact 1.4, we get

0 = a

[n−1
∑

i=0

σ(xi)yxn−i−1, xn
]

k

for all x ∈ R and y ∈ R. If σ is X-outer then by Fact 1.5, we have

0 = a

[n−1
∑

i=0

ziyxn−i−1, xn
]

k

and for z = 0 we obtain a[yxn−1, xn]k = 0 and replacing y by yx, we get

a[yxn, xn]k = 0. Now [14], Theorem 1.2 forces a = 0 or R is commutative. But

both cases lead to a contradiction.

Thus we may assume that σ is an X-inner automorphism. In this case there exists

an invertible element q ∈ Q such that σ(x) = qxq−1 for all x ∈ Q. By (2.42), R sat-

isfies

a

[n−1
∑

i=0

(qxq−1)iyxn−i−1, xn
]

k
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and σ 6= 1. Clearly, σ = 1 gives a contradiction since if σ = 1, then δ is an ordinary

derivation and by Theorem A we get a = 0, a contradiction. Then this identity is

a nontrivial generalized polynomial identity for R. By [16], page 75 and [22], Q is

a primitive ring having a nonzero socle with C as its associated division ring and Q is

isomorphic to a dense ring of linear transformations on some vector space V over C.

First we consider dimC V > 3. Since q /∈ C, there exists v ∈ V such that

{q−1v, v} are linearly C-independent. Since dimC V > 3 there exists w ∈ V such that

{q−1v, v, w} are linearly C-independent. By the density of Q, there exist x, y ∈ Q

such that xw = 0, xv = v, yw = v, xq−1v = q−1v. So by (2.42) we get

0 = a

[n−1
∑

i=0

(qxq−1)iyxn−i−1, xn
]

k

= a

k
∑

j=0

(−1)j(xn)j
(n−1
∑

i=0

(qxq−1)iyxn−i−1

)

(xn)k−jw

= a(−1)k(xn)k
n−1
∑

i=0

(qxq−1)iyxn−i−1w = a(−1)k(xn)k(qxq−1)n−1yw

= a(−1)k(xn)kqxn−1q−1v = a(−1)k(xn)kv = a(−1)kv.

So we have

(2.43) av = 0.

Since v + w is also C-independent of w and q−1v, using v + w instead of v, we also

have a(w + v) = 0, implying that

(2.44) aw = 0.

And by the density of Q there exist x, y ∈ Q such that xw = 0, yw = qv, xv = q−1v,

xq−1v = q−1v, we conclude that

0 = a

[n−1
∑

i=0

(qxq−1)iyxn−i−1, xn
]

k

w = a(−1)kq−1v.

Then we have

aq−1v = 0.

By using (2.43), (2.44) and the last equation, we have aV = 0, which implies that

a = 0, a contradiction.

Now we may assume that dimC V = 2. Then Q ∼= M2(C) is the ring of all

2× 2 matrices over C.
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Denote q =
∑

r,s

qrsers, a =
∑

r,s

arsers, q
−1 =

∑

r,s

drsers for qrs, ars, drs ∈ C. It is

clear that if
(

q22 −q12

−q21 q11

)

∈M2(C) is invertible, hence its inverse is the form

q−1 =
1

det(q)

(

q11 q12

q21 q22

)

.

By the hypothesis we obtain

(2.45) 0 = a

k
∑

j=0

(−1)j
(

k

j

)

(xn)j
(n−1
∑

i=0

(qxq−1)iyxn−i−1

)

(xn)k−j .

For x = e11, y = e22 in (2.45) and left multiplying this relation by e11 we get

(2.46) a11q22q12 = 0.

For x = e11, y = e22 in (2.45) and left multiplying this relation by e12 we arrive at

(2.47) a21q22q12 = 0.

For x = e11, y = e12 in (2.45) and left multiplying this relation by e11 we have

(2.48) a11q11q22 = 0.

For x = e11, y = e12 in (2.45) and left multiplying this relation by e22 we obtain

(2.49) a21q11q22 = 0.

For x = e22, y = e21 in (2.45) and left multiplying this relation by e22 we conclude

that

(2.50) a22q22q11 = 0.

For x = e22, y = e21 in (2.45) and left multiplying this relation by e11 we get

(2.51) a12q22q11 = 0.

For x = e22, y = e11 in (2.45) and left multiplying this relation by e11 we arrive

that

(2.52) a12q11q21 = 0.
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For x = e22, y = e11 in (2.45) and left multiplying this relation by e22 we obtain

(2.53) a22q11q21 = 0.

Now we define the following automorphisms of Q:

ϕ(x) = (1− e12)x(1 + e12) = x+ xe12 − e12x− e12xe12,

ψ(x) = (1 + e12)x(1 − e12) = x− xe12 + e12x− e12xe12,

χ(x) = (1− e21)x(1 + e21) = x+ xe21 − e21x− e21xe21,

β(x) = (1 + e21)x(1 − e21) = x− xe21 + e21x− e21xe21.

Of course the identity ξ(a[δ(xn), xn]k) is satisfied by Q, where ξ ∈ {ϕ, ψ, χ, β}. Hence

we have for all x ∈ Q

ξ(a)

[n−1
∑

i=0

(ξ(q)xξ(q)−1)iyxn−i−1, xn
]

k

= 0.

Therefore the matrices ξ(a) and ξ(q) must satisfy the above conditions (2.46)–(2.53).

We may assume that q11 = 0. Since q is invertible, q12 and q21 must be nonzero

elements. It is easy to see that a = 0 by using some basic computations. Similarly,

if one of the elements q12, q21, and q22 is equal to zero then we have a = 0. Hence

we assume that qij 6= 0 for i, j ∈ {1, 2}. So by (2.46)–(2.53), we have a = 0,

a contradiction. �
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